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Abstract

Background: In-silico virtual patients and trials offer significant advantages in cost,
time and safety for designing effective tight glycemic control (TGC) protocols.
However, no such method has fully validated the independence of virtual patients
(or resulting clinical trial predictions) from the data used to create them. This study
uses matched cohorts from a TGC clinical trial to validate virtual patients and in-silico
virtual trial models and methods.

Methods: Data from a 211 patient subset of the Glucontrol trial in Liege, Belgium.
Glucontrol-A (N = 142) targeted 4.4-6.1 mmol/L and Glucontrol-B (N = 69) targeted
7.8-10.0 mmol/L. Cohorts were matched by APACHE II score, initial BG, age, weight,
BMI and sex (p > 0.25). Virtual patients are created by fitting a clinically validated
model to clinical data, yielding time varying insulin sensitivity profiles (SI(t)) that
drives in-silico patients.
Model fit and intra-patient (forward) prediction errors are used to validate individual
in-silico virtual patients. Self-validation (tests A protocol on Group-A virtual patients;
and B protocol on B virtual patients) and cross-validation (tests A protocol on Group-
B virtual patients; and B protocol on A virtual patients) are used in comparison to
clinical data to assess ability to predict clinical trial results.

Results: Model fit errors were small (<0.25%) for all patients, indicating model fitness.
Median forward prediction errors were: 4.3, 2.8 and 3.5% for Group-A, Group-B and
Overall (A+B), indicating individual virtual patients were accurate representations of
real patients. SI and its variability were similar between cohorts indicating they were
metabolically similar.
Self and cross validation results were within 1-10% of the clinical data for both
Group-A and Group-B. Self-validation indicated clinically insignificant errors due to
model and/or clinical compliance. Cross-validation clearly showed that virtual
patients enabled by identified patient-specific SI(t) profiles can accurately predict the
performance of independent and different TGC protocols.

Conclusions: This study fully validates these virtual patients and in silico virtual trial
methods, and clearly shows they can accurately simulate, in advance, the clinical
results of a TGC protocol, enabling rapid in silico protocol design and optimization.
These outcomes provide the first rigorous validation of a virtual in-silico patient and
virtual trials methodology.
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Introduction
Stress-induced hyperglycemia and high levels of insulin resistance are prevalent in cri-

tical care [1-4]. Increased counter-regulatory hormone secretion stimulates endogenous

glucose production and increases insulin resistance [3,4], elevating equilibrium glucose

levels and reducing the amount of glucose the body can utilize with a given amount of

insulin. Hyperglycemia worsens outcomes, increasing the risk of severe infection, myo-

cardial infarction, and critical illness polyneuropathy and multiple organ failure.

The occurrence of hyperglycemia, particularly severe hyperglycemia, is associated

with increased morbidity and mortality [2]. Glycemic variability and poor control are

independently associated with increased mortality [5-7]. Van den Berghe et al [8,9]

showed that tight glucose control (TGC) reduced intensive care unit (ICU) patient

mortality up to 45% using a target of 6.1 mmol/L. Other studies with similar or slightly

higher targets have successfully reduced mortality [10,11]. Hence, despite some diffi-

culty repeating these results [12], the data indicate that a control algorithm that safely

provides TGC to reduce hyperglycemia and glycemic variability can reduce mortality

and cost [13,14].

In this study, “virtual trials” are performed using a clinically validated model [15-17]

of the glucose-insulin system. Insulin sensitivity, SI, is used as the critical marker of a

patient’s metabolic state and is assumed independent of the insulin and nutrition

inputs. Virtual trials can be used to simulate a TGC protocol using a SI(t) profile iden-

tified hourly from clinical data and different insulin and nutrition inputs. Virtual trials

enable the rapid testing of new TGC intervention protocols, as well as analysis with

respect to glycemic control protocol performance, safety from hypoglycaemia, clinical

burden, and the ability to handle dynamic changes in patient metabolic state [15,18].

They are thus a means of safely optimising protocols prior to clinical implementation.

Virtual patient trials have been used in design of TGC protocols [16,19-21]. Others

have developed them for evaluating type 1 diabetes treatments [22,23] and in critical

care [24], but none have been specifically validated in comparison to clinical trial or

patient-specific outcomes. Specific to this study, the clinical results of SPRINT [11]

showed very close agreement to expected results from simulation [16,21]. However,

SPRINT was implemented in the Christchurch Hospital ICU, and all the clinical data,

models and virtual trial methods used to design it were from the same unit so it is not

an independent ICU in that sense.

Thus, the performance of virtual trials on separate matched cohorts has not yet been

evaluated. In addition, the assumption of the independence of a virtual patient’s insulin

sensitivity SI(t) profile from the insulin and nutrition inputs used to identify it from

clinical blood glucose (BG) data has never been validated. This study tests these

assumptions using clinically matched (virtual) cohorts based on clinical data from an

independent ICU, who were treated with two different glycemic control protocols in a

randomised trial. The independence of the ICU ensures a cohort who may be different

in treatment, insulin sensitivity or other factors [25] from patients in the Christchurch

ICU whose data underlie the development of the models and methods [16,19-21] vali-

dated in this study. Hence, there is no link between the patients used in this study and

the development of the models and methods being tested here. Hence, these clinically

matched cohorts allow this assumption of independence to be tested, as well as the

assessment of model errors in this virtual trial approach.
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Methods
Glucontrol Protocol and Patient Cohorts

The Glucontrol trial [26] randomised patients into two groups: Group A and Group B.

Group A received intensive insulin therapy and Group B received conventional insulin

therapy, with target ranges of 4.4-6.1 mmol/L and 7.8-10 mmol/L, respectively. Insulin

was administered as a continuous intravenous (IV) infusion. Hourly blood glucose

(BG) measurements were recorded when the glycemic level was not within the target

range. Otherwise, 2-hourly measurements were taken in the case of limited variation of

glycemia, defined as less than a 50% change from the previous glycaemia in 2-hour

range. Finally, 4-hourly measurements were taken when the glycemic level was less

than 50% of the highest glycemia of the four last hours. If other BG measurements

were taken, they were not recorded and did not result in changes to the insulin infu-

sion rate. The protocol specified insulin infusion rates are shown in Table 1 for the

intensive protocol used on Group A, and Table 2 for the conventional protocol used

on Group B. Nutritional input was left to local and/or clinician standards, and was not

explicitly considered in the Glucontrol TGC protocols.

In this study, data was used from 350 patients (175 in each arm) treated using the

Glucontrol protocol at CHU de Liege, Belgium, between March 2004 and April 2005.

Thus, the Glucontrol data used in this study is from only one centre out of the full

study [26]. The selection criteria for patients used in this analysis to generate virtual

patients with sufficient data density [15,16,27] are shown in Figure 1. Patients were

eliminated from the analysis if they received no insulin for their entire stay (per proto-

col), had less than 5 BG measurements or received little or no (recorded) carbohydrate

administration (in any form) for more than 48 hours of their stay.

Clinical details of the resulting cohorts are in Table 3 totalling 29,777 hours and

7,391 BG measurements. Patients in Group A were slightly older than Group B. How-

ever, there were no significant differences in sex, weight, BMI, severity of illness as

Table 1 Glucontrol Group A protocol (intensive). The starting insulin infusion rate is in
the top portion and the maintenance insulin infusion rates and increments are in the
bottom portion as labelled. All values converted to mmol/L from mg/dL in 27.

STARTING INSULIN INFUSION RATE SCALE

Glycemia Starting insulin infusion rate

<6.1 mmol/L On hold

6.1–7.8 mmol/L 1 U/h

7.8–10.0 mmol/L 2 U/h

>10.0 mmol/L 4 U/h

MAINTENANCE INFUSION RATE CHANGES

Glycemia Incremental insulin infusion rate

>16.7 mmol/L +3 U/h

10.0–16.7 mmol/L +2 U/h

7.8–10.0 mmol/L +1 U/h

6.1–7.8 mmol/L +0.5 U/h

4.4–6.1 mmol/L +0 U/h (target range)

2.2–4.4 mmol/L Stop insulin, Hourly measurement of glycemia until >80 mg/dl

<2.2 mmol/L Stop insulin, 10 gr glucose IVD, Call physician immediately, Hourly measurement of
glycemia until >80 mg/dl
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measured by APACHE II score or initial BG level. Group B received less insulin and

more carbohydrate, in alignment with its higher glycemic target.

Glucose-Insulin System Model

The analysis of patient-specific insulin sensitivity uses a glucose insulin system model

that has been clinically validated in several clinical TGC studies [17,19,28-30]:

G p G S GG I
G G

Q

Q

P t EGP CNS

V t
= − −

+
+ + −

1 
( )

( )
max (1)

Q kQ kI= − + (2)

I nI

I

u t

V
e I

I

ex

I

I ex
B

k U t= −
+

+ + −

1 
( ) ( ) (3)

where: G(t) is total plasma glucose, I(t) is plasma insulin, and Q(t) is the effect of

previously infused insulin being utilized over time. EGPmax is the theoretical maximum

endogenous glucose production (EGP), which is suppressed with increasing glucose

concentrations. This suppression, independent of non-insulin mediated glucose uptake

by the central nervous system (CNS) is captured by the term pG. In contrast, patient-

specific insulin mediated glucose removal is captured with insulin sensitivity, SI, which

is identified (hourly) from clinical data as a time-dependent variable that reflects evol-

ving patient condition [15,18,27,31]. Exogenous inputs are glucose appearance P(t)

from the carbohydrate content of nutrition infusions via a two compartment model

[19], and intravenous insulin administration uex(t). The remaining parameters are phy-

siologically defined population constants for transport rates (n, k), saturation para-

meters (aG, aI), endogenous insulin secretion (IB, kI) or volumes (VG, VI) that have

been validated over several studies.

Table 2 Glucontrol Group B protocol (conventional). (a) Starting insulin infusion rate. (b)
Maintenance insulin infusion rates and increments. All values converted to mmol/L from
mg/dL in 27

STARTING INSULIN INFUSION RATE SCALE

Glycemia Starting insulin infusion rate

<10.0 mmol/L On hold

10.0–13.9 mmol/L 1 U/h

13.9–16.7 mmol/L 2 U/h

>16.7 mmol/L 4 U/h

MAINTENANCE INFUSION RATE CHANGES

Glycemia Incremental insulin infusion rate

>16.7 mmol/L +3 U/h

13.9–16.7 mmol/L +2 U/h

10.0–13.9 mmol/L +1 U/h

7.8–10.0 mmol/L +0 U/h (target range)

4.4–7.8 mmol/L Decrease 50% rate insulin

2.2–4.4 mmol/L Stop insulin, Hourly measurement of glycemia until >80 mg/dl

<2.2 mmol/L Stop insulin, 10 gr glucose IVD, Call physician immediately, Hourly measurement of
glycemia until >80 mg/dl
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The essential parameter that drives the observed patient-specific glycemic response

to insulin and nutrition inputs is insulin sensitivity, SI. It is identified by fitting the

model to BG measurements, and insulin and carbohydrate administration inputs, from

retrospective clinical data for each protocol [27,32]. The resulting insulin sensitivity

profile, SI(t), identifies a unique value every hour and the resulting profile thus varies

Figure 1 Cohort selection for Glucontrol A (Intensive) and B (Conventional) insulin therapy groups,
resulting in 211 total Glucontrol patients being retained from the original 350. Note that each arm of
the trial (A and B) each had 175 patients, so that 33 were removed from Group A and 106 from Group B.

Table 3 Glucontrol Group A and B comparison. P-values are computed using chi-squared
and Mann-Whitney tests. values are median [IQR] as appropriate.

Cohort A B P value

Baseline Variables

Number patients 142 69

Male percent (%) 64.8 56.5 0.25

Age 71 [61 - 80] 69 [53 - 77] 0.035

Weight 72 [62 - 85] 75 [68 - 81] 0.38

BMI 25.4 [22.6 - 29.3] 26.0 [23.2 - 29.3] 0.46

APACHE II 17 [14 - 22] 17 [14 - 21] 0.76

Initial BG (mmol/L) 6.6 [5.6 - 8.6] 6.6 [5.7 - 9.4] 0.58

Glucose Control

Total hours 16, 831 12, 946

BG measurements 4, 571 2, 820

BG (mmol/L) 6.3 [5.3 - 7.6] 8.2 [6.9 - 9.4]

Insulin rate (U/h) 1.5 [0.5 - 3.0] 0.7 [0.0 - 1.7]

Carbohydrate admin (all sources) (mmol/min) 0.30 [0.00 - 0.90] 0.60 [0.10 - 1.00]
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hourly. This model-based, insulin sensitivity metric and identification method have

been validated in TGC clinical trials in adults and neonates [17,19,28-30] and SI has

also shown good correlation to gold standard euglycemic clamp data [33,34].

Sensitivity analysis has shown this approach can capture the clinically observed

dynamics and variation. Median BG data fit and 1-2 hour forward prediction errors are

within 2-10% compared to measurement errors of 7-12%. Hence, this model and meth-

ods have been used to analyse, develop and/or implement new protocols

[16-18,21,25,28-30].

Insulin Sensitivity Dynamics

The dynamics of insulin sensitivity variability can be compared between cohorts. Ker-

nel density modeling provides a smooth, physiologically realistic description of the

hour-to-hour changes in insulin sensitivity, SI [15,18,35]. Confidence intervals for these

stochastic models of hourly variation can be visually compared to indicate whether

cohorts exhibit similar insulin sensitivity, and thus metabolic, variability [25], as a

further, clinically relevant and important comparator of TGC cohorts.

Virtual Trials

The “virtual trial” method is used to simulate a trial using patient specific data. The

insulin sensitivity profile SI(t) identified from clinical data captures a patient-specific

time varying glycemic response to the given insulin and nutrition inputs. This SI(t)

profile can then be used to simulate the blood glucose response to other combinations

of insulin and dextrose inputs specified by a modified TGC protocol to obtain new in

silico glycemic responses [16]. Hence, an expected blood glucose profile can be gener-

ated for each patient to simulate patient-specific glycemic responses to a specific pro-

tocol. Thus, virtual trials can be used to analyse, in silico, the effect of different TGC

protocols on patient-specific glycemic performance. Figure 2 shows this overall

process.

The critical assumption is that the identified SI(t) profiles are (largely) independent of

the clinical data used to derive them. In this analysis, 2 groups of virtual patients are

created from randomised clinical trial data. Groups A and B are defined by whether

they were clinically treated with either the Glucontrol A (intensive) or Glucontrol B

(conventional) TGC protocols. Using matched cohorts treated differently allows this

assumption to be tested. The hypothesis is thus defined: if SI(t) is independent, similar

control results would be achieved in the cross-validation.

Validation Analysis

This study performs three major forms of validation using virtual trials. These three

tests provide both per-patient and cohort-wide validation of this in silico approach.

1) Model Fit and Prediction Error

Model fit and prediction errors are used to show the ability of the model to fit the data

and predict the expected patient state. Using the identified SI profiles, the simulated

BG measurements were compared to clinical BG data. This fit error quantifies the abil-

ity of the model to capture the observed dynamics.

Prediction results are generated by holding insulin sensitivity, SI constant for an

upcoming hour, and simulating the BG one hour into the future using the recorded
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clinical insulin and dextrose inputs. This BG prediction is compared to clinically

recorded BG or a linear estimate between 2-hourly measurements. Prediction errors

assess the ability of the model and identified parameters to predict intervention out-

comes and is highly relevant for validating models used in model-based TGC [16,36].

Prediction errors are thus an assessment of the model’s ability to make accurate

patient-specific prediction. Given low fit errors it thus also assesses whether the identi-

fied and given model parameters are accurate. In this study, prediction error serves to

validate the model identification method [27] and approach [16,21] used to create vir-

tual patients and virtual trials.

2) Self-Validation

Self validation tests the ability of the in silico virtual patient modelling method to

reproduce the clinical data from which a virtual cohort was derived. For the self valida-

tion on Glucontrol A, the Glucontrol A protocol defined in Table 1 is simulated on

Group A virtual patients, and these virtual trial results are compared to the clinical

data from Group A. This step was repeated for self validation on Glucontrol B.

Differences between clinical and virtual trial results can be ascribed to model errors,

and/or lack of perfect compliance in the clinical study versus the perfect compliance

and timing in silico. Hence, two self-validation virtual trials were simulated on each

group considering: a) the actual measurement timing used in the clinical trials (actual

measurement) and b) measurement timing from the protocol (per protocol). Compar-

ing actual and per-protocol measurement timing allows one to assess one aspect of

compliance error.

Collection of  
Virtual patients 

1) Raw clinical data: 
 
• BG measurements 
• Insulin time/rates 
• Enteral and parenteral 

dextrose time/rates 

2) Fit data: Use integral 
based parameter ID to 
generate SI(t) profile of  
insulin sensitivity 
profile 

Collection of  
raw data 

files 

Collection of  
Virtual patients 

START 

0 500 1000 1500 2000
0

5000

In
su

lin
 (

m
U

/m
in

)

Time (mins)
0 500 1000 1500 2000

0

0.5

D
 (

m
m

ol
/m

in
)

0 500 1000 1500 2000
0

5

10

15
FIT5005.mat

B
G

(m
m

ol
/L

)

3) Virtual trial simulations 
Run different controllers on 

cohort of “virtual 
patients” to generate 
BG responses 

4) Compare results 
Collate and compare BG 

responses between 
protocols/patients 

Collection of  
protocol controller 

simulation code 

+ 
COMPLETE 

Control simulation outputs: 
• Insulin rate 
• Dextrose rate (Enteral and/or parenteral) 
• Time to next measurement …according to rules of protocol 

I. Create Virtual Patients from Clinical Data 

II. In Silico Virtual Patient Simulation 

0 500 1000 1500 2000
0

2

4

6
x 10

-4

S
I [

L/
(m

U
.m

in
)]

Insulin Sensitivity SI(t) profile 
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simulating different protocols.
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For self validation of actual measurement, the timing used in the virtual trial strictly

follows the measurement timing in the clinical trials where the controller selects the

proper intervention in response to the BG values at the exact time correspond to its

clinical time. In contrast, per protocol self validation follows exactly the Glucontrol A

and B protocols defined in Tables 1 and 2 regardless of the measurement timing they

had clinically. The controller will still select the intervention according to the current

BG values. However, because the Glucontrol protocols modify insulin by increments to

a prior infusion rate in Tables 1 and 2, different measurement timing could signifi-

cantly change dosing, which would thus indicate the impact of compliance to measure-

ment timing.

3) Cross-Validation

Cross validation uses the matched A and B cohorts to determine the ability of the

modelling method to reproduce the clinical data on a matched, but independent,

cohort. Thus, Protocol A is simulated on virtual patients derived from Group B clinical

data, with results compared to clinical data from Glucontrol Group A. Similarly, Proto-

col B is tested on virtual patients from Group A and the results are compared to

Group B clinical data.

In theory, if patients were perfectly matched in all ways, the in silico and clinical data

would also match if the in silico virtual trials method were exact. Differences using

large matched cohorts can thus be largely ascribed to how well the assumption holds

that these virtual patient SI(t) profiles are independent of the clinical insulin and nutri-

tion inputs used to derive them. If cross validation results match the clinical results

well, for clinically matched cohorts, then this assumption can be considered valid.

Hence, this validation tests the underlying assumption of this virtual trial method.

Figure 3 shows the self-validation and cross-validation processes schematically.

Results
Metabolic Variability

Figure 4 shows the 5th - 95th percentile range, IQR and median probability bounds for

stochastic models for Group A and Group B. The distributions indicate the hour to hour

intra-patient metabolic variability in SI is very similar across the majority of the SI range,

particularly for the middle 50% (IQR). In particular, 89%-93% of the data for both groups

was in the range 0.01 × 10-3 ≤ SI ≤ 0.8 × 10-3, which is where there was greatest agreement

between the groups. Above this range sparse data had an effect, particularly on the 5% and

95% bounds. Hence, the clinically matched cohorts of Table 3 are also similar in metabolic

variability, which is significant evidence of similar metabolic response and variability in

response to insulin across patients and cohorts that is important in this analysis.

Fit, Prediction Validation

Figure 5 shows the model fit and prediction errors for the entire Glucontrol cohort

(A + B), and separated into Group A and Group B. Results are shown on a cohort and

a per-patient basis. Model fit error was consistent across all three groups analysed,

with median fit error <0.25% in all cases. Group B has the lowest prediction error

among these three distributions. The Glucontrol (A + B) cohort prediction error med-

ian value was 3.5%, whereas Group A and Group B were 4.3% and 2.8%, respectively.

All these median errors are below typical sensor errors of 7-12%.
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Prediction errors are a function of hour-to-hour patient variability and ability of the

model to accurately capture insulin and glucose dynamics. Figure 4 indicates variability

in insulin sensitivity is similar (within 2% for all ΔSI) for the cohorts. Thus, the model

prediction errors for Group A and B have 80% or more of their results ≤10% measure-

ment error, despite significant differences in clinical insulin usage in Table 3. This per-

formance across different cohorts is similar in a clinical sense where relatively smaller

errors of 10-12%, or differences in error of 2-5% are not clinically significant in out-

come. However, it should be noted that they are not statistically the same. Similar

results are seen for the median patient fit and prediction errors in the lower panel of

Figure 5.

Self & Cross Validation

Figure 6 shows the CDF of measured blood glucose on a cohort basis, comparing clini-

cal data from Glucontrol A and B to:

1. Self validation: Per protocol and actual measurement virtual trial results for Glu-

control A and B on the Group A and Group B virtual patients.
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Control Protocol 
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Figure 3 Virtual trial validation method. These profiles are then used to re-simulate the Glucontrol A
and Glucontrol B protocols for comparison to the appropriate clinical results.
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2. Cross validation: Virtual trial results for the Glucontrol A protocol on Glucon-

trol B virtual patients, and the Glucontrol B protocol on virtual Group A patients.

The breakdown of distributions shows a clear separation between the Glucontrol A

and Glucontrol B protocols, as expected from the clinical results, and equally for all

combinations of simulations.

The four distributions for the Glucontrol A protocol show particularly close agree-

ment. The Glucontrol A clinical median cohort BG value of 6.2 mmol/L agrees well

with the 6.0 mmol/L and 6.2 mmol/L medians for the self validation trials using actual

and per-protocol BG measurement timing respectively. The cross-validation median

BG of 6.5 mmol/L is also in close agreement with the clinical result.
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The four BG distributions for the Glucontrol B protocol show a slightly greater

spread in results, particularly below the Group B target of 8 mmol/L. However, the

median cohort clinical BG value of 8.1 still agrees well with the medians of 8.5 and 8.7

mmol/L for Glucontrol B self validation with actual and per-protocol measurement fre-

quency, respectively. It also agrees well with the cross-validation median result of 8.5

mmol/L. The cross validation result lies between the clinical data and self validation

result indicating it is within the model and/or compliance error compared to the clini-

cal data.

Finally, the wider error in the Glucontrol B protocol results may be due to the rela-

tively low median insulin doses of <1 U/hr (Table 3). Hence, model error grows due to

the fixed endogenous insulin rate assumed for IB in this situation and similarly fixed

value assumed for EGPmax. Finally, as with the Group A results, the self and cross vali-

dation agreement is within measurement error and clinically insignificant over the

CDF.

Figure 7 shows the same results for the CDF of the median patient blood glucose

levels across all patients in each group. This “per-patient” comparison has the same

whole-cohort trend in Figure 6. Interestingly, and as with the cohort results, the largest

gap is between self validation and clinical data for Glucontrol B.

Overall, the gap between the self validation using actual measurement timing and

clinical data indicates the possibility of compliance error. In contrast, the difference

between self validation simulations using exact protocol-specified timing and the clini-

cal data shows one possible indication of model error. However, it may also suggest

that the conventional, lower intensity Group B protocol may not have been followed as

strictly with respect to dosing.

Table 4 shows the comparison of clinical trials to the self validation and cross valida-

tion on Glucontrol A. Per patient results show a reasonably close agreement between

self validation per protocol to the clinical data but the insulin rates are higher given

the almost 2× higher measurement rate when using the protocol-specified rules. Using

the actual measurement rate, the insulin rates are closer.
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Figure 6 CDF of blood glucose levels of clinical Glucontrol data versus virtual trials on a cohort
basis. The A and B cohort sets of (3) curves are labeled.
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Differences in measurement rate and insulin dose can be ascribed to non-compliance

and due to the design of Glucontrol, where the rate of change of insulin dose is tied to

BG measurement frequency. In particular, the clinical and actual measurements were

taken 52.0% of the potential per-protocol specified times based on in silico glycemic

results for Glucontrol A and 63.5% for Glucontrol B in Table 5. Note that Glucontrol

B had a higher compliance rate (% of per-protocol measurements) likely due to its

higher glycemic target, which allowed 4 hour measurements to start sooner than for

Glucontrol A. Thus, it could be construed that Glucontrol A clinical staff were less

compliant to a potentially more burdensome protocol in this regard.

For the cross validation, the Glucontrol A protocol required almost 3× higher rates

of insulin for Group B, compared to the clinical data. However, this may be a function

of the interaction of protocol and measurement frequency where there was a 1.4× dif-

ference that results from per protocol versus actual measurement self-validation. That

said, the Glucontrol B patients received 2.6× greater carbohydrate input to offset much

of this difference in insulin administration. Specifically, the cross validation in Table 4

required 3.2× more insulin to offset 2.6× more carbohydrate administration. Adjusting
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Figure 7 CDF of median blood glucose measured of Glucontrol clinical data versus virtual trial on a
per patient basis. The A and B cohort sets of (3) curves are labeled.

Table 4 Comparison of per-patient clinical results and virtual trial simulations (self-
validation and cross validation) on Glucontrol A. Clinical and actual measurements were
taken 52.0% of the potential per-protocol specified times based on in silico glycemic
results. Median [IQR] is used where appropriate

Self validation Cross validation

Clinical Actual Measurement Per-Protocol Per-Protocol

No. of patients 142 142 142 69

Per Patient Results

Insulin rate (U/h) 1.4 [0.9 - 2.1] 1.8 [1.1 - 2.9] 2.5 [1.5 - 4.1] 4.5 [2.3 - 6.5]

Glucose rate (g/h) 1.1 [0.5 - 7.6] 1.1 [0.5 - 7.6] 1.1 [0.5 - 7.6] 2.9 [0.7 - 7.4]

BG (mmol/L) 6.4 [5.9 - 6.9] 6.2 [5.7 - 6.8] 6.2 [5.7 - 6.8] 6.5 [6.0 - 6.9]

BG measures 4564 4564 9467 7259

Measurement frequency
(measurement/patient/day)

6.52 6.52 13.54 13.48
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by 2.5/1.8 the per-protocol versus actual measurement increase in insulin administered

yields an estimated 2.4× increase in insulin use to offset this increased carbohydrate

administration. Hence, the increased insulin in cross validation in Table 4 is primarily

due to the increased carbohydrate administered to Group B.

Comparison of clinical trials with self validation and cross validation on Glucontrol B

is summarized in Table 5. Self validation results show close agreement to the clinical

result and for cross validation lower Group A insulin requirements are reflected by the

lower nutrition given that group and the higher target BG target under the Glucontrol

B protocol, which is similar to the difference in insulin in the cross validation in Table

4 but in the reverse direction. Similarly, virtual trials of Glucontrol B per protocol have

higher measurement frequency compared to the actual measurement indicating signifi-

cant non-compliance. Thus, the actual measurement case indicates closer agreement

with the insulin given and glycemic outcomes, as with the Glucontrol A results.

Discussion
This paper focuses on the Glucontrol protocol from one centre (Liege, Belgium; pilot

centre). Glucontrol was a multi-centre study stopped early due to a high rate of unin-

tended protocol violations [26]. Hence, some self-validation errors may be the result of

poor compliance, as seen in the results of Tables 4 and 5, and thus the different virtual

trials can capture that reality. Patient-specific compliance levels ranged from 100%

compliance to 20%. However, these values are skewed by length of stay and initial gly-

cemic levels among other possible factors, and thus per-patient statistics are only

broadly meaningful.

The clinical data was independent from the Christchurch Hospital ICU data used in

prior development and clinical validation of the model employed here. More impor-

tantly, there are 2 cohorts matched by severity of illness, weight and sex, which had

significantly different glycemic targets and glycemic control therapies. In addition, Fig-

ure 4 shows that cohorts appear well matched in their metabolic dynamics and varia-

bility which is the critical aspect for this study as it determines the outcome glycemia

and variability for a set of given interventions.

One possible limitation is that unequal numbers of virtual patients are created from

each cohort (A = 142 of 175 are used; B = 69 of 175), as seen in Figure 1. The reason

is that the higher glycemic target of Glucontrol B, and lower compliance, meant that

Table 5 Comparison of per-patient clinical results and virtual trial simulations (self-
validation and cross validation) on Glucontrol B. Clinical and actual measurements were
taken 63.5% of the potential per-protocol specified times based on glycemic results.
Median [IQR] is used where appropriate

Self validation Cross validation

Clinical Actual measurement Per protocol Per protocol

No. of patients 69 69 69 142

Per Patient Results

Insulin rate (U/h) 0.6 [0.3 - 1.2] 0.5 [0.2 - 1.0] 0.6 [0.2 - 1.4] 0.2 [0.0 - 0.8]

Glucose rate (g/h) 2.9 [0.7 - 7.4] 2.9 [0.7 - 7.4] 2.9 [0.7 - 7.4] 1.1 [0.5 - 7.5]

BG (mmol/L) 8.3 [7.6 - 8.8] 8.4 [7.8 - 9.1] 8.7 [8.1 - 9.5] 8.3 [7.4 - 9.1]

BG measures 2820 2820 4448 5772

Measurement frequency
(measurement/patient/day)

5.23 5.23 8.23 8.23
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far more patients did not meet the criteria in Figure 1 required to create valid virtual

patients due to low data density. However, Table 3 shows that these patients are still

matched clinically in the most relevant clinical parameters for survival (APACHE II

and initial BG). Additionally, as noted in the results and shown in Figure 4 insulin sen-

sitivity and its variation are similar. As a result, the virtual patients are also equivalent

in underlying data quality and clinically important metrics. However, a larger cohort

would allow more detailed cross validation on sub-cohorts. Hence, this potential lim-

itation does not appear to skew the results presented or their validity.

Further, despite significant differences between the two protocols, the hour-to-hour

intra-patient variation between cohorts is very similar, indicating hour-to-hour changes

in insulin sensitivity are patient-specific and protocol-independent. The cohorts can

thus be considered interchangeable for the purpose of the cross validation presented.

This result also helps independently validate the assumption that this model-based

insulin sensitivity is independent of the clinical inputs used to identify it, which is

important as this assumption is the basis of these virtual trials.

The model fit errors in Figure 5 are relatively very small and almost overlaid for

Group A, B and the entire Glucontrol cohort. The model prediction validation results

in Figure 5 can be seen as an estimate of the variability of insulin sensitivity in this

cohort, as well as a sign of model fitness. Low 1-hour prediction errors compared to

sensor error of 7-12% were found for both groups. For context, this result also suggests

the use of model-based targeted BG control will be effective for these cohorts of criti-

cally ill patients, as demonstrated previously for Christchurch ICU cohorts upon whom

this model was derived and used [16,19,36]. Thus, they also serve as an independent

validation of this model using different ICU cohorts. Note that similar, but larger,

errors for 2-4 hour predictions have been found for this model [27]. The growth of

such error is largely due to the greater chance of significant variation in SI over longer

time periods as the hourly variations in Figure 4 compound. However, it should be

noted that in this scenario, 1-hour and 2-hour predictions are clinically relevant.

The distribution of clinically measured BG values shows a very clear difference

between Glucontrol protocol A and B, as expected. The virtual trials results are within

5% (median) of the clinical results for both the self validation and cross validations

(Figures 6 and 7). Referring to the same figures, the obvious separation between two

protocols indicates the inter-protocol differences are, as expected, much larger than

any inter-group differences thus supporting the fundamental assumptions behind this

virtual trials approach. More importantly, the close correlation of self and cross valida-

tion results to clinical data validates the idea that these in silico virtual trial simulations

can accurately predict the expected clinical results of a TGC protocol prior to clinical

implementation.

The results in Figures 6 and 7 illustrate some variation between clinical data and vir-

tual trials. In particular, Glucontrol A results are closer to the clinical data compared

to Glucontrol B. The major difference is that Protocol B uses much less insulin given

its higher glycemic target. Therefore, the impact of intrinsic and potentially variable

patient-specific dynamics, such as endogenous insulin production (IB and kI) and endo-

genous glucose production (EGPmax), are more pronounced with respect to the far les-

ser exogenous insulin given to Group B, especially at blood glucose levels below 8.0

mmol/L. As these metrics are unidentifiable and thus, by necessity, assumed
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population constants, some of the Group B simulation errors may reflect errors in

these population values. In particular, IB can have a very wide range of patient-specific

values, and may also vary over time and patient condition [37]. However, if this differ-

ence from the assumed value was significant, the variability in Figure 4 would have

been potentially greater than observed. Similarly, the value of kI (endogenous insulin

suppression by exogenous administration) can also vary by time and condition [37], as

well as across cohorts administering different levels of insulin (Tables 4 and 5). How-

ever, while this may be one possible cause of the slight shift seen in Figure 6 for the

Glucontrol B results, significant differences between model and clinical behaviour

would have been evident in Figure 4 and in the prediction errors and glycaemic out-

comes of Figures 5, 6 and 7.

A further and potentially more likely cause is evident in Figure 6 where the most mis-

matched line of the three results is for the clinical results for Glucontrol B, where the

simulation results are more similar. The fact that the clinical data are lower than the

simulations in this region could indicate non-compliance in timing or dosing of insulin,

or simple overriding of the protocol recommendations by clinical staff. Computer simu-

lations will always follow protocols exactly as instructed. Hence, the self validation error

captures both model and compliance errors, which are clearly evident in Table 5 where

insulin doses and protocol-specified measurement frequency are very different from the

actual measurement case. This last point is critical because reduced measurements in

the B protocol would not reduce insulin as fast as the per protocol case, resulting in

lower clinical BG levels. The actual measurement self-validation simulation for Glucon-

trol B is much closer to the clinical data, having accounted for this effect.

For the cross validation, Protocol A on Group B is a very good match with errors

similar to the self validation results for Group A. In addition, Protocol B on Group A

virtual patients is within a similar range as the Group B self validation and close to the

slope and trends of the clinical data. Thus, the insulin sensitivity independence

assumption behind this virtual trials approach holds, independently validating this con-

cept and the virtual trial method based on this model.

Differences between self and cross validation results are ascribed here to remaining

differences between patient groups, despite clinical matching. The main notable differ-

ence pointed out in the results and Tables 4 and 5 is the difference in nutrition given

each cohort. The virtual trials approach here treats each group as being treated differ-

ently, including the carbohydrate and glucose infusions administered. These infusions

were patient-specific and specified based on local and individual clinician standards,

rather than per a protocol of any type. Thus, they were kept for each patient. As a

result, Glucontrol B patients with the higher target had 2.6× higher glucose administra-

tion, which in cross validation was offset by 3.2× more insulin in the virtual trials. Dif-

ferences in insulin rates between per protocol (as the cross validation was done) and

per actual measurement rates makes these differences almost equal at 2.6× higher glu-

cose administration and 2.4× greater insulin required to achieve the almost identical

glycemic outcomes. Hence, the patients display similar overall insulin sensitivity, and

the virtual trials took independently treated, matched patients and achieved the same

outcome despite different initial treatments in the clinical data used to create the vir-

tual patient. More specifically, nutritional treatment differences, within reason, did not

affect or influence the results outside of expectations.
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More importantly, the relatively small differences show the strength of model-fitted

insulin sensitivity as a description of patient metabolic state, rather than as a therapy-

specific parameter value. Other causes for remaining differences may also be a function

of remaining model approximations or errors. As noted, inter-patient variability in

some fixed model parameters is at least one cause of model limitations and errors.

However, the limited glucose data with no added or real time insulin data limits the

ability to uniquely identify these parameters [27,32].

Finally, this paper shows the potential for TGC protocols to be readily optimised and

implemented using model based TGC. The low prediction errors indicate an ability to

minimize the risk of hypoglycaemia as well as provide tight control. Even though some

TGC clinical trials have not achieved any benefit from TGC [12,38], only 2 protocols

have been first optimized with virtual trials [11,17,21]. Both delivered safe, effective

TGC with reduced or zero hypoglycaemia.

Conclusions
This paper presented the analysis and validation of an in silico virtual patient and

model-based virtual trials methodology. The validation approach, as presented, is read-

ily generalized. It takes advantage of a set of independent clinical data comprised of

two clinically matched cohorts treated with two different TGC protocols with two dif-

ferent glycemic targets. Three main conclusions can be drawn:

• Self validation indicated a clinically insignificant error in these virtual patient

methods due to model and/or clinical compliance. They also showed the impact of

some non-compliance independent of model error.

• Cross validation clearly showed that the virtual patient methods and models

enabled by patient-specific SI(t) profiles are effective and the assumption that the SI
(t) profiles are independent of the clinical inputs used to generate them holds.

• Thus, the virtual patients and in silico virtual trial methods presented are vali-

dated in their ability to accurately simulate, in advance, the clinical results of an

independent TGC protocol, directly enabling rapid design and optimisation of safe

and effective TGC protocols with high confidence of clinical success.

Overall, this study further shows the potential and capability of model-based, data

driven in silico methods to aid protocol design, as well as the potential for models to

provide accurate, safe and effective real-time TGC.
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