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Conventional environmental health studies have primarily focused on limited environmental stressors at the population level,
which lacks the power to dissect the complexity and heterogeneity of individualized environmental exposures. Here, as a pilot
case study, we integrated deep-profiled longitudinal personal exposome and internal multi-omics to systematically investigate
how the exposome shapes a single individual’s phenome. We annotated thousands of chemical and biological components in
the personal exposome cloud and found they were significantly correlated with thousands of internal biomolecules, which was
further cross-validated using corresponding clinical data. Our results showed that agrochemicals and fungi predominated in
the highly diverse and dynamic personal exposome, and the biomolecules and pathways related to the individual’s immune
system, kidney, and liver were highly associated with the personal external exposome. Overall, this data-driven longitudinal
monitoring study shows the potential dynamic interactions between the personal exposome and internal multi-omics, as well as
the impact of the exposome on precision health by producing abundant testable hypotheses.

[Supplemental material is available for this article.]

Human health is shaped by the personal genome, microbiome,
and exposome (Topol 2014). Extensive studies have been conduct-
ed on the genome and microbiome; however, the human expo-
some is rarely investigated, especially at the individual level.
Exposomics research aims to characterize all physical, chemical,
and biological components collectively in the human external
and internal environment and investigate the internal molecular,
physiological, and health-related effects of these exposures (Gao
and Snyder 2021). The external environment consists of all poten-
tial exposures from the near-field to the far-field sources of exoge-
nous chemical, biological, and physical exposures (Li et al. 2012,
2014; Liu et al. 2019; Guo et al. 2020b). The internal environment
includes but is not limited to xenobiotics and their biotransforma-
tion products, foreign DNA/RNA, foods along with the contami-
nants (Zhang et al. 2013; Jin et al. 2014; de Oliveira et al. 2018),
and bioactive molecules accumulated from exogenous sources
(Gao et al. 2018a; Vermeulen et al. 2020).

Compared with the human genome, the personal exposome
is much harder to be decoded. Recent studies revealed that person-
al exposome profiles are highly dynamic and spatiotemporally dif-
ferent among individuals who live in the same geographical area.
For instance, studies have shown that individuals are exposed to
significantly different chemical and biological stressors during
the same period even if they are in the same general geographical
region, such as the San Francisco Bay Area or London (Jiang et al.
2018; Sinharay et al. 2018). Previous studies have usually targeted a
single group of stressors, which failed to provide a holistic picture
of the exposome cloud and their interactions (Gauthier et al.
2014). Moreover, stressor-induced physiological responses varied

significantly among different individuals (Sinharay et al. 2018).
Therefore, there is a critical need to monitor exposures at the indi-
vidual level and systematically integrate them with respective in-
ternal multi-omics profiles to fully characterize each individual’s
personal responses to environmental exposures.

Multi-omics analyses enable a detailed investigation into the
biological mechanisms underlying human phenotypes by inte-
grating multiple omics, such as proteomics, metabolomics, and
microbiomics (Gao 2021). Multi-omics profiling, together with
clinical measures such as cytokines and blood tests, can compre-
hensively assess one’s health status and detect significantly corre-
lated exposures to understand the impact of the external
exposome on human biology and health (Jiang et al. 2018;
Schüssler-Fiorenza Rose et al. 2019; Zhou et al. 2019). In addition,
longitudinal profiling can avoid biases introduced by one-time
sampling and provide a molecular portrait of the effect of different
exposures at an individual level.

In this first of its kind study,we used our previously published
data sets to integrate thousands of longitudinally measured chem-
ical and biological components along with physical factors in the
personal exposome to investigate how the various stressors in the
external exposome impacted internal -omes, such as the prote-
ome, metabolome, and the gut microbiome, as well as cytokines
and blood markers (Jiang et al. 2018; Schüssler-Fiorenza Rose
et al. 2019; Zhou et al. 2019). Specifically, this study (1) improved
the annotation of biological and chemical exposures in the exter-
nal exposome and human blood; (2) integrated the external expo-
some with internal multi-omics to investigate the effect of the
exposome on molecular phenotypes and pathways; and (3) corre-
lated the environmental components with clinical measurements
to associate the health effects of the external exposome.
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Results
Longitudinal profiling of the exposome and internal multi-omics
to monitor personal environmental health

We investigated whether the external exposome is associated with
the internal molecular and physiology profile at a comprehensive
and personal level using the schematic shown in Figure 1A. We
first reanalyzed deep biological and chemical exposome data col-
lected from our previously published study in which an individual
had been continuously wearing a personal exposome collection
device (exposometer), and we correlated the biological and chem-
ical agents it captured with the internal molecular profiles. The in-
dividual in this study was a 61-yr-old male of European ancestry
with doctoral education. He is a modest consumer of alcohol,
does not smoke, is allergic to rubber and has verymild pollen aller-
gies, and was prediabetic at the time of this study.

Over the 52-d period relevant for this study, the device cap-
tured organic chemicals using zeolite, followed by methanol elu-
tion and liquid chromatography coupled to high-resolution
mass spectrometry (LC-HRMS) analysis. Biological specimens
were also captured using polyethersulfone filters, and the DNA
and RNA nucleic acids were analyzed by high-throughput se-

quencing (Supplemental Data S1). General environmental factors
(e.g., temperature, humidity, total particulate matter) were record-
ed by the device, and the other environmental factorswere also ob-
tained from the local air quality monitoring stations (Fig. 2C).
Contrary to conventional exposome monitoring studies, which
usually focused on the exposures at a single time point (Gao
et al. 2018b; Xiang et al. 2018a,b), we captured personal exposome
profiles across 18 time points and annotated 1265 genera, 158
known chemical stressors among 3299 chemical features, and 10
environmental factors, which included physical stressors that
may impact environmental health in this study (Fig. 1B). These
genera and known chemical stressors were annotated from im-
provedmicrobiome and chemical annotation pipelines that we de-
veloped as part of this study (Methods).

Over the same 52-d period, we also collected stool and blood
samples from the same participant to profile the gut microbiome,
proteome, metabolome, toxins and carcinogens, cytokines, and
blood tests (Fig. 1C; Supplemental Data S1). Through reanalysis
pipelines, we were able to annotate 60 toxins and carcinogens, as
well as 664 metabolites, 302 proteins, and 62 gut microbiome
taxa. We also measured 62 cytokines and 46 clinical blood parame-
ters (Supplemental Data S1) to longitudinally monitor personal
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Figure 1. Overview of longitudinal sample collections for personal exposome and multi-omics profiling. (A) Personal exposome characterized by the
exposometer includes environmental factors, biological components, and chemical stressors. Internal multi-omes include the gut microbiome, metabo-
lome, proteome, toxins and carcinogens, cytokines, and blood tests. (B) The amount and collection time of each type of multi-omics and exposome sam-
ples. (C) Sample distribution and constitution of the exposome and internal multi-omics for monitoring precision environmental health.
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health status (Schüssler-Fiorenza Rose et al. 2019). All sample collec-
tionswere performed during the first quarter of 2016 from three dis-
tinct locations in the United States (Supplemental Fig. S1).
However, because not all sample types were collected at each time
point, the inter-omic analyses were performed only when sample

collection periods overlapped (Fig. 1B). Despite our limited ability
to control all confounding variables, we searched for significant in-
tra- and interexposome correlations and high-degree components
(i.e., highly connected components) that have the most significant
correlations in each analysis as those may play important roles in
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Figure 2. The dynamic and diverse personal exposome cloud. (A) Heat map clustering of the annotated chemical stressors in the exposome ordered by
concentrations, with the sector diagrams indicating the increased and decreased chemical groups. The abrupt concentration increase after the January 25
sample indicates the approach can monitor changes of the chemical exposome. (B) Heat map of the top abundant genera annotated in the exposome
during each collection period. (C) Environmental factors were collected by either the personal exposometer (temperature, humidity, total particulate mat-
ter) or local monitoring stations. (TPM) Total particulate matter. (D) Spearman’s correlation analyses within the personal exposome (|r| > 0.9; false-discov-
ery rate [FDR]–adjusted P-value [Q-value] < 0.05). (E) Chemical and biological components that have the most significant correlations with the other
substances in the exposome. (F) Representative Spearman’s correlation analyses between fungi and temperature/antifungal chemicals.
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the interactions between the exposome and internal -omes (|r| >0.9;
FDR-adjusted P-value [Q-value]<0.05). We tested various analysis
methods (e.g., Pearson, Spearman’s, Kendall, and partial correla-
tions, Bayesian approaches, and mediation analysis) with different
cutoffs and found the presented approaches and parameters were
most suitable for these data sets with enough statistical power in
terms of providing testable hypotheses (Methods).

Intra-exposome relationships in the highly dynamic and diverse
personal exposome cloud

To annotate as many chemicals as possible, we searched through
the 3299 LC-HRMS raw features of the chemical exposome using
various public exposome-related databases, as well as an in-house
database that we assembled (Methods). Using this new annotation
pipeline, we were able to annotate 158 known chemical stressors
(Methods; Fig. 2A). These stressors were categorized into 13 classes,
with the dominant class being agrochemicals, followed by phar-
maceuticals and personal care products (PPCPs), plasticizers, and
International Agency for Research on Cancer (IARC) group 2A car-
cinogens, and the chemicals in each class showed dynamic chang-
es during the monitoring period (Fig. 2A; Supplemental Fig. S2;
Supplemental Data S2). To characterize the biological exposome
domain, we circumvented the limited ability of 16S rRNA/
18rRNA/ITS sequencing by applying metagenomic sequencing.
We found 17 genera dominated the study period, most of which
were fungi and bacteria, and these also underwent dynamic chang-
es (Fig. 2B). Ten general environmental factors, measured either by
personal exposometer (temperature, humidity, and total particu-
late matter) or by local air monitoring stations (atmospheric pres-
sure, wind speed, SO2, NO2, O3, CO, and air quality index), were
also included in the study (Fig. 2C; Zhang et al. 2021).

We performed intra-omics correlation analyses to investigate
the potential relationships among all the exposome components
(Methods; Supplemental Data S3). We found a total of 60 statisti-
cally significant correlations (|r| > 0.9 and Q-value<0.05) among
74 exposome components, including 41 chemicals, 30 genera,
and three environmental factors (Fig. 2D; Supplemental Fig. S3).
Specifically, diisononyl phthalate (a plasticizer) and butylated tri-
phenyl (an organophosphate flame retardant) had the most signifi-
cant correlations, followed by various agrochemicals, PPCPs, and
IARC group 2A carcinogens. Among the biological components,
the Tricholoma mushroom had the highest number of significant
correlations, followed by Cylindrobasidium, Piriformospora, Erysiphe,
Schizophyllum, Serendipita, and Hirsutella, all of which are fungi
(Fig. 2E). In terms of environmental factors, only temperature and
humidity collectedby the exposometer aswell as SO2 concentration
collected by the local monitoring stations were significantly corre-
lated with biological exposome components (Fig. 2D). For example,
Paenibacilluswas positively correlated with the temperature, consis-
tent with the literature that members of Paenibacillus are heat resis-
tant and grow well in warmer temperatures (Kaur et al. 2018).
Azoxystrobin, ethylparaben, and captan are fungicides or antifun-
gal agents (Rodrigues et al. 2013; European Food Safety Authority
[EFSA] et al. 2020; Hu et al. 2022) that negatively correlatedwith dif-
ferent fungi (Fig. 2F). More details regarding the correlations within
the exposome cloud are provided in Supplemental Data S2 and S3.

Inter-omics analyses between the exposome and multi-omics
revealed physiological links to the exposome

To investigate how the exposome shapes an individual’s phenome
longitudinally, we investigated the links between the external

exposome and internal multi-omics. Specifically, we found 8986
significant correlations (|r| > 0.9 and Q-value <0.05) among 1700
factors from all -omes, and positive correlations were more pre-
dominant than negative correlations (Fig. 3A; Supplemental
Data S4). The biological exposome and metabolome were the
most extensive -omes in the network, and they also had the great-
est number of significant correlations (N=4148) (Fig. 3A,B).
Additionally, we found that the exposome and internal multi-
omics networks can be divided into several subnetworks with
high modularity (0.819) (Supplemental Fig. S4A,B). More details
regarding the correlations between the exposome and internal
-omes are provided in Supplemental Data S4–S9.

Personal exposome–gut microbiome interactions

We found 1333 significant correlations (|r| > 0.9 and Q-value<
0.05) between the exposome and the gut microbiome (16S rDNA
data), and the number of positive and negative correlations were
approximately equal (Fig. 3C). Specifically, the six highest-degree
gut bacteria (each correlates with 34 exposome components)
may be involved in multiple physiological processes that respond
to the personal exposome. For example, members from Alistipes
were shown to play essential roles in inflammation and various
diseases (Parker et al. 2020); members from Eggerthella were impli-
cated as the causes of liver and anal abscesses, ulcerative colitis,
and systemic bacteremia (Lau et al. 2004); members from
Odoribacterwere found tomaintain short-chain fatty acid availabil-
ity and systolic blood pressure (Gomez-Arango et al. 2016); mem-
bers from Parasutterellawere involved in bile acidmaintenance and
cholesterol metabolism (Ju et al. 2019); whereas members from
Roseburia played vital roles in producing short-chain fatty acids
and anti-inflammatory pathways (Tamanai-Shacoori et al. 2017).
Out of the top six genera, all but Roseburia positively correlated
with chemical stressors and usually negatively correlated with bio-
logical components (Fig. 3D; Supplemental Fig. S4D). As a result,
members from Alistipes, Eggerthella, Odoribacter, and Parasutterella
were more likely to be involved in proinflammatory processes,
whereas members from Roseburiawere mainly involved in anti-in-
flammatory processes. On the exposome side, Botryosphaeria,
Corynespora, and Enterobacter were the highest-degree genera
(each correlatedwith 18 gut bacteria) among all exposome compo-
nents, indicating their essential roles in interactingwith the partic-
ipant’s gut microbiome (Fig. 3C). Overall, these results show an
association of the external exposome with the gut microbiome
and its associated biological processes, particularly inflammation.

Exposome–proteome interaction network

We found 2054 statistically significant correlations (|r| > 0.9 andQ-
value <0.05) between the individual’s exposome and internal
blood proteome. Most of the high-degree exposome components
were biological components, and positive correlations were slight-
ly more frequent than negative correlations (Fig. 4A). Specifically,
we found 11 highest-degree substances (nine genera and two
chemicals), each of which was significantly correlated with more
than 22 proteins in the proteome. The high-degree biological gen-
era were fungi and primarily positively correlated with proteins,
besides Xeromyces, which negatively correlated with proteins.
Fenazaquin (a pesticide) and tetrabromobisphenol A diallyl ether
(a brominated flame retardant) were two high-degree chemical
stressors, both of which primarily negatively correlated with pro-
teins, indicating some potential interactions among them. On
the proteome side, 17 highest-degree proteins (each correlated
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with 21 exposome components) were discovered, and 14 of these
are directly immune-related (Fig. 4B). For instance, alpha-2-HS-gly-
coprotein promotes endocytosis; complement C3 activates the

complement system; and fibrinogen alpha chain is involved in
both innate and T cell–mediated pathways. As such, these proteins
primarily positively correlated with the external exposures in this
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Figure 3. Precision environmental health network revealed by inter-omics analyses between the exposome and internal multi-omics. (A) Spearman’s
correlation network of all longitudinally profiled exposome and internal -omes. (B) Significant Spearman’s correlations between the exposome and the
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study (Safran et al. 2010). Additionally, we discovered significantly
correlated signaling pathways when queried against GO, KEGG,
and Reactome databases (Supplemental Data S5, S6). Chemical
and biological exposome shared several significantly correlated
pathways, such as protein activation cascade, platelet degranula-
tion, and acute inflammatory response, whereas some pathways
were uniquely correlated with the chemical exposome, such as
platelet activation, signaling, and aggregation pathway (Fig. 4B).
Moreover, immune-related pathways were among the most com-
mon high-degree signaling pathways correlating with the expo-

some, with approximately half of those pathways positively
correlated and the other half negatively correlated (Fig. 4C).

Exposome–metabolome interaction network

The blood metabolome is considered the most interactive -ome
with the exposome because xenobiotics interact with endogenous
metabolites initially after entering the human body. In fact, the
blood exposome overlaps with the bloodmetabolome from an an-
alytical perspective as current approaches cannot distinguish the
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Figure 4. Exposome–proteome interactions: proteins and signaling pathways that were significantly correlated with the exposome. (A) Spearman’s cor-
relation analysis between the exposome and proteome (|r| > 0.9; Q-value < 0.05). Only the proteins with degrees > 5 are shown. The complete network is
provided in Supplemental Figure S5. (B) Signaling pathways that significantly correlated with the exposome revealed by pathway analysis using KEGG, GO,
and Reactome databases. Immune-related pathways are shown in bold. (C) Spearman’s correlation networks between chemicals, top 20 biological expo-
some components, immune-related proteins, and signaling pathways (|r| > 0.9; Q-value < 0.05), with positive correlations shown in blue and negative cor-
relations shown in red. A detailed network for each pathway is provided in Supplemental Figure S6.
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sources of themolecules present in the blood.Moreover, xenobiot-
ic biotransformation is similar to that of metabolic pathways and
can even involve the same enzymes, such as cytochromes P450
(Gao et al. 2018b; Walker et al. 2019). Therefore, it is essential to
investigate the interactions between the exposome and metabo-
lome to better understand the initial health impact of the
exposome.

We found 4624 statistically significant correlations (|r| > 0.9
and Q-value<0.05) between the exposome and internal blood

metabolome. Positive correlationsweremore frequent in the expo-
some–metabolome analysis than the exposome–proteome analy-
sis (Fig. 5A; Supplemental Fig. S5). The high-degree biological
components were primarily fungi and usually positively correlated
with the metabolites; exceptions are Aegilops (a grass), the bacteria
Pontibacter and Hymenobacter, and Paramecium (a ciliated protist).
Salicylic acid (a PPCP), dinoseb (an herbicide), and dibromoethane
(an IARC group 2A carcinogen) were the three highest-degree
chemicals, all of which primarily positively correlated with

A

C

B

Spearman’s

Spearman’s

Figure 5. Exposome–metabolome interactions: metabolites and metabolic pathways that were significantly correlated with the exposome. (A)
Spearman’s correlation analysis between the exposome and metabolome. (B) Significantly correlated metabolic pathways revealed by pathway analysis
using the KEGG database (|r| > 0.9; Q-value < 0.05). (C ) Significant correlations between chemicals and top 20 biological exposome components and me-
tabolites (represented by KEGG compound entry) and metabolic pathways revealed by Spearman’s correlation networks (|r| > 0.9; Q-value < 0.05), with
positive correlations shown in blue and negative correlations shown in red. The complete network is provided in Supplemental Figure S8.
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endogenousmetabolites. Overall, we found 19 high-degreemetab-
olites, each significantly correlated with 21 exposome substances.
Several metabolic pathways were significantly correlated with
both the chemical and biological exposome (Methods; Supple-
mental Fig. S7), such as protein digestion and absorption and ami-
noacyl-tRNA biosynthesis, whereas some pathways were only
correlated with the biological exposome (Fig. 5B; Supplemental
Data S7, S8). Similarly to the exposome–proteome analysis, we per-
formed correlation network analysis among the exposome,metab-
olites, andmetabolic pathways. Trimethyl phosphate (a plasticizer
and organophosphate flame retardant) and tetrachloroethylene
(an IARC group 2A carcinogen) were positively correlated with
all the metabolic pathways, whereas tetrabromobisphenol A dia-
llyl ether, salicylic acid, and zeranol (amycotoxin) were negatively
correlatedwith allmetabolic pathways (Fig. 5C). Thus, a diverse ar-
ray of external exposures was associated with various internalmet-
abolic and proteomic changes.

Monitoring precision environmental health by investigating
the exposome–clinical data correlations

Standard clinical measurements such as blood and cytokine tests
directly reflect the individual’s health and are ideal indicators to
investigate the health impact of the exposome. Based on our expo-
some–cytokine analysis, the biological exposome had the most
significant correlations with cytokines, followed by chemical
stressors and environmental factors: 362 significant correlations
(|r| > 0.9 and Q-value <0.05) were found between the exposome
and cytokines, most of whichwere positive correlations. After con-
verting correlation coefficients to variable importance in projec-
tion scores, we determined the contributions of all significantly
correlated exposome components on cytokines (Methods; Supple-
mentalData S9). Specifically, 60%of the cytokine variationwas ex-
plained by the determined factors in this study. Furthermore, the
top 13 cytokines, which were almost entirely contributed by the
annotated exposome components (>90%), were all proinflamma-
tory cytokines (e.g., IL23 and VCAM1), indicating that these cyto-
kines may play essential roles in response to the exposome.
Additionally, 14 highest-degree (each correlates with more than
seven exposome components) cytokines were found to be primar-
ily positively correlated with the exposome (Fig. 6A). The most
high-degree biological components were fungi, such as Wallemia,
which are filamentous food-borne pathogens (Zajc and Gunde-
Cimerman 2018). Moreover, other than Xeromyces, most of the
exposome components were primarily positively correlated with
cytokines, consistent with the exposome–proteome analysis,
whereas only Xeromyces primarily negatively correlated with the
proteins among high-degree biological components. Acephate,
an insecticide, is the highest-degree chemical component, posi-
tively correlated with 10 cytokines (Fig. 6A).

Similar to the exposome–cytokine analysis, biological com-
ponents had the most significant correlation with clinical blood
tests, followed by chemicals and environmental factors. However,
fewer chemicals were correlated with blood tests than those corre-
lated with cytokines (Fig. 6A); 513 significant correlations were
found between the exposome and blood tests, and the majority
were positive correlations. Using similar contribution determina-
tion algorithms, 77% of the blood tests variation was explained
by the determined factors in this study. The top 13 blood tests
were almost entirely contributed by the determined exposome
components (contributions of the exposome>95%) and were pri-
marily related to the immune system, liver, and kidney functions.

Additionally, eight highest-degree (each correlatedwithmore than
25 exposome components) clinical blood tests were primarily pos-
itively correlated with the exposome, but platelet was primarily
negatively correlated. The highest-degree blood test, creatinine,
which is a biomarker for kidney function, correlated with 62 expo-
some components (Fig. 6B). Unlike cytokine profiles, for which
reference ranges have not been well established, blood tests have
clinically established reference ranges. We therefore performed
correlation analyses to understand the effects of the exposome
on personal health using blood test results with out-of-reference
values (Fig. 6A).We found out-of-reference values of blood glucose
levels were significantly correlated with three chemical stressors
and 13 microbes. For instance, salicylic acid concentration was
negatively correlatedwith glucose level; salicylic acid has been pre-
viously shown to decrease glucose concentration and used as a
treatment for type 2 diabetic patients (Rumore and Kim 2010),
consistent with our findings. Similarly, out-of-reference values of
absolute eosinophils and urea nitrogen correlated with specific bi-
ological exposome components, including some known patho-
gens, such as Aureobasidium, Niastella, and Scedosporium (Fig. 6B).
Previous studies were consistent with our results as eosinophilic
phagocytosis consumes eosinophils during allergy and inflamma-
tion (Shamri et al. 2011), and various pathogenicmicrobes can use
urea as a nitrogen source (Rutherford 2014). Thus, the results show
the feasibility of directly relating external exposures to clinical
measurements at an individual level.

Discussion
It has long been acknowledged that environmental factors affect
personal health, but conventional environmental health studies
face limitations. For example, (1) population studies may overlook
the significant differences between individuals; (2) single time
point sampling fails to reflect the chronic effects of stressors; and
(3) focusing on a single or a class of stressors does not profile the
holistic health impact of the exposome. To overcome these chal-
lenges, we generated a comprehensive precision environmental
health profile by longitudinally monitoring both the personal
exposome and internal multi-omic profiles (Fig. 1). In addition,
we also measured standard clinical indices to investigate the po-
tential health effects of the exposome. Using Spearman’s correla-
tion analysis, we discovered many significant correlated
physiological parameters and exposome components, indicating
their interactions in the participant’s responses to the personal
exposome. Although inferences from a single individual over a rel-
atively short period are limited by biologic unknowns, our study
provides vast testable hypotheses to further investigate the under-
lying mechanisms using analytical and experimental approaches.
Overall, we found thousands of external chemical and biological
exposures associated with the internal microbial, proteomic, and
metabolic alterationswithin this individual, indicating a strong as-
sociation between the external exposome and molecular health.

We were able to capture more than 3000 chemical features
but only annotated 158 known chemical stressors by a broad an-
notationmethod that uses various databases, including those con-
taining emerging contaminants (Li et al. 2017b; Xiang et al. 2017;
Gao et al. 2019b,c). This indicates that existing exposome databas-
es still lack the power to annotate the majority of the chemical
exposome. The results showed that the concentrations of most
chemical stressors increased after January 25, 2016, when the indi-
vidual transitioned from a period of residing at home to a period
of travel, indicating that the chemical exposome was greatly
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impacted by the individual’s spatial changes (Supplemental Fig.
S2F). Also, each location may have its unique chemical composi-
tion pattern. For instance, relatively high concentrations of dieth-
yltoluamide (a personal care product) and tricyclazole (a pesticide)
were found during travel to Montana, whereas relative high con-
centrations of hexanoic acid, trimethyl phosphate, and benzoic
acid (a personal care product, a plasticizer, and a pesticide, respec-
tively) were found during travel to Houston. However, brominated
flame retardants were barely detected during these two travels
compared with the exposures in San Francisco Bay Area (Fig. 2A;
Supplemental Data S1). Agrochemicals had the highest concentra-
tions among all annotated chemicals, indicating their ubiquitous
presence in the environment. An alternative view is that agro-

chemicals are themost frequently studied chemical stressors, mak-
ing themmost easily identifiable. It is also worth noting that high
concentrations do not necessarily imply high health risks because
each chemical has its own safe dose, and the combined effects
among them are still unclear (Gao 2021).

The biological exposome revealed a number of patterns as
well. The fungal genus Stereumwas dominant at most time points,
reflecting its high abundance in the personal exposome during the
monitoring period. However, when the individual traveled to
Montana and Houston, Talaromyces and Phlebotomus became the
most dominant genus, respectively. Both Stereum and Talaromyces
are fungi, whereas Phlebotomus is a group of sand flies. This indicat-
ed that the biological exposome was highly impacted by

A

B

Figure 6. Effects of the exposome on precision environmental health. (A) Relative contributions of various exposome components on the alterations of
personal cytokines and blood tests (|r| > 0.9; Q-value < 0.05). Bold blood tests had out-of-reference values. (B) Representative blood test results with cor-
responding reference ranges (green areas) and their significantly correlated exposome components.
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geographical changes like the chemical exposome (Fig. 2B). Al-
though the composition of the personal exposome significantly
changed with travel locations, the internal biomolecules did not
significantly change before and after the travel, indicating the rel-
ative stability of the internal biological system and the necessity of
monitoring the external exposome (Supplemental Data S1). We
also found several correlations of the biological exposome with
chemical and environmental factors, such as associations of anti-
fungals with a decrease in fungal exposures. Many of these are in-
tended food or soil antifungal products (azoxystrobin and captan),
whereas others are common preservatives (ethylparaben and an-
thracene) that have antifungal properties (Fig. 2F; Jiang et al.
2018; Sinharay et al. 2018). Overall, nearly 100 significant correla-
tions were found by intra-exposome analysis, representing the
complex interactions within the exposome domains. Specifically,
the negative correlations of fungi with various pesticides and her-
bicides indicate these agrochemicals may inhibit the fungi growth
as well (e.g., Tricholoma vs. propoxur and Erysiphe vs. bentazone).
Moreover, we found several tertiary relationships, such as the my-
cotoxin fusarin C (produced by Fusarium) negatively correlated
with Cylindrobasidium, suggesting a possible competition among
the different fungi (Supplemental Data S3).

A recent study identified radioprotective gutmicrobes and in-
ternal metabolites in mice using a multi-omics analysis (Guo et al.
2020a), showing the potential of this approach to investigate es-
sential components in the internal -omes that respond to the ex-
ternal environment. To this end, we performed inter-omics
analyses between the exposome and gut microbiome, proteome,
andmetabolome, respectively. By discovering high-degree compo-
nents in each analysis, we identified the critical components in the
exposome-internal -omes interactions. For instance, we found the
general environmental indicator such as air quality index was
significantly correlated with the individual’s creatinine, amino-
transferase, cysteinylproline, monoglyceride, adiponectin, and
immunoglobulin lambda (Supplemental Data S4). In addition,
we found six highest-degree gut bacteria that may be important
in the responses to the personal exposome. The high-degree bio-
logical components in both exposome–proteome and expo-
some–metabolome analyses were mainly fungi, yet few had
known human health effects. However, we identified major
high-degree annotated chemicals that are knownhuman stressors;
for instance, exposure to the herbicide dinoseb causes various
developmental toxicities and loss of thyroid and body weight
(Matsumoto et al. 2008), and brominated flame retardants like tet-
rabromobisphenol A diallyl ether are known neurotoxicants (Er-
iksson et al. 2001). In addition to the endogenous metabolites,
wewere able to annotate 60 toxins and carcinogens in the individ-
ual’s blood based on the exposome-related databases (Fig. 1C). Un-
like the annotated xenobiotics in the exposome samples, most of
the chemical stressors annotated in the blood were food and ani-
mal toxins. Furthermore, only 11 chemical stressors were annotat-
ed in both the external and blood exposome. This is likely to be
partly due to the limited power of the current databases, because
most of the databases only contain the information of parent
chemicals but not their biotransformation products (Gao 2021;
Xu et al. 2022). Additionally, persistent hydrophobic substances
tend to accumulate in adipose tissues but not in human blood,
which we profiled, whereas nonpersistent hydrophilic chemicals
are efficiently excreted out of the human body, limiting their
detection (Gao 2021; Gao et al. 2018b). Finally, the bioavailability
of chemicals in different externalmatrices also limits the exposure,
dose-response, and concentration of bioavailable fraction (Li et al.

2017a; Zhang et al. 2017; Gao et al. 2019b). These results further
illustrate the necessity ofmonitoring the external exposome rather
than monitoring the internal exposome alone.

Overall, our results indicate that the immune system, kidney,
and liver of this individual may play essential roles in response to
the exposome, which are all known to regulate and respond to for-
eign substances (Shibutani et al. 2015; Bajaj et al. 2018; Xiang et al.
2018a). In the exposome–proteome analysis, we found 14 out of
17 high-degree proteins were involved in immune responses
(e.g., complement C3, interleukin 1 receptor accessory protein,
and immunoglobulin heavy chain proteins) (Shibutani et al.
2015), and immune-related pathways (e.g., acute inflammatory re-
sponse, humoral immune response, and complement and coagu-
lation cascades) were the major highest-degree signaling
pathways. In the exposome–metabolome analysis, we identified
19 highest-degree metabolites related to protein metabolism, in-
flammation, and kidney and liver functions (e.g., L-arginine,
nutriacholic acid, epsilon-[gamma-glutamyl]-lysine, and uracil),
indicating that these metabolic pathways may be involved in re-
sponses to the exposome. Moreover, certain high-degree metabol-
ic pathways were involved in both protein and immune-related
pathways, such as alanine aspartate and glutamate metabolism,
protein digestion and absorption, and beta-alanine metabolism.
Specifically, specific proteinmetabolism pathways (e.g., amino ac-
ids synthesis and protein breakdown) were highly sensitive to ox-
idative stresses caused by the exposome components (Peters et al.
2021); inflammation is often the first immunological response to
foreign substances; and the kidney and liver are the main detoxifi-
cation organs (Peters et al. 2021), with liver and bile acids serving
essential roles in responding to the foreign substances (Orešič et al.
2020).

To further investigate the potential health effects of the expo-
some, we performed Spearman’s correlation analysis with cyto-
kines and blood test results. Proinflammatory cytokines were the
most significantly correlated with the external exposome compo-
nents (e.g., IL23 and IL2), and they have been previously shown to
be elevated after exposure to external stressors (Schaue et al. 2012).
Our clinical blood test results provided further evidence as alter-
ations in creatinine and urea nitrogen, biomarkers of kidney and
liver functions, respectively, were correlated with specific expo-
some components. As a result, exposome–proteome analysis
cross-validated with exposome–cytokine analysis, indicating that
the inflammatory processes may play essential roles in responding
to the exposome, and the exposome–metabolome analysis cross-
validated with exposome–blood tests analysis, showing that the
liver and kidney may play significant roles in responding to the
exposome. Furthermore, the exposome–microbiome analysis
showed that the highest-degree gut bacteria are related to the
proinflammatory processes and liver metabolism. Therefore, these
physiological processes and organs may be ideal candidates for
testing the combined effects of multiple stressors in future studies.

On the exposome side, high-degree exposome components
that overlapped in more than one inter-omic analysis are signifi-
cant health concerns. Specifically, Isaria, Sporothrix, and Tarenaya
were among the highest-degree microbes correlated with all inter-
nal -omes. Members of these genera were found to be involved in
complex physiological mechanisms andmay show adverse health
effects. For example, species of Isaria were found to induce cell
death (Chhetri et al. 2020); species of Sporothrix triggered skin
and lung inflammatory reactions (de Lima Barros et al. 2011);
and the pollen of Tarenaya members generate immunoglobulin
E–mediated allergic reactions (Danella Figo et al. 2019). In
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addition, certain types of agrochemicals, PPCPs, and flame retar-
dants that we detected are high-degree chemical stressors known
to cause epigenetic alterations, endocrine disruption, impaired
nervous system function, oxidative stress, and inflammation
(Peters et al. 2021). Therefore, those substances would be ideal can-
didates for investigating the underlying mechanisms of their com-
bined health effects in future studies. Such information may be
especially important for understanding environmental triggers
for inflammatory diseases such as inflammatory bowel diseases,
autoimmune diseases, and skin inflammation. Finally, the pre-
sented integration approach provides the possibility to annotate
novel health-related chemicals by correlating all the chemical fea-
tures with the internal multi-omics and discovering which chem-
ical features are high degree. By investigating themass spectrum of
these high-degree but unknown features, we might be able to dis-
cover novel health-related chemicals that are highly and exten-
sively associated with the internal biomolecules. However,
because of the obstacles of annotating unknown features by the
current algorithms, we did not perform such analyses in this study,
but they can be performed upon further annotation advances.

In conclusion, we found both time and location impacted the
personal exposome, especially the biological components and en-
vironmental factors (Supplemental Fig. S2F), and the biological
and chemical exposome were highly dynamic. In addition, the
pathways related to the immune, liver, and kidney systems were
highly associated with the external exposome. Because of the
limitations of studying a single participant, rapid changes of the
exposome and internal multi-omics, relatively low confident an-
notation power, and possible false-positive correlation in this
study, future research should longitudinally and frequently mon-
itor the precision environmental health of more individuals by us-
ing the approaches pioneered in this study and increase the
annotation confidence of the chemical and biological compo-
nents in the exposome. Moreover, because most of the current
exposome databases do not contain experimental tandem mass
spectrum (MS2) information and some stable environmental
chemicals cannot generate MS2 with electrospray ionization
probe, we did not filter out the annotated features with relative
lower confidence levels. In fact, the features that have relatively
lower confidence levels are also very valuable as testable hypothe-
ses especially after we found they have the potential biological and
environmental significance.Moreover, because the annotations of
proteome andmetabolome have higher confidence levels than the
exposome, the high-degree proteins and metabolites are reliable
even with certain false-positive correlations or annotations.
Because the purpose of this pilot case study is to determine the fea-
sibility of comprehensively integrating personal exposome and in-
ternal multi-omics to investigate the phenotypic variations, the
validation of those testable hypotheses should be performed after
this study. In addition, we focused on the airborne exposome and
did notmeasure other exposures, such as dermal and ingestion ex-
posures, inorganic chemical components (Gao et al. 2019a; Xu
et al. 2019, 2020; da Silva et al. 2020), psychosocial stressors, and
personal lifestyle, which may affect the clinical measurements as
well (Fig. 6A). Nonetheless, this study shows the power of using
a holistic approach of monitoring the exposome on personal envi-
ronmental health using inter-omics analyses and serves as a useful
approach to scale to the other individuals and locations. Our study
also identified high-degree components as essential components
among the exposome-internal -omes interactions and provided
abundant testable hypotheses to further investigate their underly-
ing mechanisms of impacting individual health.

Methods

Exposome sample collection

Theparticipant in the study is enrolled under StanfordUniversity’s
IRB protocols IRB-23602 and IRB-34907. The modified RTI
MicroPEM V3.2 personal exposure monitor (RTI International),
termed exposometer, was used to collect chemical and biological
components exposed by individuals from January 2016 to March
2016. In addition, temperature, humidity, and total particulate
matter were simultaneously collected by the exposometer in a
real-time manner. The original sequential oiled frit impactor was
removed to maximize the collection of biological components. A
0.8-mm pore-size polyethersulfone with a diameter of 25-mm fil-
ter (Sterlitech) was placed in filter cassettes to collect particulates
for DNA and RNA extraction. An in-house-designed, 3D printed
cartridge was placed at the end of the airflow, which contained
200 mg of zeolite adsorbent beads (Sigma-Aldrich 2-0304) to
collect chemicals. Before deployment to the participant, the
MicroPEM was calibrated to a flow rate of 0.5 L/min (±5%) using
a mass flow meter (TSI 4140). During the study, the participant
placed the exposometer on his arm or within a radius of
2 m. Samples were collected after 1–3 d of use (Fig. 1B) and stored
at −80°C until analysis. Tominimize the potential contamination,
filters and related components were handled in sterile biological
safety cabinets and cleaned with ethanol before use. Clean polye-
thersulfone filter and zeolite adsorbent beads were included before
extraction as background controls. MicroPEM log files were down-
loaded using Docking Station software (RTI International). The
participant used the MOVES app to track geographic locations
through GPS coordinates and daily activities (Jiang et al. 2018).
General environmental data were collected from the exposometer
or National Oceanic and Atmospheric Administration’s National
Climatic Data Center or National Centers for Environmental
Information.

Analysis of chemical exposome by LC-HRMS

LC-HRMS was performed on a platform composed of a Waters
UPLC coupled with Exactive Orbitrap mass spectrometer
(Thermo Fisher Scientific) using a mixed-mode OPD2 HP-4B col-
umn (4.6 mm×50 mm) with a guard column (4.6 mm×10 mm;
Shodex, Showa Denko). The column temperature was maintained
at 45°C and the sample chamber at 4°C. The binary mobile phase
solvents were as follows: A, 10 mM ammonium acetate in 50:50
(vol/vol) acetonitrile:water; B, 10 mM ammonium acetate in
90:10 (vol/vol) acetonitrile:water. Both solvents were modified
with 10 mM acetic acid (pH 4.75) for positive mode acquisition
or 10 mM ammonium acetate (pH 9.25) for negative mode. The
flow rate was set as follows: flow rate, 0.3 mL/min; gradient—0–
15 min, 99% A, 15–18 min, 99% to 1% A; 18–24 min, 1% A; 24–
25 min, 1%–99% A; 25–30 min, 99% A. The MS acquisition was
set as full scan mode with an electrospray ionization probe. The
capillary temperature was 275°C; the sheath gas was 40 units;
and the positive mode spray voltage was 3.5 kV, with 3.1 kV for
the negative mode. The capillary voltage was 30 V; the tube lens
voltage was 120 V; and the skimmer voltage was 20 V. The mass
spectrum scan used 100,000 mass resolution, high dynamic range
for the AGC target, a maximum injection time of 500 msec, and a
scan range of 70–1000 m/z. The details of quality assurance and
quality control of both targeted and nontargeted analyses were de-
scribed in a previous study (Jiang et al. 2021). The raw and pro-
cessed data used in this study were previously published
and deposited to the NCBI BioProject database (https://www
.ncbi.nlm.nih.gov/bioproject/) under accession number
PRJNA421162. The details of all the data used in this study can
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be found in the supplemental data files of the previous publica-
tions as well (Jiang et al. 2018).

Post-acquisition analysis of the chemical exposome

Analysis of chemical exposome was performed as previously de-
scribed (Jiang et al. 2018, 2021). In brief, feature detectionwas per-
formed with XCMS. For a conservative assessment of the number
of unique chemical features, a customized Python script was used
to remove potential isoforms, isotopes, and adducts from the
3299 features enriched at least 10-fold compared with the blank
control (Jiang et al. 2018, 2021). The annotation was based on
various exposome-related databases (blood exposome [https
://bloodexposome.org/], T3DB [http://www.t3db.ca/], Exposome-
Explorer [http://exposome-explorer.iarc.fr/], and HMDB [https
://hmdb.ca/]) that are publicly available (Wishart et al. 2015; Baru-
pal and Fiehn 2019; Neveu et al. 2020), as well as in-house databas-
es bymetID (Shen et al. 2022). The annotation confidence levels of
all the chemicals in the exposomewere at least level 5, with at least
one chemical at level 1 in each chemical class, such as diethylto-
luamide, diethylene glycol, decanoic acid, omethoate, octanoic
acid, pyridine, phthalic acid, and hexanoic acid (Shen et al.
2019; Jiang et al. 2021). Because most of the exposome databases
do not contain experimental MS2 data and this is a nontarget
exposomics study, the filter of the confidence levels higher than
three was not applied.

Sequencing and analysis of biological exposome

DNA and RNA sequencing and analysis were performed as previ-
ously described (Jiang et al. 2018, 2021). In brief, DNA and RNA
were extracted from filters and linearly amplified for sequencing.
Libraries were sequenced by the Illumina HiSeq 4000 platform (2
×151 bp), which yields an average of about 50 million unique
reads per sample. Sequenced readswere deduplicated, and adapters
were trimmed using Trim Galore! (version 0.4.4). Human-related
reads were identified using BWA mapped to the GRCh37 human
genome and removed. Although the GRCh37 human genome is
not the latest version, the differences between GRCh37 and
GRCh38 will not impact the results in this study because
GRCh37 was only used to remove the human genome in the bio-
logical exposome. Specifically, we did not include the human ge-
nome in our taxonomy classification steps; therefore, even if the
new version of GRCh38 human genome would include slightly
more information, it will not affect our taxonomy classification
process. Moreover, the biological annotation step was based on
the microbiology databases, and the presented results in the bio-
logical exposome do not contain any human genome informa-
tion. Following dehumanization, nonhuman reads were used for
de novo assembly usingMEGAHIT (Li et al. 2015) (1.1.1), and con-
tigs were queried against our in-house database with BLASTN
(2.3.9+) wrapper. The extensive in-house reference genome data-
base included more than 40,000 species covering all domains of
life (Jiang et al. 2018). Taxonomy classification and abundance
were determined using a customized lowest common ancestor
(LCA) algorithm (Jiang et al. 2018, 2021). The raw and processed
sequencing data used in this study were previously published
and deposited to the NCBI BioProject database (https://www
.ncbi.nlm.nih.gov/bioproject/) under accession number
PRJNA421162. The previous analysis script, the detailed informa-
tion for contigs assigned as Rotifer and Apicomplexa, and the de-
tails of all of the data used in this study can be found in the
supplemental data files of previous publications as well (Jiang
et al. 2018).

Blood sample collection

At the designated time point, blood was drawn from the overnight
fasted participant in the Clinical and Translational Research Unit
at Stanford University. Aliquots of blood were condensed at
room temperature to coagulate, and clots were subsequently pel-
leted. The serum supernatant was then immediately frozen at
−80°C. The blood in the EDTA tubes was immediately layered
onto the Ficoll medium and spun with gradient centrifugation.
Then the top layers were removed, and plasma was aliquoted
and immediately frozen at −80°C. Subsequently, blood mononu-
clear cells (PBMCs) were collected and counted using a cell coun-
ter. Aliquots of PBMCs were further pelleted and frozen with
DMSO/FBS. For the later multi-omics analyses, PBMCs were
thawed on ice and then lysed to protein fraction using AllPrep
spin columns (Qiagen) according to the manufacturer’s instruc-
tions with the QIAshredder lysis option. Upon receipt of samples,
blood samples were then stored at −80°C for clinical tests. The re-
sults of the blood and cytokines tests used in this study can be
found in Supplemental Data S1 (Schüssler-Fiorenza Rose et al.
2019). All raw and processed clinical tests data used in this study
were previously published and deposited to the NIH Integrative
Human Microbiome Project (iHMP) site (https://portal.hmpdacc
.org). The details of all of the data used in this study can be found
in the supplemental data files of previous publications as well
(Schüssler-Fiorenza Rose et al. 2019; Zhou et al. 2019).

Collection and analysis of the gut microbiome

Stool samples were collected according to the HumanMicrobiome
Project-Core Microbiome Sampling Protocol A (https://www
.hmpdacc.org/). Following the Human Microbiome Project-Core
Microbiome Sampling Protocol A (HMP Protocol 07-001, v12.0),
DNA extraction was performed. We used the MOBIO PowerSoil
DNA extraction kit and Proteinase K to isolate DNA in a clean
fume hood. Samples were then treated with lysozyme and staphy-
lococcal hemolysin. For 16S (bacterial) rRNA gene amplification,
the primers 27F and 534R (27F: 5′-AGAGTTTGATCCTGGC
TCAG-3′; 534R: 5′-ATTACCGCGGCTGCTGG-3′) were used to am-
plify the 16S hypervariable regions V1–V3. Unique barcode ampli-
cons were used, and samples were sequenced on the Illumina
MiSeq platform (V3; 2 ×300 bp). Illumina software handled the
initial processing of all raw sequencing data. Reads were further
processed by removing low-quality (average quality < 35) and am-
biguous base (Ns) sequences. UCHIME (Edgar et al. 2011) was used
to remove chimeric amplicons, cluster the amplicon sequences,
and select the operational taxonomic unit by USEARCH (Edgar
2010) based on the Greengenes database (version in May 2013)
(DeSantis et al. 2006). The final biological classification assign-
ment was performed using the RDP-classifier in QIIME with cus-
tom scripts (Schüssler-Fiorenza Rose et al. 2019; Zhou et al.
2019). All raw and processed gut microbiome data used in this
study were previously published and deposited to the iHMP site
(https://portal.hmpdacc.org). The details of all of the data used
in this study can be found in the supplemental data files of previ-
ous publications as well (Schüssler-Fiorenza Rose et al. 2019; Zhou
et al. 2019).

Untargeted proteomics by LC-HRMS

Preparation and analysis of plasma samples were performed as pre-
viously described (Zhou et al. 2019). In short, tryptic peptides from
plasma samples were separated on the NanoLC 425 system
(SCIEX); 0.5 × 10 mm ChromXP (SCIEX) was used for trap-elution
settings, and the flow ratewas set to 5 µL/min. The LC gradientwas
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a 43-min gradient with mobile phase A, 0.1% formic acid in 100%
water, and mobile phase B, 0.1% formic acid in 100% acetonitrile.
During the gradient, mobile phase B was 4%–32%. Then 8 µg of
undepleted plasmawas loaded on LC. SWATH acquisitionwas per-
formed on a TripleTOF 6600 system equipped with a DuoSpray
source and a 25-µm ID electrode (SCIEX). The variable Q1 window
SWATH acquisition mode (100 windows) was constructed in the
high-sensitivity MS2 mode. PyProphet was used to score the peak
groups in each run statistically, and TRIC was used to align all
runs (Röst et al. 2016). Finally, a matrix with a peptide level of
1% FDR and a protein level of 10% FDR was generated for subse-
quent analysis. The protein abundances were the sum of the first
three most abundant peptides. Perseus (v 1.4.2.40) was applied
to subtract the main components showing the main batch devia-
tion to reduce the batch effect (Zhou et al. 2019). All raw and pro-
cessed proteome data used in this study were previously published
and deposited to the iHMP site (https://portal.hmpdacc.org). The
details of all of the data used in this study can be found in the sup-
plemental data files of previous publications as well (Schüssler-
Fiorenza Rose et al. 2019; Zhou et al. 2019).

Cytokine profiling

The levels of circulating cytokines in the blood were measured by
the 62-plex Luminex antibody-conjugated magnetic bead capture
assay (Affymetrix), which has been extensively characterized and
benchmarked by the StanfordHuman Immunological Monitoring
Center. The human 62-plex (eBiosciences/Affymetrix) was used
with the modifications described below. Briefly, beads were added
to a 96-well plate and washed using Biotek ELx405. Samples were
added to the plate containingmixed antibody-linked beads and in-
cubated for 1 h at room temperature and then overnight at 4°C
with shaking (500–600 rpm, orbital shaker). After overnight incu-
bation, the plate was washed, and then the biotinylated antibody
was added. The plate was incubated for 75 min at room tempera-
ture with shaking. The plate was washed, and streptavidin-PE
was added for detection. After incubating for 30 min at room tem-
perature, the plate was washed once, and then the reading buffer
was added to thewells. The platewas read by a Luminex 200 instru-
ment, and the lower limit of each cytokine per samplewas set to 50
beads. Radix Biosolutions custom assay control beads were added
to all wells. The batch effect was corrected using replicates and
controls shared between batches (Zhou et al. 2019). All raw and
processed cytokines data used in this study were previously
published and deposited to the iHMP site (https://portal
.hmpdacc.org). The details of all of the data used in this study
can be found in the supplemental data files of previous publica-
tions as well (Schüssler-Fiorenza Rose et al. 2019; Zhou et al. 2019).

Untargeted metabolomics by LC–HRMS

All blood samples were prepared and analyzed formetabolomics as
previously described (Contrepois et al. 2015). In short, plasma
samples were extracted with acetone:acetonitrile:methanol (1:1:1
vol/vol/vol), evaporated to dryness under nitrogen, and reconsti-
tuted in methanol:water (1:1 vol/vol) for LC-HRMS analysis.
HILIC and RPLC separations were used to analyze the extractants
four times in positive and negative modes, respectively. HILIC
metabolomics data were obtained on a Q Exactive plus, and
RPLC metabolomics data were obtained on a Q Exactive
(Thermo Fisher Scientific). Both instruments were equipped with
HESI-II probes and operated in the full MS scan mode. We only
used the combined quality control samples from the study to ob-
tain MS2 data. We used a ZIC-HILIC column (2.1×100 mm, 3.5
µm, 200 Å; Merck Millipore) and mobile phases composed of 10

mM ammonium acetate in acetonitrile:water (50:50 vol/vol; A)
and 10 mM ammonium acetate in acetonitrile/water (95:5 vol/
vol; B), and a Zorbax SB-Aq column (2.1 ×50 mm, 1.7 µm, 100
Å; Agilent Technologies) and mobile phases composed of 0.06%
acetic acid in water (A) and 0.06% acetic acid in methanol (B) to
performHILIC and RPLC analyses, respectively. All raw metabolo-
mics data were processed using Progenesis QI (Nonlinear
Dynamics, Waters). We also removed features that did not show
sufficient linearity when diluted. Only features presented in
more than one-third of samples were retained for further analysis,
and the KNNmethod was used to estimate missing values. To nor-
malize the data, locally assessed scatter plot smoothness analysis
was applied (Dunn et al. 2011). Metabolic signatures were identi-
fied by matching retention time and fragmentation spectra to cor-
responding standards or comparing fragmentation patterns to
public repositories, as previously reported (Zhou et al. 2019).
Toxin and carcinogenswere annotated out of themetabolome fea-
tures if the feature could not be annotated as a humanmetabolite.
The annotations of toxins and carcinogens were based on various
blood-exposome-related databases that are publicly available as
well as in-house databases (Wishart et al. 2015; Barupal and
Fiehn 2019; Neveu et al. 2020). The confidence levels of metabo-
lites annotations were at least level 3 based on our in-house data-
bases (Shen et al. 2019), whereas blood toxins and carcinogens
annotationwere at least level 5 as a nontarget screening like the ex-
ternal chemical exposome owing to lack of experimental MS2 da-
tabases. All raw and processed metabolome data used in this
study were previously published and deposited to the iHMP site
(https://portal.hmpdacc.org). The details of all of the data used
in this study can be found in the supplemental data files of previ-
ous publications as well (Schüssler-Fiorenza Rose et al. 2019; Zhou
et al. 2019).

General statistical analysis and data visualization

All statistical analysis and data visualization were performed using
R (v3.6.0) (R Core Team 2021) and RStudio (v 1.2.5019) (RStudio
Team 2021; https://www.rstudio.com). Most of the R packages
and their dependencies used in this study were deployed in
CRAN (https://cran.r-project.org) or Bioconductor (https://
bioconductor.org/), and some of them are deployed on GitHub.
Session information for this study is provided in Supplemental
Code S1. All scripts to reproduce analyses and data visualization
for this study are provided in Supplemental Code S2 and available
on GitHub (https://github.com/jaspershen/precision_exposome/).
All data from the exposome and internal -ome data were log2 trans-
formed before analysis. Two kinds of fiber intakes were statistically
adjusted for all internal -ome data to reduce fiber intake biases ac-
cording to the participant’s food log. Specifically, the participant
took 20 g arabinoxylan daily from January 15, 2016 to January
31, 2016 and took 10 g guar gum daily from February 22, 2016 to
March 17, 2016.

Exposome and internal multi-omic correlation networks

Spearman’s correlationwas used to build the correlations in the in-
tra/inter-omics analyses because it provided the most significant
correlations as testable hypotheses. In general, for each two
-omes pair, the correlation matrix was calculated as below; for
each variable in one -ome, Spearman’s correlations and FDR-ad-
justed P-values were generated with all features in the other
-omes. Only correlations between each pair variable with absolute
correlation>0.9 and FDR-adjusted P-value<0.05 were kept to con-
struct the final correlation networks.
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Community analysis

Community analysis was performed based on edge betweenness
embedded in the R package igraph (https://igraph.org/). Briefly,
this is an iterative process, the edges with the highest edge
betweenness score were removed in each iteration, and the process
was repeated until only individual nodes remain. At each iteration,
modularity was calculated, and communities were analyzed at the
iteration that maximized this quantity. A visualization of iteration
community versus modularity is shown in Supplemental Figure
S6A and S6B. To ensure the robustness and reliability of our find-
ings, only communities (or clusters) with at least three nodes
were kept for subsequent analysis. All the networks were visualized
using R package igraph, ggraph, and tidygraph.

GO, KEGG, and Reactome pathway enrichment for proteome

The R package ClusterProfiler (v 3.18.0) was used for GO, KEGG,
and Reactome pathway enrichment for proteomics. In general,
UniProt and ENTREZID were obtained for proteins that connect
with the exposome in correlation networks. Then the GO,
KEGG, and Reactome pathway databases were used for pathway
enrichment (hypergeometric distribution test, P-values are adjust-
ed by the FDR method, and the cutoff was set as 0.05). Only path-
ways with a hitting protein number> 3 were retained for
subsequent analysis.

Metabolic feature–based dysregulated module detection

Applying the same concept frommummichog (Li et al. 2013) and
PIUMet (Pirhaji et al. 2016), metabolic networks from KEGG and
community analysis were used to detect dysregulated modules
based onmetabolic features connecting the exposome, respective-
ly (Li et al. 2013). In general, the metabolic network (MN) was
downloaded from KEGG, which contains 1377 nodes (metabo-
lites) and 1561 edges (reactions). The brief workflow is described
below:

1. All the metabolic features connecting the exposome (Lsig) were
matchedwith the KEGGmetabolite database based on different
adducts (Supplemental Table S1). Then allmatchedmetabolites
(significant metabolites) were mapped in the metabolic net-
work to get the subnetwork (SN). Nonsignificant metabolites
(hidden metabolites) that can connect significant metabolites
within three reactions were also included in the subnetwork.
Then themodules (M) were detected in the subnetwork via ran-
domwalks (Yolumet al. 2005). Onlymoduleswith at least three
nodes were kept. These modules were named significant mod-
ules (Msig) from real biological-related metabolic features.

2. For eachmodule, the activity score (S)was calculated tomeasure
both the modularity and enrichment of input metabolites (I).
The activity score (S) of the module (M) was calculated as
follows:

For a module M,

S = Q∗NI,M

NM
,

where S is the activity score, NM is the metabolite number in mod-
uleM, and NI,M is the input metabolite number in moduleM. Q is
the adjusted Newman–Girvan modularity calculated as below:

Q =
����

NI

NM

√

∗ EM

m
−
∑

i,j

ki
2m

∗ kj
2m

⎛

⎝

⎞
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where ki is the degree of metabolite i in module M, m is the total
number of edges in the metabolic network MN, EM is the total

number of edges in module M, and NI is the number of input me-
tabolites. The original Newman–Girvan modularity has a bias to-

ward larger modules, and
����

NI

NM

√

was used to reduce this bias.

3. Then the NULL metabolic features (Lnull, the same number
with Lsig) were selected from all metabolic features (exclude
Lsig), and then steps 1 and 2 were repeated 100 times to gener-
ate a list ofNULLmodules (Mnull) and their activity score (Snull).

4. Using maximum likelihood estimation, Snull was modeled as a
Gamma distribution, and a cumulative distribution function
(CDF) was calculated. The P-value for each significant module
was then calculated, and only modules with the P-value<0.05
remained.

The annotation results from this method were also compared
with the annotation results from the UntargetedMetabolomics by
LC-HRMS section provided in Supplemental Data S10. These re-
sults showed that annotations from this method have high
specificity.

KEGG pathway enrichment analysis for metabolomics data

The KEGG pathway database was downloaded from KEGG (https
://www.genome.jp/kegg/) using the R package KEGGREST.
Pathway enrichment analysis was used in the hypergeometric dis-
tribution test; P-valueswere adjusted by the FDRmethod; and only
pathways with FDR-adjusted P-value<0.05 were kept.

Exposome contributions to cytokine and blood test

To calculate the contributions of the exposome on each cytokine
and blood test, principal components (PCs) were first extracted
for each exposome component, and only PCs with a cumulative
explained variation>80% were kept. Then the linear regression
modelwas constructed using each cytokine/blood test as y and cor-
responding exposome component’s PCs as x. R2 was extracted and
used to represent the contributions of the exposome to each cyto-
kine/blood test. To calculate the contribution of the exposome
components, partial least squares (PLS) and variable important

projection (VIP) were calculated. Lastly, R2∗ VIPi
sum(VIP)

(i ∈ chemi-

cal, biological, and environment) was used to represent the contri-
butions of the exposome components on cytokine/blood tests.

Data access
The newly annotated exposome results in this study can be found
in Supplemental Data S1. The raw and processedmicrobiome, pro-
teome, metabolome, cytokines, and blood tests data that were
newly annotated in this study were deposited in the Stanford
iPOP database (http://hmp2-data.stanford.edu/; Subject#: ZOZO
W1T) and provided in Supplemental Data S1 (Subject#: 69-001).
All data used for reproductive analysis can be found on GitHub
(https://github.com/jaspershen/precision_exposome) and were
provided in Supplemental Data S1–S10.
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