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Abstract
Interactions between biological molecules in a cell are tightly coordinated and
often highly dynamic. As a result of these varying signaling activities, changes in
gene coexpression patterns could often be observed. The advancements in next-
generation sequencing technologies bring new statistical challenges for study-
ing these dynamic changes of gene coexpression. In recent years, methods have
been developed to examine genomic information from individual cells. Single-
cell RNA sequencing (scRNA-seq) data are count-based, and often exhibit char-
acteristics such as overdispersion and zero inflation. To explore the dynamic
dependence structure in scRNA-seq data and other zero-inflated count data, new
approaches are needed. In this paper, we consider overdispersion and zero infla-
tion in count outcomes and propose a ZEro-inflated negative binomial dynamic
COrrelation model (ZENCO). The observed count data are modeled as a mix-
ture of two components: success amplifications and dropout events in ZENCO.
A latent variable is incorporated into ZENCO to model the covariate-dependent
correlation structure.We conduct simulation studies to evaluate the performance
of our proposed method and to compare it with existing approaches. We also
illustrate the implementation of our proposed approach using scRNA-seq data
from a study of minimal residual disease in melanoma.
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1 INTRODUCTION

Interactions between biological molecules in a cell are
tightly coordinated and often highly dynamic (Luscombe
et al., 2004; de Lichtenberg et al., 2005). They can change
flexibly under different cellular conditions or in response
to various external stimulants and signals. As a result of
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these varying signaling activities, changes in gene coex-
pression patterns can often be observed in these situations
(Li, 2002; Li and Yuan, 2004; de la Fuente, 2010). Studying
these dynamic changes in gene coexpression could reveal
these intricate underlying gene regulatory mechanisms.
Although it is a challenging task to unravel the com-

plex genetic interactions in a biological system, several
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statistical approaches have been introduced to describe
the coexpression between a pair of genes such as Pearson
correlation or rank correlation, F-statistic (Lai et al., 2004),
mutual information (Faith et al., 2007), entropy-based
approaches (Ho et al., 2007), Gaussian graphical models
(Ma et al., 2007), and Bayesian network (Ho et al., 2014).
However, these approaches do not account for the fact
that genetic circuits can be turned on or off and genes
may participate in different regulatory processes under
different cellular conditions.
One statistical measure that can capture these dynamic

gene correlation changes was proposed by Li (2002). This
measure, named dynamic correlation in this paper, quan-
tifies the relationship where the coexpression between
two genes is modulated by a third “coordinator” gene.
Li (2002) examined these dynamic correlation changes
(referred to as liquid association in his paper) in canoni-
cal pathways using microarray gene expression data from
a model organism, Saccharomyces cerevisiae. For a typical
genomic study, a pathway-based or a genome-wide screen-
ing strategy can be implemented as presented in several
studies to effectively identify potential dynamic correlation
changes (Dawson and Kendziorski, 2012; Gunderson and
Ho, 2014;Wang et al., 2017; Yu, 2018; Kinzy et al., 2019). Li’s
study and other studies since then have evidently estab-
lished its biological validity and popularized it to be a use-
ful tool for analyzing genomic data (Li, 2002; Li et al., 2004;
Ho et al., 2007; Zhang et al., 2007;Ho et al., 2011;Wang et al.,
2013; Khayer et al., 2017; Wang et al., 2017; Xu et al., 2017;
Ai et al., 2019; Kong and Yu, 2019; Wen et al., 2020).
However, when it comes to count data such as

RNA sequencing reads, these existing Gaussian-based
approaches may not fit the data properly. RNA sequenc-
ing (RNA-seq) data are often presented as a count matrix
with nonnegative counts as the number of reads observed.
Count-based models such as the Poisson distribution and
the negative binomial distribution are widely used to ana-
lyze the RNA-seq data. Karlis and Meligkotsidou (2005)
proposed a multivariate Poisson model with covariance
structure. Due to both biological and technical variability,
RNA-seq count data are often overdispersed. For overdis-
persed data, the variance is larger than the mean, which
is a violation of the assumption of the Poisson distribu-
tion (mean and variance are equal). To handle overdis-
persion, Solis-Trapala and Farewell (2005) used a multi-
variate Poisson-Gamma mixture model. Robinson et al.
(2010) modeled the data using the negative binomial dis-
tribution and treated the Poisson distribution as a special
case of the negative binomial distribution. Ma et al. (2020)
proposed flexible models for modeling bivariate correlated
count data.
In recent years, the rapid development of next-

generation sequencing technologies has made it possible
to examine the sequence information from individual

cells. Single-cell RNA sequencing (scRNA-seq) analyzes
the expression of RNAs from individual cells, whereas tra-
ditional RNA-seq can only analyze the RNAs from mixed
cell populations (Bacher and Kendziorski, 2016; Hwang
et al., 2018). scRNA-seq gives insight into individual cells’
function and behavior at various stages and in various cell
types, and hence, can provide a high-resolution view of
dynamic coexpression regulation in a biological system.
However, the analysis of scRNA-seq data is complicated

by high levels of technical noise and intrinsic biologi-
cal variability (Kharchenko et al., 2014). Due to the low
amounts of mRNA within individual cells, the counts of
single-cell gene expression data contain a large number
of zero expression measurements. To avoid stochastic zero
counts, Lun et al. (2016) developed anormalizationmethod
based on pooling expression values. Pierson andYau (2015)
developed a dimensionality-reductionmethod considering
the dropout characteristics to improvesmodeling accuracy.
Miao et al. (2018) used a zero-inflated negative binomial
model to estimate the proportion of real and dropout zeros.
Kharchenko et al. (2014)modeled themeasurement of each
cell as a mixture of two components: one for transcripts
that are successfully detected and the other for dropout
events during amplification.
Motivated by the dynamic correlation studies in

microarray data, in this article, we propose the ZEro-
inflated negative binomial dynamic COrrelation (ZENCO)
model. We account for overdispersion and zero inflation
in count data by considering a mixture model of condi-
tional bivariate negative binomial regressions and zero
counts. A latent variable is incorporated into ZENCO
to model the covariate-dependent correlation structure.
We demonstrate the implementation of ZENCO model
using the scRNA-seq data of melanoma cells from Gene
Expression Omnibus (GSE116237) and study the difference
of dynamic correlations between various phases during
combined BRAF and MEK (BRAF/MEK) treatment.
The remainder of the article is arranged as follows. In

Section 2, the detail of the proposed model is introduced.
The simulation studies and comparisons are conducted in
Section 3. In Section 4, the analysis of scRNA-seq data gen-
erated from melanoma tumor cells is presented. Section 5
concludes this article with some discussion.

2 METHOD

2.1 The ZENCOmodel

For modeling dynamic coexpression changes, we use 𝐗1,
𝐗2, and 𝐗3 to denote the count-based expression lev-
els for three genes. Let 𝑋𝑖𝑗 represent the gene expres-
sion level of the 𝑖th gene (𝑖 = 1, 2, 3) in the 𝑗th cells
(𝑗 = 1, 2, … 𝑛), and 𝐗𝑖 = (𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3, … , 𝑋𝑖𝑛) represents
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the gene expression level for the 𝑖th gene. In our proposed
framework, the marginal distribution of𝐗𝑖 is modeled as a
mixture of dropout component and negative binomial
component (nondropout events). The distribution of 𝐗𝑖 is
given by

𝐗𝑖 ∼

{0, with probability 𝑝𝑖;

𝑁𝐵(𝜇𝑖, 𝜙𝑖), with probability 1 − 𝑝𝑖.
(1)

where 0 is the distribution with a point mass at zero; 𝑝𝑖 is
the dropout rate of 𝐗𝑖; 𝜇𝑖 is the mean of the negative bino-
mial component of 𝐗𝑖; and 𝜙𝑖 is the dispersion parameter
of the negative binomial component. The variance of the
negative binomial component of 𝐗𝑖 is 𝜇𝑖(1 + 𝜙𝑖𝜇𝑖). As 𝜙𝑖
goes to 0, 𝑁𝐵(𝜇𝑖, 𝜙𝑖) → 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖).
The dropout rate of a given gene, 𝑝𝑖 , is modeled as a

function of its mean. The dropout rates are study-specific
and can be estimated for a given scRNA-seq data set. Based
on the melanoma data considered in the study, we model
the dropout rate using a logistic function: 𝑝 =

𝑒(𝑏0+𝑏1𝜇)

1+𝑒(𝑏0+𝑏1𝜇)
,

where 𝜇 is the mean of a given gene and 𝑏0, 𝑏1 can be esti-
mated using the expression levels of all available genes in
the data (Pierson and Yau, 2015).
Furthermore, we use the indicator 𝑑𝑖𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖)

to describe whether dropout happens or not. If 𝑑𝑖𝑗 = 0,
then the 𝑖th gene in the 𝑗th cell is successfully ampli-
fied (nondropout event). If 𝑑𝑖𝑗 = 1, then dropout happens.
According to the combinations of different values of 𝑑1𝑗
and 𝑑2𝑗 , there are four different situations for 𝐗1 and 𝐗2.
Their marginal densities can be written as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑋1𝑗 ∼ 𝑁𝐵(𝜇1, 𝜙1) and 𝑋2𝑗 ∼ 𝑁𝐵(𝜇2, 𝜙2), if 𝑑1𝑗 = 𝑑2𝑗 = 0;

𝑋1𝑗 ∼ 0 and 𝑋2𝑗 ∼ 𝑁𝐵(𝜇2, 𝜙2), if 𝑑1𝑗 = 1 and 𝑑2𝑗 = 0;

𝑋1𝑗 ∼ 𝑁𝐵(𝜇1, 𝜙1) and 𝑋2𝑗 ∼ 0, if 𝑑1𝑗 = 0 and 𝑑2𝑗 = 1;

𝑋1𝑗 ∼ 0 and 𝑋2𝑗 ∼ 0, if 𝑑1𝑗 = 𝑑2𝑗 = 1.

(2)

When 𝑑1𝑗 = 𝑑2𝑗 = 𝑑3𝑗 = 0, the joint distribution of𝐗1 and
𝐗2 involves a correlation parameter that depends on the
expression level of 𝑋3𝑗 . In other words, the correlation
between 𝑋1𝑗 and 𝑋2𝑗 could change according to the level
of𝑋3𝑗 when all three genes (𝑋1𝑗,𝑋2𝑗 , and𝑋3𝑗) are success-
fully amplified in the 𝑗th cell. If 𝑑1𝑗=1 or 𝑑2𝑗 = 1, 𝑋1𝑗 and
𝑋2𝑗 are independent, because at least one measurement of
𝑋1𝑗 and 𝑋2𝑗 comes from the dropout component.
We model the dependency between 𝐗1 and 𝐗2 and con-

struct our conditional bivariate negative binomial model
through a Poisson–Gamma mixture distribution. For 𝑖 =
1, 2 and 𝑗 = 1, 2, … , 𝑛, let

𝑋𝑖𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑢𝑖𝑗𝜇𝑖), 𝑢𝑖𝑗 ∼ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑖, 𝛼𝑖). (3)

A negative binomial distribution of𝑁𝐵(𝜇𝑖,
1

𝛼𝑖
) can be gen-

erated by integrating over 𝑢𝑖𝑗 in (3). In this Poisson–
Gamma mixture setting, 𝑢𝑖𝑗 can be considered as the
cell-specific random effect. To introduce the conditional
correlation between 𝑋1𝑗 and 𝑋2𝑗 given 𝑋3𝑗, we utilize
a latent variable 𝑍 and model the conditional correla-
tion implicitly through the cell-specific random effect
(𝑢𝑖𝑗).
Let 𝐙𝐣 = (𝑍1𝑗, 𝑍2𝑗)

′ be a bivariate normal variable that

𝐙𝐣 ∼ 𝑁2

([
0

0

]
,

[
1 𝜌𝑗
𝜌𝑗 1

])
. (4)

The correlation, 𝜌𝑗 , of (𝑍1𝑗, 𝑍2𝑗) is specified as

log

(
1 + 𝜌𝑗

1 − 𝜌𝑗

)
= 𝜏0 + 𝜏1𝑋3𝑗. (5)

log(
1+𝜌𝑗

1−𝜌𝑗
) is the Fisher’s Z-transformation for the corre-

lation 𝜌𝑗 that ensures that the correlation 𝜌𝑗 is within
(−1, 1).
Now, we incorporate this latent variable 𝐙𝐣 into the cell-

specific random component (𝑢𝑖𝑗) in the Poisson–Gamma
mixture in (3) to construct a conditional bivariate negative
binomial model of (𝑋1𝑗, 𝑋2𝑗)

′ with marginal distribution
𝑋1𝑗 ∼ 𝑁𝐵(𝜇1, 𝜙1) and 𝑋2𝑗 ∼ 𝑁𝐵(𝜇2, 𝜙2) and the correla-
tion of (𝑋1𝑗, 𝑋2𝑗) depends on 𝑋3𝑗 . Specifically, for 𝑖 = 1, 2

and 𝑗 = 1, 2, … , 𝑛, let

𝑋𝑖𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛[𝐹−1
𝛼𝑖
{Φ(𝑍𝑖𝑗)}𝜇𝑖], (6)

where 𝐹𝛼𝑖 (⋅) is the cumulative distribution function of
a 𝐺𝑎𝑚𝑚𝑎(𝛼𝑖, 𝛼𝑖) distribution with 𝛼𝑖 = 1∕𝜙𝑖 and Φ(⋅) is
the cumulative distribution function of a standard nor-
mal distribution. 𝐹−1

𝛼𝑖
maps each point in the interval (0,1)

to 𝐺𝑎𝑚𝑚𝑎(𝛼𝑖, 𝛼𝑖) distribution. Hence, the distribution of
𝐹−1
𝛼𝑖
{Φ(𝑍𝑖𝑗)} is 𝐺𝑎𝑚𝑚𝑎(𝛼𝑖, 𝛼𝑖). The distribution of 𝑋𝑖𝑗 ∼

𝑃𝑜𝑖𝑠𝑠𝑜𝑛[𝐹−1
𝛼𝑖
{Φ(𝑍𝑖𝑗)}𝜇𝑖] is then a Poisson–Gammamixture

distribution, which follows the negative binomial density
𝑁𝐵(𝜇𝑖, 𝜙𝑖 =

1

𝛼𝑖
).

In the model described above, in order to determine the
existence of the dynamic coexpression change of 𝐗1, 𝐗2

given𝐗3, themain parameter of interest is 𝜏1 in (5). If 𝜏1=0,
then the correlation between 𝐗1 and 𝐗2 does not depend
on 𝐗3 and vice versa. In the ZENCO model, we develop a
statistical inference procedure via a Bayesian perspective,
because it offers a relatively straightforward way to com-
pute 𝑃𝑜𝑖𝑠𝑠𝑜𝑛[𝐹−1

𝛼𝑖
{Φ(𝑍𝑖𝑗)}] through Markov chain Monte

Carlo (MCMC) sampling. In addition, the posterior distri-
butions of the parameters can be obtained with a set of
standard conjugate priors.
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Under the hypotheses:

𝐻0 ∶ 𝜏1 = 0 versus 𝐻1 ∶ 𝜏1 ≠ 0,

the statistical power of the proposed ZENCO approach can
be calculated as follows. First, we obtained the posterior
sampling distribution of 𝜏1, and then calculated the 95%
equal tail credible interval. Power can be evaluated as the
proportion of times when zero is not covered by the 95%
credible intervals.
We nowdescribe the likelihood function and theMCMC

scheme. Let vector 𝜃𝜃𝜃 be the notation of all parameters (𝜇1,
𝜇2, 𝜇3, 𝜙1, 𝜙2, 𝜙3, 𝜏0, 𝜏1) in the model. And let 𝜋𝜋𝜋(𝜃𝜃𝜃) be the
prior joint distribution of𝜃𝜃𝜃, the likelihood function is given
by

𝐿(𝜃𝜃𝜃|𝑥1, 𝑥2, 𝑥3) = 𝑛∏
𝑗=1

𝑓(𝑥1𝑗, 𝑥2𝑗|𝜇1, 𝜇2, 𝜙1, 𝜙2, 𝜏0, 𝜏1, 𝑥3𝑗)𝑓(𝑥3𝑗|𝜇3, 𝜙3)
=

𝑛∏
𝑗=1

{
∫ 𝑓(𝑥1𝑗, 𝑥2𝑗|𝜇1, 𝜇2, 𝜙1, 𝜙2,𝑧𝑧𝑧𝑗)𝑓(𝑧𝑧𝑧𝑗|𝑥3𝑗, 𝜏0, 𝜏1)𝑑𝑧𝑧𝑧𝑗}𝑓(𝑥3𝑗|𝜇3, 𝜙3)

=

𝑛∏
𝑗=1

{
∫

2∏
𝑖=1

𝑓(𝑥𝑖𝑗|𝜇𝑖, 𝜙𝑖, 𝑧𝑧𝑧𝑖𝑗)𝑓(𝑧𝑧𝑧𝑗|𝑥3𝑗, 𝜏0, 𝜏1)𝑑𝑧𝑧𝑧𝑗}𝑓(𝑥3𝑗|𝜇3, 𝜙3), (7)

where 𝑥1𝑗 and 𝑥2𝑗 are from observed data and 𝑧𝑧𝑧𝑗 =

(𝑧1𝑗, 𝑧2𝑗)
′. 𝑥1𝑗 and 𝑥2𝑗 are independent given 𝑧𝑧𝑧𝑗 . Hence,

the posterior joint distribution of 𝜇1, 𝜇2, 𝜇3, 𝜙1, 𝜙2, 𝜙3, 𝜏0,
𝜏1 given the observations is proportional to[

𝑛∏
𝑗=1

{
∫

2∏
𝑖=1

𝑓(𝑥𝑖𝑗|𝜇𝑖, 𝜙𝑖 , 𝑧𝑧𝑧𝑖𝑗)𝑓(𝑧𝑧𝑧𝑗|𝑥3𝑗, 𝜏0, 𝜏1)𝑑𝑧𝑧𝑧𝑗}𝑓(𝑥3𝑗|𝜇3, 𝜙3)]𝜋𝜋𝜋(𝜃𝜃𝜃),
where 𝑓(𝑥𝑖𝑗|𝜇𝑖, 𝜙𝑖 , 𝑧𝑧𝑧𝑖𝑗) is the distribution of 𝑥𝑖𝑗 for 𝑖 = 1, 2:

𝑥𝑖𝑗 ∼

⎧⎪⎨⎪⎩
0, with probability 𝑝𝑖;

Poisson [𝐹−1
1∕𝜙𝑖

{Φ(𝑧𝑖𝑗)}𝜇𝑖], with probability 1 − 𝑝𝑖.

The dropout rate 𝑝𝑖 is study-specific and can be determined
using all genes measured in the study as a function of 𝜇𝑖
described previously. And 𝑓(𝑧𝑧𝑧𝑗|𝑥3𝑗, 𝜏0, 𝜏1) is the probability
density function of a bivariate normal distribution with a
covariance matrix structure:

ΣΣΣ =

⎡⎢⎢⎢⎢⎣
1

𝑒(𝜏0+𝜏1×𝑥3𝑗) − 1

𝑒(𝜏0+𝜏1×𝑥3𝑗) + 1
𝑒(𝜏0+𝜏1×𝑥3𝑗) − 1

𝑒(𝜏0+𝜏1×𝑥3𝑗) + 1
1

⎤⎥⎥⎥⎥⎦
.

For any given 𝑥3𝑗, 𝑧𝑧𝑧𝑗 can be derived as described in (4) and
(5). Finally, 𝑓(𝑥3𝑗|𝜇3, 𝜙3) is formulated as in (1).
For a given gene triplet, the parameter estimation can

be carried out using the MCMC algorithm provided in
JAGS (Plummer, 2003). We use the normal distribution
with mean 0 and variance 4/N as the priors of 𝜏0 and 𝜏1,
whereN is the sample size. This is because the approximate
variance of Fisher’s Z-transformation log( 1+𝜌

1−𝜌
) is 4

𝑁−3
. The

priors for 𝜇1, 𝜇2, and 𝜇3 are standard log-normal distribu-
tions. The noninformative priors for the dispersion param-
eters 1∕𝜙1, 1∕𝜙2, and 1∕𝜙3 are the Gamma distribution
with mean 100 and relatively large variance 10,000.
The sampling scheme during each MCMC iteration

is as follows. For 𝑗 = 1, 2, … , 𝑛, 𝑖 = 1, 2, 3, we sample 𝜇𝑖
from 𝑓(𝜇𝑖|⋅) ∝ 𝑓(𝜇𝑖)

∏𝑛

𝑗=1
𝑓(𝑥𝑖𝑗|𝜇𝑖, 𝜙𝑖) and sample 𝜙𝑖 from

𝑓(1∕𝜙𝑖|⋅) ∝ 𝑓(1∕𝜙𝑖)
∏𝑛

𝑗=1
𝑓(𝑥𝑖𝑗|𝜇𝑖, 𝜙𝑖), where 𝑓(𝑥𝑖𝑗|𝜇𝑖, 𝜙𝑖)

is the probability density function of

𝑥𝑖𝑗 ∼

{0, with probability 𝑝𝑖;

𝑁𝐵(𝜇𝑖, 𝜙𝑖), with probability 1 − 𝑝𝑖.

Then we sample 𝜏0 from

𝑓(𝜏0|⋅) ∝ 𝑓(𝜏0)

𝑛∏
𝑗=1

𝑓(𝐳𝐣|𝜏0, 𝜏1, 𝑥3𝑗),
and sample 𝜏1 from

𝑓(𝜏1|⋅) ∝ 𝑓(𝜏1)

𝑛∏
𝑗=1

𝑓(𝐳𝐣|𝜏0, 𝜏1, 𝑥3𝑗),
where

𝑓(𝐳𝐣|𝜏0, 𝜏1, 𝑥3𝑗) = 𝑁2

⎛⎜⎜⎜⎝
[
0

0

]
,

⎡⎢⎢⎢⎣
1

𝑒(𝜏0+𝜏1×𝑥3𝑗) − 1

𝑒(𝜏0+𝜏1×𝑥3𝑗) + 1
𝑒(𝜏0+𝜏1×𝑥3𝑗) − 1

𝑒(𝜏0+𝜏1×𝑥3𝑗) + 1
1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ .
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In addition, 𝑧𝑖𝑗 can be sampled from

𝑓(𝑧𝑖𝑗|⋅) ∝ 𝑓(𝑥𝑖𝑗|𝑧𝑖𝑗, 𝜇𝑖, 𝛼𝑖)𝑓(𝑧𝑖𝑗|𝑧𝑘𝑗), 𝑖, 𝑘 = 1, 2; 𝑖 ≠ 𝑘,

where 𝑓(𝑧𝑖𝑗|𝑧𝑘𝑗) = 𝑁(𝜌𝑗𝑧𝑘𝑗, (1 − 𝜌𝑗
2)).

2.2 Search strategies

There are several ways to implement the ZENCO approach
in a genomic study. We describe a few here: (i) for a given
pair of genes (𝐗1, 𝐗2), screen the whole genome to iden-
tify the coordinator genes (𝐗3) that regulate the correlation
between 𝐗1 and 𝐗2, or (ii) for a given 𝐗3, screen-related
pathways or the whole genome to identify pairs of genes
that are modulated by 𝐗3 (𝑚 choose 2 gene pairs;𝑚 is the
total number of genes considered), or (iii) if no prior infor-
mation about 𝐗3 or (𝐗1, 𝐗2) is available, screen relevant
genetic pathways, or screen the whole genome to iden-
tify potential gene triplets that exhibit dynamic correlation
changes (𝑚 choose three gene triplets). In the experimen-
tal data analysis described in Section 4, we demonstrated
the second (ii) approach.
When the number of relevant genes under consideration

is large (for example,≈ 20,000), a prescreening step is usu-
ally beneficial before implementing ZENCO. For example,
the algorithm proposed by Gunderson and Ho (2014) or
the screening statistic (𝜁) introduced in Yu (2018) or filter-
ing out gene with constant expression has been used effec-
tively in the literature.

3 SIMULATION

To evaluate the performance of our proposed ZENCO
model and compare it to existing benchmark approaches,
we report results from five simulation scenarios below.

3.1 Scenario 1: Simulating data from
ZENCO

In this first simulation, we demonstrate generating data
from the ZENCO model. The simulated data contain
count-based expression level of three genes: 𝐗1, 𝐗2, and
𝐗3. In our model, the correlations of 𝐗1 and 𝐗2 are mod-
ulated by the level of 𝐗3. This simulation was conducted
as follows.
First, we simulated a set of {𝑥3𝑗}𝑁𝑗=1 from a univariate

negative binomial distribution with mean 𝜇3 and size 𝜙3
and then randomly selected a subset as the dropouts and
replaced these {𝑥3𝑗}

′𝑠 with zero. After the simulation of

𝑥3𝑗 , we calculated correlation coefficient 𝜌𝑗 =
𝑒
(𝜏0+𝜏1×𝑥3𝑗)−1

𝑒
(𝜏0+𝜏1×𝑥3𝑗)+1

for each 𝑥3𝑗 . Note that for dropouts in {𝑥3𝑗}
𝑁
𝑗=1

, we used
𝜇3 instead of 𝑥3𝑗 to calculate 𝜌𝑗 , because the values of
those dropouts have nothing to do with the regulatory
mechanism of 𝐗3. Then, we generated latent variables
𝐳𝑗 = (𝑧1𝑗, 𝑧2𝑗)

′ such that

𝐳𝑗 ∼ 𝑁2

([
0

0

]
,

[
1 𝜌𝑗
𝜌𝑗 1

])
and simulated 𝑥1𝑗 and 𝑥2𝑗 using 𝐳𝑗 as described in (6). The
dependence structure of 𝑥1𝑗 and 𝑥2𝑗 is implicitly modeled
via 𝐳𝑗 . Finally, just like the simulation of 𝑥3𝑗 , we randomly
replaced values of 𝑥1𝑗 and 𝑥2𝑗 for dropout events.
Using the simulation approach described above, we gen-

erated 105 observations from the ZENCO distribution and
plotted a panel of conditional distributions of 𝐗1 and 𝐗2

given various levels of 𝐗3 in Figure 1. In these figures, we
observed that when 𝐗3 is not zero, 𝜌 increases with 𝐗3.
When 𝐗3 is zero, the correlations of 𝐗1 and 𝐗2 are small
and show reduced dependency with respect to 𝐗3. This is
due to the zero value observation of 𝐗3 being a mixture of
true zero and dropout. In other words, some zero values of
𝐗3 come from the negative binomial distribution, others
come from dropout events.

3.2 Scenario 2: Comparisons to existing
approaches

To evaluate the performance of our proposed ZENCO
model, we performed power analysis and compare ZENCO
to three other existing approaches. For testing the existence
of dynamic coexpression changes, our hypotheses are set
up as:

𝐻0 ∶ 𝜏1 = 0 versus 𝐻1 ∶ 𝜏1 ≠ 0.

First, we compared ZENCO to a bivariate negative bino-
mial regressionwithout considering the zero-inflated com-
ponents. Similarly to ZENCO, the statistical power of this
method can be calculated as the percentage of times that
the posterior 95% credible intervals of 𝜏1 do not cover
zero. The ZENCO model and the model without consid-
ering the zero-inflated components were both carried out
using the MCMC algorithm with 20,000 iterations, and
10,000 burn-ins.
Second, we compared ZENCO to the existing bench-

mark approach introduced by Li (2002). This existing
approachwas later applied to scRNA-seq data by Yu (2018).
This test statistic according to the three-product-moment

measure is written as: 𝑇𝐿𝐴 =
𝐸(𝐗∗

1
𝐗∗
2
𝐗∗
3
)

𝑆𝐸{𝐸(𝐗∗
1
𝐗∗
2
𝐗∗
3
)}
, where 𝐗∗

1 , 𝐗
∗
2 ,

𝐗∗
3 are the standardized 𝐗1, 𝐗2, 𝐗3 with mean 0, variance
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F IGURE 1 Profile plots of (𝐗1, 𝐗2|𝐗3) with varying 𝐗3 (𝜇1 = 𝜇2 = 𝜇3 = 15, 𝜙1 = 𝜙2 = 𝜙3 = 4, 𝜏0 = 0, and 𝜏1 = 0.05)

1, and 𝐸(𝐗∗
1𝐗

∗
2𝐗

∗
3) is the three-product-moment estima-

tor for the dynamic correlation. 𝑆𝐸{𝐸(𝐗∗
1
𝐗∗
2
𝐗∗
3
)}, the stan-

dard error of 𝐸(𝐗∗
1
𝐗∗
2
𝐗∗
3
), can be estimated via bootstrap.

𝑇𝐿𝐴 can be used to test whether the correlation of 𝐗1, 𝐗2

depends on 𝐗3, that is, 𝐻0 ∶ 𝜏1 = 0 (Li, 2002; Ho et al.,
2011). The distribution of 𝑇𝐿𝐴 under the null hypothesis
and associated p-value can be obtained using a permuta-
tion approach.
The third comparison is to fit the negative binomial

count data with the conditional normalmodel (CNM-Full)
(Ho et al., 2011). Assuming that data are from the con-
ditional bivariate normal distribution instead of the con-
ditional bivariate negative binomial distribution, the test
statistic of this method can be estimated using a general-
ized estimating equation-based procedure (Yan and Fine,
2004) and a p-value associated with the test statistic can
be obtained. The powers of these two methods (𝑇𝐿𝐴 and
CNM-Full) can be calculated by counting the percentage
of times when p-values associated with 𝜏1 are less than .05.
We simulated 1000 observations from ZENCO model

by fixing 𝜇1 = 𝜇2 = 𝜇3 = 15, 𝜙1 = 𝜙2 = 𝜙3 = 4, and 𝜏0 =

0, and then varied 𝜏1 values and performed power analy-
ses. The simulated values of 𝜇1, 𝜇2, 𝜇3, 𝜙1, 𝜙2, 𝜙3 are based
on the estimates obtained from the real data analysis.

F IGURE 2 Power curves comparing various methods. Both
TLA and CNM-Full approaches are Gaussian-based models

Figure 2 shows the power curves of the four methods. We
observed that our proposed ZENCO method outperforms
the other three methods. In addition, fitting the negative
binomial count-based data using Gaussian-based mod-
els reduces statistical power drastically. This is because
ZENCO accounts for both zero inflation and overdisper-
sion of the data, and hence achieves better power to detect
dynamic dependence structure.
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TABLE 1 Coverage probability of 95% credible intervals (CIs) and interval lengths based on 1000 MCMC simulations (𝜏0 = 0.01,
𝜏1 = 0.05)

Without zero inflation With zero inflation

Parameter
Coverage
probability CI length

Coverage
probability CI length

𝑁 = 200 𝜏0 1.000 0.237 1.000 0.246
𝜏1 0.154 0.041 0.957 0.095

𝑁 = 500 𝜏0 1.000 0.223 1.000 0.244
𝜏1 0.006 0.022 0.961 0.059

𝑁 = 1000 𝜏0 0.957 0.205 1.000 0.242
𝜏1 0.000 0.015 0.954 0.040

TABLE 2 Mean square errors (MSEs) and mean bias errors (MBEs) based on 1000 MCMC simulations (𝜏0 = 0.01, 𝜏1 = 0.05)

Without zero inflation With zero inflation
Parameter MSE MBE MSE MBE

𝑁 = 200 𝜏0 0.001 0.005 0.000 −0.008
𝜏1 0.002 −0.039 0.001 −0.006

𝑁 = 500 𝜏0 0.002 0.024 0.000 −0.009
𝜏1 0.002 −0.040 0.000 −0.001

𝑁 = 1000 𝜏0 0.004 0.048 0.000 −0.009
𝜏1 0.002 −0.041 0.000 0.000

3.3 Scenario 3: Estimation efficiency

In this simulation scenario, we evaluated the estima-
tion efficiency of the ZENCO model and reported mean
squared errors (MSE), mean bias errors (MBE), and 95%
empirical coverage probabilities under various settings.
Three sets of simulation studies were done with sample
sizes 200, 500, and 1000. For each simulation study, we
generated 1000 data sets. We used the parameter estimated
values obtained from the real data analysis in Section 4 and
set the true values of the parameters as follows: 𝜇1 = 𝜇2 =

𝜇3 = 15, 𝜙1 = 𝜙2 = 𝜙3 = 4, 𝜏0 = 0.01, and 𝜏1 = 0.05. The
true values of the parameters associated with dropout rate
were similar to the values obtained based on the real data:
𝑏0 = 0.14 and 𝑏1 = −0.02 (dropout rates for 𝐗1 and 𝐗2 are
both 0.44).
The empirical 95% coverage probabilities from the pos-

terior distributions and the length of credible intervals
are shown in Table 1. In Table 1, we also presented the
parameter estimates using a negative binomial model
without zero inflation. The empirical 95% coverage prob-
ability is calculated as the percentage of times when
the 95% credible intervals covering the true parameter
value based on 1000 MCMC simulations. The simula-
tion results shown in Table 1 suggest that ZENCO model
provides a much better 95% coverage probability than a
negative binomial regression method model without zero
inflation.

MSEs and MBEs are shown in Table 2. The MBE of a
given parameter 𝛽 is calculated as 1

𝑁

∑𝑁

𝑖=1
(𝛽𝑖 − 𝛽);N is the

number of simulation iterations (N = 1000). Based on the
simulation results in Table 2, ZENCO model has smaller
MSEs andMBEs comparingwith the nonzero-inflated neg-
ative binomial regression method.

3.4 Scenario 4: Robustness

To assess the robustness of the ZENCO method under
modelmisspecification, we conducted three sets of simula-
tions where the data are generated via a negative binomial
model without zero inflation. The three sets of simulation
studies were performed with sample sizes 200, 500, and
1000, and each with 1000 simulation iterations. The true
values of parameters were set as 𝜇1 = 𝜇2 = 𝜇3 = 15, 𝜙1 =
𝜙2 = 𝜙3 = 4, 𝜏0 = 0.01, and 𝜏1 = 0.05. We analyzed the
simulated data sets using a negative binomial regression
method without zero inflation and the ZENCO method.
The empirical 95% coverage probabilities from poste-

rior distributions and the length of credible intervals using
the above two models are shown in Table S.1; the MSEs
and MBEs are shown in Table S.2. The simulation results
shown in Table S.1 and Table S.2 suggest that our proposed
estimation procedure in ZENCO is fairly robust evenwhen
the data are generated from a nonzero-inflated negative
binomial setting.
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3.5 Scenario 5: A multiple-gene setting

In this simulation scenario, we turn our attention to a
multiple-gene setting. Our goal here is to demonstrate
that our proposed approach could capture dependencies
amongmultiple genes throughmultiple pairwise searches.
We set 𝑏0 = 0.65 and 𝑏1 = −0.015, which is similar to the
values obtained based on the real data and then simu-
lated five genes (10 gene pair combinations) with 𝜇1 = 15,
𝜇2 = 19, 𝜇3 = 10, 𝜇4 = 15, 𝜇5 = 12, 𝜙1 = 4, 𝜙2 = 5, 𝜙3 = 6,
𝜙4 = 4, 𝜙5 = 3. The true values of the 10 𝜏′

1
𝑠 range from

0.005 to 0.05, whereas the true value of 𝜏0 was set as 0.
The empirical 95% coverage probabilities and MBEs of
10 𝜏′1𝑠 are shown in Table S.3. The results indicate that
our method demonstrated desirable performance under a
multiple-gene setting.

4 EXPERIMENTAL DATA ANALYSIS

We used the proposed ZENCO model to analyze the
melanoma data set described in Rambow et al. (2018).
The scRNA-seq data were obtained from Gene Expres-
sion Omnibus (GEO accession number: GSE116237). The
data set consists of 57,445 genes and 674 melanoma
cells. To study minimal residual disease (MRD) as
well as relapse during melanoma treatment, Rambow
et al. (2018) performed scRNA-seq using malignant cells
from BRAF-mutant patient-derived xenograft melanoma
cohorts treated with BRAF/MEK inhibitor (dabrafenib/
trametinib).
During the course of continuous treatment with

BRAF/MEK inhibitor, the transition of tumor cells can
be categorized into three phases: phase 1 is in the early
stage when all treated lesions rapidly shrunk upon initial
treatment (BRAF-inhibitor sensitive); phase 2 is the sec-
ond stage when drug-tolerant tumor cells remain viable
upon continuous treatment (MRD); in phase 3, relapse
is observed and tumor cells exhibit adaptive resistance to
continuous BRAF inhibition treatment (BRAF-inhibitor
resistance). Among the 674 melanoma cells in the data set,
there are 155 phase 1 cells, 199 phase 2 cells, and 148 phase
3 cells. More details can be found in Rambow et al. (2018).
To gain insight into transcriptional switches of genetic

circuits in tumor cells during the course of BRAF-
inhibitor treatment, we set out to identify gene pairs
that interact with BRAF differently between BRAF-
inhibitor sensitive cells (phase 1) andBRAF-inhibitor resis-
tance cells (phase 3). Hence, in this analysis, we chose
BRAF as 𝐗3 and conducted the pairwise analysis for
genes in the melanoma pathway described in the KEGG
database (Kanehisa and Goto, 2000). According to the

melanomapathway inKEGGdatabase, 72 geneswere iden-
tified as melanoma-associated genes. The data were first
preprocessed by the procedures described in McCarthy
et al. (2017). After removing low expressed genes (maxi-
mumcount across all cells less than 5) and geneswithmore
than 70% zeros in either phase 1 cells or phase 3 cells, 28
genes were selected for further analysis.
The study-specific parameters, 𝑏0, 𝑏1, associated with

dropout rates can be estimated using the logistic function
𝑝 =

𝑒(𝑏0+𝑏1𝜇)

1+𝑒(𝑏0+𝑏1𝜇)
. In the logistic function, we used the sam-

ple mean to estimate 𝜇. After calculating the dropout rate
as the proportion of cells with zero counts, a nonlinear
least-squares approach was then applied to calculate 𝑏0
and 𝑏1.
We implemented ZENCO analyses for 351 gene pair

combinations in phase 1 cells and phase 3 cells and
obtained the estimates of 𝜏1. To identify the gene pairs that
interact with BRAF differently, we chose gene pairs that
are in both phase 1 and phase 3 cells and calculated the dif-
ferences of 𝜏1 estimates between the two phases. The top
30 gene pairs with the largest differences of 𝜏1 between
phase 3 and phase 1 are shown in Table 3.
The first two columns in Table 3 are the names of two

genes. 𝜏1(𝑃1) is the estimated 𝜏1 in phase 1 cells, and
𝜏1(𝑃3) is the estimated 𝜏1 in phase 3 cells. Δ𝜏1 is defined as
𝜏1(𝑃3) − 𝜏1(𝑃1). It quantifies the change of dynamic coex-
pression in relation to BRAF between phase 3 and phase
1 cells.
From Table 3, we observed that genes PDGFC and

FGFR1 have the largest |Δ𝜏1| between phase 1 and phase
3 cells. In phase 1 cells, the estimate of 𝜏1 for PDGFC and
FGFR1 is 0.045 and the 95% credible interval does not con-
tain 0. In phase 3 cells, the estimate of 𝜏1 is close to 0. This
suggests that the regulatory mechanism between BRAF
and the gene pair (PDGFC, FGFR1) changes between
phase 1 and phase 3 cells. Czyz (2019) pointed out that
melanoma cells somehow acquire the ability to grow inde-
pendent of the two growth factors: FGFR1, PDGFC that
helps melanoma cells to gain resistance toward BRAF
treatment. Our finding from Table 3 is consistent with this
finding. Interestingly, many top gene pairs listed in Table 3
are from themitogen-activated protein kinase (MAPK) and
phosphoinositide 3-kinase (PI3K) signaling pathways. Our
analysis findings support the hypotheses described in Vil-
lanueva et al. (2011).
In the above analysis, the convergence of MCMC was

assessed using the Gelman–Rubin convergence statistic
(Gelman et al., 1992). The convergence statistics were close
to 1 for all 𝜏1 estimates in all 351 gene pairs. The trace plots
of the top five gene pairs are shown inFigure S.1. In our real
data application, it took 67 minutes to implement ZENCO
with three chains (100,000 iterations each) for all 351 gene
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TABLE 3 Top table of dynamic correlations differences. Δ𝜏1 is the difference between 𝜏1 estimates in phase 3 (P3) and phase 1 (P1)

# Gene1 Gene2 𝝉𝟏(𝑷𝟏) 𝝉𝟏(𝑷𝟑) 𝚫𝝉𝟏

1 PDGFC FGFR1 0.045 (0.021, 0.068) −0.003 (−0.010, 0.005) −0.047 (−0.072,−0.023)
2 AKT1 BAX 0.040 (0.008, 0.071) −0.003 (−0.014, 0.008) −0.043 (−0.075,−0.010)
3 AKT1 PIK3R1 −0.016 (−0.035, 0.004) 0.024 (0.009, 0.038) 0.040 (0.015, 0.062)
4 PDGFC MAP2K2 0.016 (−0.002, 0.032) −0.023 (−0.036,−0.006) −0.039 (−0.059,−0.013)
5 IGF1R FGFR1 −0.024 (−0.048, 0.000) 0.007 (0.000, 0.014) 0.032 (0.006, 0.056)
6 MDM2 CCND1 0.021 (0.007, 0.031) −0.011 (−0.018,−0.004) −0.031 (−0.044,−0.017)
7 AKT1 ARAF −0.025 (−0.047, 0.002) 0.007 (−0.007, 0.018) 0.031 (0.002, 0.056)
8 AKT1 MAP2K1 0.025 (0.004, 0.057) −0.006 (−0.017, 0.009) −0.030 (−0.063,−0.006)
9 AKT1 MAPK1 −0.003 (−0.012, 0.006) 0.026 (0.007, 0.055) 0.029 (0.007, 0.058)
10 KRAS PDGFC 0.012 (−0.005, 0.024) −0.017 (−0.042, 0.005) −0.029 (−0.057,−0.002)
11 IGF1R MAP2K2 0.025 (0.002, 0.056) −0.004 (−0.011, 0.006) −0.028 (−0.060,−0.004)
12 PTEN PDGFC −0.022 (−0.036,−0.004) 0.007 (−0.003, 0.014) 0.028 (0.008, 0.044)
13 PTEN PIK3R1 0.031 (0.007, 0.050) 0.005 (−0.006, 0.014) −0.027 (−0.048,−0.002)
14 BAX POLK 0.025 (0.006, 0.048) 0.000 (−0.012, 0.010) −0.026 (−0.051,−0.003)
15 KRAS NRAS 0.017 (−0.003, 0.034) −0.008 (−0.015, 0.002) −0.024 (−0.043,−0.003)
16 ARAF RB1 0.020 (0.008, 0.032) −0.004 (−0.009, 0.002) −0.024 (−0.037,−0.011)
17 AKT1 RAF1 −0.016 (−0.033,−0.003) 0.007 (−0.004, 0.017) 0.023 (0.006, 0.042)
18 NRAS MAPK1 0.017 (0.002, 0.029) −0.005 (−0.013, 0.006) −0.021 (−0.037,−0.004)
19 PIK3R1 MDM2 0.020 (0.004, 0.035) −0.001 (−0.010, 0.008) −0.021 (−0.038,−0.002)
20 IGF1R TP53 −0.016 (−0.034, 0.002) 0.005 (−0.003, 0.011) 0.020 (0.002, 0.039)
21 BAK1 POLK −0.018 (−0.030,−0.006) 0.002 (−0.006, 0.010) 0.020 (0.006, 0.034)
22 AKT3 MAP2K2 0.016 (0.005, 0.025) −0.003 (−0.011, 0.007) −0.018 (−0.030,−0.006)
23 PTEN KRAS −0.005 (−0.016, 0.011) 0.012 (0.003, 0.020) 0.017 (0.000, 0.030)
24 BAD RAF1 −0.016 (−0.031,−0.006) 0.000 (−0.009, 0.008) 0.016 (0.002, 0.032)
25 IGF1R CDK6 0.014 (−0.001, 0.026) −0.002 (−0.008, 0.003) −0.016 (−0.029,−0.001)
26 RB1 CCND1 0.011 (0.000, 0.020) −0.004 (−0.010, 0.004) −0.014 (−0.025,−0.002)
27 AKT2 FGFR1 −0.003 (−0.015, 0.006) 0.011 (0.004, 0.017) 0.014 (0.002, 0.027)
28 BAD TP53 −0.001 (−0.010, 0.007) 0.013 (0.002, 0.021) 0.014 (0.001, 0.026)
29 NRAS BAK1 0.001 (−0.008, 0.008) 0.014 (0.006, 0.022) 0.014 (0.002, 0.025)
30 AKT2 BAK1 −0.004 (−0.013, 0.005) 0.010 (0.000, 0.019) 0.014 (0.001, 0.026)

combinations using 13 computing cluster nodes (eachwith
28 2.4 GHz Intel Xeon E5-2680 v4 processors).

5 DISCUSSION

In this paper, we presented a zero-inflated negative
binomial dynamic correlation model for studying
covariate-dependent correlations in zero-inflated, overdis-
persed count data, such as scRNA-seq data. In our model,
the correlation of two genes is regulated by the expres-
sion level of the third gene; a phenomenon we named
dynamic correlation in this paper. This novel dynamic
correlation focuses on studying the changes of conditional
correlation. It is a different measure from the partial
correlation coefficient. The partial correlation quantifies
the amount of residual correlation between 𝐗1 and 𝐗2

after regression on 𝐗3 to adjust for the influence of 𝐗3

(Li, 2002).
The proposed model in this paper takes both overdis-

persion and zero inflation of the data into consideration.
With the proper choice of the values of parameters 𝜏0
and 𝜏1, the relationship between conditional correlation
and the expression level of the third gene can be positive
or negative. As demonstrated by our simulation studies,
the ZENCO model significantly outperforms other exist-
ing approaches.
Two other prior distributions for the dispersion param-

eters 𝜙1, 𝜙2, and 𝜙3 have been implemented: an informa-
tive Gamma distribution on 1

𝜙
and a half-t-distribution

on
√
𝜙. Our sensitivity analysis suggests that the 𝜙1, 𝜙2,

and 𝜙3 estimates are robust regardless of prior distribution
assumptions. The Gamma distribution with mean 100 and
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relatively large variance 10,000 used in this paper is more
general and has slightly better performance in MCMC
parameter estimates.
Moreover, in our model, 𝜌 is the correlation of the latent

variable 𝑍. The Fisher transformation of 𝜌 is assumed to
be linear with 𝑋3. In a more general setting, the rela-
tionship between log( 1+𝜌

1−𝜌
) and 𝐗3 does not have to be

linear. And our model can be easily adapted to other
settings.
In the melanoma data analysis, 𝐗3 was used to denote

the expression level of BRAF. And ZENCO model was
implemented for each pairwise combination of 𝐗1 and 𝐗2

in the KEGG melanoma pathway. Using this search strat-
egy, we found the pairs of genes whose BRAF-associated
dynamic correlations change significantly between dif-
ferent phases during treatment. In Table 3, we reported
the top genes with the largest |Δ𝜏1|. Several existing type
I error control approaches can be used in conjunction
with the Bayesian model framework in ZENCO such as
Käll et al. (2008) and Dawson and Kendziorski (2012).
As described in Section 2, there are several ways to
implement ZENCO in a genomic study. If a prefilter-
ing step is used before implementing ZENCO, considera-
tions described in van Iterson et al. (2010); Dawson and
Kendziorski (2012) could behelpful tomaintain type I error
control.
Furthermore, in our application, 𝐗3 was used to denote

the gene expression level of the BRAF gene because of
its pivotal role in melanoma treatment and relapse in the
study. In practice, the 𝐗3 can be easily modified to repre-
sent the activity level of a biological process or different
cell types, or various cellular conditions such as tumor sta-
tus, survival probability, degree of inflammation, metasta-
sis potential, and so on. Also, 𝐗3 can be easily extended to
represent a linear combination of several covariates or bio-
logical processes to accommodate the complexity of biolog-
ical systems in other applications.
Because several existing procedures are available for

preprocessing scRNA-seq data to remove low-magnitude
background noise, in the ZENCOmodel, the dropout com-
ponent is modeled as a degenerate distribution with a
point mass at zero. However, the method can be eas-
ily adapted to allow a low-magnitude Poisson distri-
bution to model the background noise in the dropout
component.
In this paper, our focus is on the changes in coexpres-

sion patterns between a gene pair. It is plausible that there
might exist higher order interactions between genes (more
than two genes), and a generalization of our approach
to higher dimensions is feasible. However, special treat-
ments need to be considered to guarantee the positive

definiteness of the variance–covariance matrix in higher
dimension.
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able with this paper at the Biometrics website on Wiley
Online Library. R code and example data are available at
the Biometrics website on Wiley Online Library. R code
for implementing ZENCO is also available at http://www.
github.com/zheny714/ZENCO.
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