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Abstract

Ever since its initial characterization in the 19th century, tobacco mosaic virus (TMV) has
played a prominent role in the development of modern virology andmolecular biology.
In particular, research on the three-dimensional structure of the virus particles and
the mechanism by which these assemble from their constituent protein and RNA
components has made TMV a paradigm for our current view of the morphogenesis
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of self-assembling structures, including viral particles. More recently, this knowledge
has been applied to the development of novel reagents and structures for applications
in biomedicine and bionanotechnology. In this article, we review how fundamental
science has led to TMV being at the vanguard of these new technologies.

1. INTRODUCTION

Tobacco mosaic virus (TMV) has been an object of intense scientific

study for more than a century and was the first virus to be so-named

(Beijerinck, 1898). The fact that it could be propagated and purified in large

quantities led to TMV being at the forefront of developments in modern

virology and molecular biology (recently reviewed by Lomonossoff,

2018). As a result of these fundamental studies, by the 1980s there was a huge

amount of data available concerning both the molecular genetics of the virus

and the structure of its particles. This led to a burgeoning interest in the use

of TMV, and its constituent parts, in bio- and nanotechnology. Such uses

have included: the identification and development of translational enhancers

for the enhanced expression of heterologous genes (Gallie et al., 1987a;

Wilson, 1989), the development of efficient vectors for transient expression

and virus-induced gene silencing (VIGS) in plants (reviewed by Peyret and

Lomonossoff, 2015), and the use of virus-derived sequences for the creation

of virus-resistant lines of plants (Golemboski et al., 1990; Powell Abel et al.,

1986). Consideration of all these aspects would require an extremely long

article, possibly even a book. Thus, this review will concentrate on the con-

tributions that TMV particles, and their assembly properties, have made to

bionanotechnology.

2. WHY ARE TMV PARTICLES SO SUITED TO
APPLICATIONS IN BIONANOTECHNOLOGY?

In addition to the ease of its propagation and purification, the sheer

simplicity of its genome and particle structure has made TMV a highly trac-

table experimental system for a number of applications. The genome of

TMV consists of one molecule of single-stranded, positive-sense RNA of

6395 nucleotides that contains only three open reading frames (ORFs;

Goelet et al., 1982; Fig. 1A; Note: All the numbers quoted here and below

refer to the U1 or vulgare strain of TMV unless otherwise specified). The

50-proximal ORF encodes the 126 and 183kDa proteins, the longer of
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which is produced via read-through of a leakyUAG stop codon at the end of

the 126kDa coding sequence; both these proteins are translated from the

genomic RNA and are involved in the replication of the viral RNA

(Young et al., 1987; Fig. 1A). To the 30 side of this ORF lie the regions

encoding the 30kDa viral movement protein (MP) and the 17.5kDa coat

protein (CP); both the MP and CP are translated from subgenomic mRNAs

(Beachy and Zaitlin, 1977; Hunter et al., 1976).

The genomic RNA is encapsidated by approximately 2130 copies of the

CP to give virus particles with helical symmetry. The particles are hollow

Fig. 1 TMV—the basics. (A) Diagram of the genomic RNA showing the three open read-
ing frames (ORFs) for the polymerase, movement protein (MP), and coat protein (CP).
The position of the leaky UAG codon within the polymerase ORF is indicated. The sites
for insertion into a surface loop (L) and the C-terminus (C) are shown by red arrows
above the CP ORF. (B) Tertiary structure of an isolated CP subunit. (C) Structure of
the two-layer disk as seen in the crystal structure of the four-layer aggregate described
by Bhyravbhatla et al. (1998). (D) View down the assembled nucleoprotein helix. (E) View
along the TMV rod. In each case the exposed surface loop and C-terminus of the CP are
indicated in red.
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cylinders 300nm in length with external and internal diameters of 18 and

4nm, respectively. The three-dimensional (3D) structures of both the

assembled particles and the CP subunits have been subjected to detailed anal-

ysis over many years by electron microscopy, fiber diffraction, and X-ray

crystallography. These have resulted in an atomic-resolution picture of

the viral particles and the protein–protein and protein–RNA interactions

that hold them together (Bloomer et al., 1978; Champness et al., 1976;

Namba et al., 1989; Stubbs et al., 1977). Recently, TMV single-particle

3D reconstructions to 3.2 Å resolution have been achieved by cryo-electron

microscopy (cryo-EM) using direct electron detectors confirming that fiber

diffraction and cryo-EM yield equivalent data (Fromm et al., 2015).

The CP comprises 158 amino acids and is wedge shaped with the wider

end at the outer radius of the virus particle (Fig. 1B). Each subunit comprises

four α-helices with both the N- and C-termini lying on the external surface

of the particle. At pHs above neutrality, the isolated CP assembles into a vari-

ety of two-layer structures, including a disk aggregate that has more recently

been referred to as a “nanoring” (Bhyravbhatla et al., 1998; Bloomer et al.,

1978; Durham et al., 1971; Fig. 1C). Within the fully assembled particles,

the subunits form a right-handed helix with a pitch of 2.3nm with 16⅓
subunits per turn, resulting in an average distance of about 2.5nm between

the N- or C-termini, respectively, of adjacent CPs (Fig. 1D and E). The

RNA lies at a radius of 4nm and three nucleotides are associated with each

CP subunit (Franklin, 1956). The purified CP forms helical rods in the

absence of RNA at pH less than 6.0. These rods have an identical structure

to the virus but are of indeterminate length, suggesting that the RNA effec-

tively acts as a ruler that determines the particle length.

In addition to the detailed structural information about the genome and

the virus particles, there is another feature about TMV that has made the

virus of great interest for potential applications in bionanotechnology: the

availability of a self-assembly system that can operate both in vivo and

in vitro. Ever since the discovery that purified CP and RNA can self-

assemble to produce infectious virus particles in vitro (Fraenkel-Conrat

and Williams, 1955), TMV has become a paradigm for RNA–protein rec-

ognition. In the 1970s it was shown that assembly is initiated at a single

“origin of assembly sequence” (OAS) positioned approximately 1kb from

the 30 end of the genomic RNA (Zimmern, 1977; Zimmern and Butler,

1977; Zimmern and Wilson, 1976). Initiation of the process requires that

the CP be in the form of a subassembly, consisting of a two-layer disk aggre-

gate, rather than individual subunits or the helical aggregates that the CP can
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form under acidic conditions (Butler and Klug, 1971); the disks, containing

34 CP subunits (Fig. 1C), interact with a hairpin structure formed by

the OAS. Assembly then proceeds bidirectionally (Butler et al., 1977), with

assembly toward the 50 end of the RNA being considerably faster than

that toward the 30 end. This is due to an asymmetric mode of particle

growth: further CP disks or smaller two-layer aggregates are added at the

50-protruding traveling loop of the viral RNA (Fig. 2), pulling the 50 end
the RNA through the central channel of the nascent particle. Assembly

toward the 30 end of the RNA occurs through the addition of smaller CP

oligomers, and this portion of the RNA remains accessible until assembly

is complete. For detailed reviews of these seminal studies on TMV self-

assembly, the reader is referred to Butler (1984, 1999) and Lomonossoff

and Wilson (1985). In addition to controlled assembly of TMV rods, it is also

possible to sequentially remove protein subunits to expose the 50 end of the

RNA within rods by treatment at alkaline pH (Perham and Wilson, 1978).

The processes of controlled nucleoprotein assembly and disassembly have

been exploited to generate TMV-derived nanostructures and hybrid

nanoobjects as discussed later (Fig. 2).

Fig. 2 Examples of applications of TMV particles. The image in the center shows a TMV
rod assembling via the traveling loop mechanism. The various applications are
described throughout the text. Reproduced under the terms of the Creative Commons
Attribution 2.0 International Public License from Koch et al. (2016).
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3. USE OF PARTICLES PRODUCED VIA INFECTION

Since TMV is mechanically transmissible, it is very easy to produce large

quantities of wild-type particles by simply inoculating plants with sap from

infected plants or with purified virus. However, the advent of reverse genetic

systems for the manipulation of the TMV genome (Dawson et al., 1986;

Meshi et al., 1986) opened up the possibility of genetically manipulating

the CP sequence. Subsequent advances in the technology for efficiently

initiating infections, such as the use of agroinfiltration (Lindbo, 2007;

Marillonnet et al., 2004) or the use of plant-infectious plasmids, in which

the viral cDNA is cloned between a strong promoter and a self-cleaving

ribozyme to trim the 30-terminus of the in vivo-transcribed RNA (Bittner

et al., 2013; Kadri et al., 2011), mean that it is now relatively straightforward

to produce genetically modified particles in plants. Furthermore, develop-

ments in the field of chemistry have opened up possibilities for the chemical

modification of both wild-type and genetically altered particles (Strable and

Finn, 2009; Wen and Steinmetz, 2016). These developments are outlined

in Fig. 2.

3.1 Peptide Display
Their highly repetitive structure and size, coupled with detailed knowledge

of their 3D structure, make TMV particles attractive candidates for the dis-

play of multiple copies of peptides. To avoid disrupting CP intersubunit

contacts and thereby interfering with particle formation, it is essential

that any inserted peptides be presented on a solvent-exposed surface; this

should also ensure an effective interaction with the immune system if the

displayed peptides are intended to provoke an immune response. The most

commonly used position for the fusion of peptides to the CP is the

C-terminus (Fig. 1), which lies on the outer surface of assembled virions.

Though the N-terminus is also surface-exposed, attempts at fusing pep-

tides to this position have generally prevented particle formation, probably

because of the proximity of amino acids, such as the buried invariant tyro-

sine at position 2, critical for particle formation (Altschuh et al., 1987).

An early report of the use TMV particles to present peptides involved the

CP expressed in Escherichia coli (Haynes et al., 1986; discussed in Section 4).

The first attempt to produce TMV particles containing a modified CP in

plants was reported by Takamatsu et al. (1990). A sequence encoding

Leu-enkephalin was fused to the C-terminus of the viral CP in an infectious
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cDNA clone of the virus. Inoculation of tobacco plants gave only local

lesions, and no particles could be purified despite the efficient synthesis of

the modified CP. This was the first indication of a significant problem with

using TMV particles to display foreign peptides. Although the large number

of subunits within a virus particle makes TMV very attractive as a potential

peptide display system, it has the drawback that the subunits are very tightly

packed, allowing little space on the virus surface for the accommodation of

multiple copies of a heterologous peptide. In addition, mutations near the

C-terminus adversely affect the ability of CP subunits to oligomerize

(Li et al., 2013), thereby compromising assembly. Nonetheless, the success-

ful formation of particles was later reported when an 11-amino acid epitope

from VP1 of foot and mouth disease virus (FMDV) was fused to the extreme

C-terminus of the CP (Wu et al., 2003). The purified particles could protect

a number of target animals, including pigs, against challenge with FMDV.

Hexahistidine tags were also shown to be tolerated as 30-terminal extensions

to all TMV CPs but substantially reduced particle formation (Mueller

et al., 2010).

An initial approach to solving the problem of steric crowding was the

creation of mosaic particles containing a mixture of wild-type and modified

subunits. This was achieved by incorporating a leaky termination codon at

the C-terminus of the CP gene and placing the sequence of the target, anti-

genic peptides immediately downstream (Hamamoto et al., 1993; Sugiyama

et al., 1995; Turpen et al., 1995). This resulted in the production of particles

in which up to 5% of the subunits were fusion proteins containing the

heterologous peptide at their C-termini. However, in each case the pres-

ented peptide was quite short (less than 20 amino acids). A conceptually

similar, but mechanistically different, approach to creating mosaic particles

was adopted by R€oder et al. (2017) to express longer peptides. In this case

the sequence of the 113-amino acid fluorescent protein iLOV was fused to

the C-terminus of the CP via a 16-amino acid 2A “ribosomal skip” peptide

from FMDV (Donnelly et al., 2001). Particles isolated from plants infected

with this construct contained iLOV fusion subunits, suggesting this

approach could be used to express whole proteins on the surface of TMV

particles.

The disadvantage of the mosaic approach is that it is difficult to control

the number and spatial distribution of modified subunits within the particles.

Thus, several alternative approaches for peptide insertion into the CP have

been developed to produce particles in which all the CP subunits are mod-

ified while retaining virus viability. Turpen et al. (1995) investigated the use
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of a surface-exposed loop, downstream of proline 63, between two of the

α-helices (Fig. 1A and B), to express malarial epitopes on the virus surface,

and demonstrated particle formation. A similar site was later used to express a

10-amino acid metal-binding peptide that catalyzed the deposition of gold

on the surface of purified particles (Love et al., 2015). Using a TMV vector

that allowed peptides to be inserted just upstream of the C-terminus of the

CP (after amino acid 154), Fitchen et al. (1995) expressed a 13-amino acid

peptide from the glycoprotein ZP3 from the murine zona pellucida.

A detailed analysis of the size and charge of peptides that could be success-

fully displayed at this site (Bendahmane et al., 1999) showed that sequences

of up to 23 amino acids were tolerated provided their isoelectric point was

below 7.0. Using this information, Koo et al. (1999) displayed peptides of

either 10 or 15 amino acids from the spike protein of the coronavirus murine

hepatitis virus on the surface of assembled particles. When purified virions

were used to immunize mice, animals with high antibody titers were protec-

ted from subsequent challenge with infectious murine hepatitis virus. This

was a highly significant result as it showed, for the first time, that TMV par-

ticles expressing a foreign epitope could act as effective candidate vaccines. It

also cemented the idea that modified plant virus particles can act as candidate

vaccines as originally demonstrated with cowpea mosaic virus (Dalsgaard

et al., 1997). Subsequently, Staczek et al. (2000) demonstrated protection

using an epitope from the outer membrane protein F of Pseudomonas

aeruginosa expressed at the same site in the virus particles, and, more recently,

Petukhova et al. (2013) were able to demonstrate protective immunity in

mice using TMV particles displaying the influenza virus M2e epitope at a

site near the C-terminus of the CP.

Despite these successes, it is reasonable to conclude that the direct fusion

of peptides at or near the C-terminus, or at an exposed loop within it,

imposes severe limitations on the size of sequence that can be displayed

on assembled particles, probably a consequence of the close-packed nature

of the subunits. This sparked the development of a number of approaches to

increasing the size of peptides that can be presented by modifying the

C-terminus of the CP. By deleting four to six amino acids from the

C-terminus amino acids of the CP, Jiang et al. (2006) were able to present

a peptide of 25 amino acids from FMDVVP1 on the virus surface—amodest

increase over the previously reported maximum. An alternative approach

has been to insert linker sequences between the C-terminus and the

sequence to be presented. By incorporating a 15-amino acid linker,

Werner et al. (2006) were able to display a 133-amino acid segment of
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protein A, on the surface of particles of a close relative of TMV, the

tobamovirus turnip vein clearing virus—a dramatic increase over what

had been reported previously. The protein A fragment could bind IgG indi-

cating that the modified virus particles could potentially be used to purify

antibodies. Using a similar linker strategy, Frolova et al. (2010) were able

to display trastuzumab-binding peptides of HER2/neu on the surface of

virus particles and showed that the peptides retained their trastuzumab-

binding capacity.

The development of TMV-based systems for the display of increasingly

large peptides has led to a number of detailed immunological studies and the

commercial development of the technology. These aspects are beyond the

scope of this review and the reader is referred to articles by McCormick and

Palmer (2008), Smith et al. (2009), Lee et al. (2016), and Steele et al. (2017)

for a detailed discussion of progress in these areas.

3.2 Chemical Modification of Particles
3.2.1 External Surface
The outer surface of natural TMV particles has relatively few chemically

reactive amino acids such as cysteine and lysine, making the chemical func-

tionalization of such particles problematic. However, Schlick et al. (2005)

reported the derivatization of exterior-exposed tyrosine residues with dia-

zonium salts, resulting in a conjugate that could react with a wide range

of other molecules including polyethylene glycol derivatives.

To overcome the lack of reactive amino acid chains on the virus surface,

several mutants displaying reactive cysteine or lysine residues on the solvent-

exposed exterior of the virus have been made, allowing decoration via

thiol- or amine-selective chemistry (Demir and Stowell, 2002; Geiger

et al., 2013; Yi et al., 2005, 2007). However, in several cases the presence

of these added residues adversely affected virus yield. To address this, Smith

et al. (2006) screened a collection of random TMV mutants that had addi-

tional amino acids, including a single lysine, inserted near the N-terminus of

the CP. By selecting those mutants that grew well, the authors were able to

identify a mutant suitable for the chemical coupling of a variety of peptides

(McCormick and Palmer, 2008).

The external surface of TMV has also been used as a template for a diver-

sity of chemical deposition reactions. These include the cocrystallization of

CdS and PbS, oxidative hydrolysis yielding iron oxides, condensation of

SiO2, and (NH4)2CO3 decomposition producing electrocatalytically active

Co3O4 (Fowler et al., 2001; Schenk et al., 2017; Shenton et al., 1999).
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Such deposition is often carried out using particles displaying mineralization-

directing peptides either genetically or chemically attached to the particle

surface (Altintoprak et al., 2015; Love et al., 2015). In some cases, striking

mesostructured superassemblies such as composite threads, nanoparticles with

radial channels, and hierarchically arranged microtubes were obtained

(Fowler et al., 2001; Schenk et al., 2017). In fact, the use of plant virus

particles, including TMV (Douglas and Young, 1999; Shenton et al., 1999)

as mineralization-guiding agents, may be regarded the dawn of “structural

TMV nanotechnology” (Fig. 2).

The deposition approach has included the creation of metal nanoparticles

and nanotubes (Dujardin et al., 2003; Knez et al., 2002, 2003, 2004b). Such

tubes can be grown from deposited clusters of palladium, platinum, and gold

on the exterior TMV surface and result in a metallic coat on the virion that

serves as a basal layer for electroless plating of other metals including nickel

and cobalt. For example, Royston et al. (2008) reported the deposition of

nickel and cobalt on the exterior surface of the virus to create metallic coat-

ings up to 40nm in thickness. When the nickel-coated virions were incor-

porated into a nickel–zinc battery system, the electrode capacity of the

battery more than doubled due to the large increase of its active surface area

through the TMV-derived nanostructures. Similarly, TMV nanorods

immobilized on semiconducting electrodes and coated with nickel from

solution, and subsequently with indium–tin oxide and copper oxide layers

by sputtering and annealing, yielded excellently performing photo-

electrochemical cells. The performance of these structures also profited from

the antireflective properties of the 3D nanorod structures (Chiang et al.,

2012). Hydrogen generation in these water-splitting solar cells resulted in

higher photocurrent densities than reported previously for any other system

based on similarly sized copper oxide structures.

3.2.2 Modification of the Internal Channel
TMV particles are hollow cylinders with an internal diameter of

4nm (Fig. 1E). The interior channel is lined with aspartic and glutamic acid

residues and these have been labeled with a variety of small molecules, such

as biotin, using carbodiimide coupling reactions (Schlick et al., 2005).

Nanowires consisting of bimetallic alloys of CoPt, CoPt3, and FePt3 with

lengths up to 100 and 4nm diameter have been synthesized within the

TMV capsid channel (Tsukamoto et al., 2007), and the formation of small

isolated nanoparticles of silver and nickel within the channel has also been
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reported (Dujardin et al., 2003). Taken together, these examples demonstrate

effective templating of inorganic solid and tubular structures by TMV, and the

process has now reached the state of being competitive with conventional

production processes for several applications (Fig. 2). These range from con-

ductive to electronically, plasmonically, and catalytically (Manocchi et al.,

2010) active parts (for reviews, see Culver et al., 2015; Fan et al., 2013).

Because of their size and biocompatibility, for the past decade or so

plant virus particles have been considered as promising drug delivery vehi-

cles, particularly in relation to anticancer drugs (Franzen and Lommel,

2009). Much of the research in this area has focussed on spherical viruses

since the capsid subunits form closed shells (Czapar and Steinmetz, 2017;

Wen and Steinmetz, 2016); by contrast, the open-ended tubular particles

are less obvious candidates. However, Czapar et al. (2016) made use of

the density of negative charges lining the inner channel to load TMV

particles with a potent platinum-based anticancer agent, phenanthriplatin

(PhenPt). When TMV rods were incubated with a cationic form of

the drug, approximately 2000 PhenPt2+ cations were incorporated, con-

sistent with the idea that binding occurs through ionic interaction with the

carboxylate groups lining the inner channel of the virus particles. The drug

could be released by lowering the pH of the medium. Subsequent work

using TMV particles loaded with a related drug, cisplatin, showed that

TMV particles are an efficient way of delivering anticancer therapeutics

(Franke et al., 2017).

4. PRODUCTION OF VIRUS PARTICLES IN VIVO
IN THE ABSENCE OF INFECTION

Although infection of plants can lead to the production of very high

levels of assembled particles, this approach has some limitations. For example,

the length of the genomicRNA inevitably governs the length of the particles.

Although the genomic RNA can be modified to a certain extent by inserting

or deleting viral sequences, the range of variation is quite limited if infectivity

is to be retained. Additional issues include the very infectious nature of

the particles meaning that some degree of containment is required during

their production and the fact modifications to the CP can make virions dif-

ficult to purify. For these reasons, there have been many attempts to produce

virus particles in a variety of expression systems in the absence of infection.
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4.1 Expression in Bacteria
An early attempt to exploit TMV particles as a platform for the display of

foreign peptides involved expressing a version of the CP, modified to carry

an eight-amino acid poliovirus epitope at its C-terminus, in E. coli (Haynes

et al., 1986). Particles were formed and purified after acidification of bacte-

rial extracts expressing soluble CP. The polymerized protein-only rods were

able to elicit the production of higher titers of neutralizing antibodies in rats

compared to the same modified CP that had been disaggregated by treat-

ment at pH 8.0, indicating the importance of a repetitive structure for

the stimulation of a strong immune reaction. The authors also stated that

the bacterially expressed protein was capable of assembly with added

TMV RNA in vitro, though no data were provided.

Expression of TMV CP in E. coli was initially considered to be a highly

promising method of producing variants that could subsequently be used to

generate particles with varying properties. However, Shire et al. (1990)

found that wild-type TMV CP produced in E. coli was unable to assemble

with TMV RNA in vitro, a problem also encountered when expression of

modified forms of CP was attempted (Bruckman et al., 2011; Wnek et al.,

2013). The alternative approach of coexpressing the CP and RNA mole-

cules containing the OAS within bacteria or yeast cells was only partially

successful, with only a small number of virus-like particles or correctly

formed rods being obtained (Hwang et al., 1994; Kadri et al., 2013). The

aberrant assembly properties of CP expressed in bacteria have been ascribed

to the lack of acetylation of the N-terminal serine, which prevents the for-

mation of the disk structures necessary to initiate the process (Shire et al.,

1990; Wnek et al., 2013). This problem could be alleviated by spiking

the E. coli-produced protein with a minimum of 20% of plant-made

TMV CP, an approach that enabled efficient RNA-guided assembly of

TMV-CPHis6 into particles of the expected length (Eiben et al., 2014). This

approach, akin to the production of mosaic particles in plants, provides a

further option for tailoring the properties and addressability of TMV-like

particles assembled in vitro.

Bacterial production has been successfully used to produce a number of

CP variants. For example, expression of mutant T103C allowed the forma-

tion of disulfide bonds between the exposed loops of adjacent subunits in the

central channel of assembled TMV-like nanotubes (Zhou et al., 2013). This

expanded the spectrum of metal fabrication within the channel to include

gold nanobeads and -rods (Zhou et al., 2015). Likewise, Finbloom et al.

(2016) produced a mutant CP in E. coli in which two lysine residues
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(positions 53 and 68) were mutated to arginines. The modified CP was able

to form stable disk structures that were subsequently modified for drug

delivery purposes.

4.2 Expression in Plants
The first attempt to produce the TMV CP in plants involved the transfor-

mation of tobacco plants with a copy of the CP, with expression being

driven by the cauliflower mosaic virus 35S promoter (Bevan et al., 1985).

Although CP was detected immunologically, no attempt was made to assess

its aggregation state. It soon transpired that tobacco plants transgenic for the

TMV CP were resistant to subsequent challenge with virus (Powell Abel

et al., 1986), and the concept of “coat protein-mediated resistance” was born

(Beachy, 1999). As part of their studies on the mechanism of CP-mediated

resistance, Asurmendi et al. (2007) examined the aggregation state of the

TMVCP in transgenic tobacco and showed that the subunits formed higher

aggregates, suggesting that they are assembly competent. However, the

levels of CP produced in transgenic plants were too low for this system

to be considered a practical method of CP production.

To increase the levels of TMV CP in plants, Saunders and Lomonossoff

(2017) used transient expression of the CP coding sequence in Nicotiana

benthamiana. No detectable material accumulated when the CP was expressed

alone, indicating that assembly is crucial for CP accumulation in plants.

However, when the CP was expressed in the presence of RNA molecules

containing the OAS, virus-like rods readily formed, the length of which

was controlled by the length of the RNA. Furthermore, it was possible

to fuse a nine-amino acid cobalt–platinum (CoPt)-binding peptide to

the C-terminus of the CP without abolishing particle assembly in planta.

CoPt could be deposited on the surface of particles harboring the peptide

but not on particles containing wild-type CP (Saunders and Lomonossoff,

2017). Thus, plant-based expression may be an effective approach to the

creation of defined-length conducting nanowires.

4.3 Other Expression Systems
Mueller et al. (2011) demonstrated that it is possible to express both wild-

type and variant versions of TMVCP in the yeast, Schizosaccharomyces pombe,

and the yeast-expressed CP retained its ability to assemble with TMVRNA

in vitro. Subsequently, Kadri et al. (2013) demonstrated the ability of the

yeast-expressed material to assemble with coexpressed OAS-containing
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RNA similarly to CP coexpressed with RNA in E. coli. The results

suggested that the yeast-expressed CP was more similar to that expressed

in plants than was CP expressed in bacteria, probably as a result of the correct

acetylation of the N-terminus.

Experiments designed to develop an efficient TMV-based VIGS system

for the phytopathogenic fungus, Colletotrichum acutatum, incidentally dem-

onstrated efficient assembly of particles within the hyphal cells (Mascia

et al., 2014). These results suggest that it is likely that assembly competent

TMV CP can be generated in most eukaryotic expression systems. Indeed,

work on the identification of the TMV CP subgenomic mRNA showed

that CP produced via in vitro translation in wheat germ extracts could

assemble with exogenously added TMV RNA (Hunter et al., 1976).

5. IN VITRO ASSEMBLY

Following the detailed characterization of the OAS, it was shown

that it is possible to efficiently encapsidate essentially any RNA molecule

provided it contains the OAS (Gallie et al., 1987b; Sleat et al., 1986;

Turner et al., 1989). The initial experiments involved the use of wild-type

CP purified from TMV particles produced by infection although they also

demonstrated that RNA containing an OAS transcribed from a transgene

could assemble with CP produced via TMV infection (Sleat et al., 1988).

Jupin et al. (1989) proposed that the ability to package transcripts con-

taining the OASmight provide a means of protecting labile RNAmolecules

during shipping. A similar protective role of the CP has been used in

the development of positive controls for PCR-based diagnosis of Ebola

infections (Lam et al., 2016). In vitro assembled rods also have been shown

to be an effective method of delivering specific transcripts since they uncoat

to allow translation of incorporated RNA within target cells (Gallie et al.,

1987b). Smith et al. (2007) made use of this phenomenon to deliver

RNA encoding the nonstructural proteins from Semliki forest virus into

mammalian cells. They showed that the encapsidated RNA was uncoated

and translated within the cells, and that the expressed protein stimulated

an immune response in mice.

While natural TMV RNA has only a single copy of the OAS resulting in

the production of linear particles, it is possible to generate more complex

structures through the incorporation ofmore than oneOAS on the same tran-

script (Gallie et al., 1987c; Fig. 3). Systematic studies have shown that the

incorporation of multiple OAS sequences can generate TMV-based rods with
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Fig. 3 See legend on next page.



a number of different morphologies including kinked “nanoboomerangs” as

well as tri- and tetrapod structures (Eber et al., 2015; Fig. 3). The applications

of such variants are described in Section 6.

6. SUPRAMOLECULAR STRUCTURES

TMV and TMV-like particles have been coupled to a number of

organic molecules, including chromophores, polymers, or certain heavymetal

complexes, to create classes of TMV-derived effector colloids. Such hybrid

objects are envisaged for biomedical applications inside living organisms. As

such applications aremany and varied, this section is intendedmore to indicate

the possible range of applications rather than to provide a comprehensive

account. For those readers interested in this aspect, there are several

excellent recent reviews (e.g., Koch et al., 2016; Wen and Steinmetz, 2016).

Fig. 3 Redesigning the shape of TMV-derived nanoobjects. RNA-directed growth and
combination of nanotubular structures using in vitro technology. (A) Nanorings assem-
bled and stabilized by help of a 204-nt long, OAS-containing RNA. (B) Kinked and
branched boomerang up to tetrapod products accessed through colliding nanotube
domain ends growing on RNA scaffolds with two up to five OAS. (C) TMV-like nanorods
with selectively addressable longitudinal subdomains, obtained either by serial assem-
bly with limited amounts of distinct CP species or in a nanometrically definedmanner by
a DNA blocking element-enabled stop-and-go procedure. Bottom row: Hybrid assem-
blies with nonbiomolecular core structures: (D) nanostars with TMV-deduced arms,
grown by bottom-up technology on DNA-programmed gold beads. (E1–E4) Expanded
nanoarchitectures with up to four TMV arms linked covalently to tetrahedral
adamantane-based organic cores. Panel (A) reproduced according to the copyright terms
from Altintoprak, K., Seidenst€ucker, A., Krolla-Sidenstein, P., Plettl, A., Jeske, H., Gliemann, H.,
Wege, C., 2017. RNA-stabilized protein nanorings: high-precision adapters for biohybrid
design. Bioinspired Biomimetic Nanobiomater. 6, 208; panel (B) reproduced according to
the copyright permission terms in modified arrangements from Eber, F.J., Eiben, S.,
Jeske, H., Wege, C., 2015. RNA-controlled assembly of tobacco mosaic virus-derived complex
structures: from nanoboomerangs to tetrapods. Nanoscale 7, 344; panel (C) left: reproduced
from Geiger, F.C., Eber, F.J., Eiben, S., Mueller, A., Jeske, H., Spatz, J.P., Wege, C., 2013. TMV
nanorods with programmed longitudinal domains of differently addressable coat proteins.
Nanoscale 5, 3803; scheme and right: reproduced from Schneider, A., Eber, F.J., Wenz, N.,
Altintoprak, K., Jeske, H., Eiben, S., Wege, C., 2016. Dynamic DNA-controlled "stop-and-
go" assembly of well-defined protein domains on RNA-scaffolded TMV-like nanotubes.
Nanoscale 8, 19853; panel (D) reproduced with permission from Eber, F.J., Eiben, S.,
Jeske, H., Wege, C., 2013. Bottom-up-assembled nanostar colloids of gold cores and tubes
derived from tobacco mosaic virus. Angew. Chem. Int. Ed. 52, 7203; panel (E1–E4)
reproduced in agreement with the copyright terms from Wenz, N., Piasecka, S.,
Kalinowski, M., Schneider, A., Richert, C., Wege, C., 2018. Building expanded structures from
tetrahedral DNA branching elements, RNA and TMV protein. Nanoscale 10, 6496.
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6.1 Display of Active Enzymes
The display of active enzymes of the surface of TMV particles is of great

interest to many fields, including medicine, biodetection, the development

of sensors, and even small-scale enzymatic conversions (Fig. 2). The surface

of TMV has a strong stabilizing effect on different enzymes, including

glucose oxidase, horseradish peroxidase (Baecker et al., 2017; Koch et al.,

2015), and penicillinase (Koch et al., 2018; Poghossian et al., 2018). The

use of TMV adapter rods on sensor surfaces (see below) also has enabled

bioaffinity-based display of streptavidin conjugates of these enzymes at

surface densities not achievable on TMV-free supports, with the addi-

tional advantages of increased reusability and enhanced target detection

ranges of such devices. Thus, it is anticipated that high-performance bio-

sensors employing TMV rods will soon be used in proof-of-concept

applications.

6.2 TMV-Based Arrays on Solid Supports and in Miniaturized
Devices

The adsorption properties of TMV on various surfaces such as gold, mica,

glass, and silicon wafers have been investigated in detail (Knez et al., 2004a).

Techniques such as convective deposition, microcontact printing (e.g.,

Kuncicky et al., 2006), and a number of evaporation-based methods for

rapid and large-scale assembly of thin film coatings and ordered fibers

consisting of aligned TMV particles also have been reported. The effects

of divalent metal ions (Nedoluzhko and Douglas, 2001) and other addi-

tives also have been evaluated in detail, resulting in the development of

long-range deposition techniques as well as several unique approaches.

These comprise, among others, the spatially directed assembly of patterned

TMV structures in capillary tubes (Lin et al., 2010) and the oriented growth

of TMV fiber bundles on nanopillar structured superhydrophobic surfaces

(Marinaro et al., 2015).

Of particular importance for close-to-application formulations is the

observation that nanorods containing cysteine-exposed TMV CP mutants

adopt a primarily vertical orientation on certain substrates, such as gold,

under suitable conditions (Peng et al., 2011; Royston et al., 2008). This

has been exploited for increasing the efficiency of energy storage and

conversion devices as outlined earlier. To generate controlled arrays of

TMV particles, Yi et al. (2005, 2007) partially disassembled the CP from

TMV particles to expose the RNA at the 50 end of the rods. Oriented
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assembly of TMV on solid supports was then achieved in a controlled

manner via nucleic acid hybridization using complementary oligonu-

cleotides. By this approach, the immobilization of fluorescently labeled

TMV onto electrodes could be demonstrated. Furthermore, by using

differentially labeled TMV particles in conjunction with a micropatterned

substrate, it was possible to construct a patterned TMV microarray (Tan

et al., 2008). An alternative approach made use of the viral self-assembly

mechanism predicted to function not only in solution but also on 30-
terminally immobilized RNAs containing the viral OAS sequence. Indeed

it was possible to grow nanostick arrays bottom-up on different solid

supports, including prepatterned flat substrates, with covalently conju-

gated RNA scaffolds (Mueller et al., 2011), and on DNA-programmed

gold nanobeads after sequence-selective hybridization of RNAs via their

30 ends. This resulted in the formation of nanostar colloids with an adjust-

able number of TMV arms with varying lengths (Eber et al., 2013). Such

composite structures suggest themselves as carrier colloids for functional

molecules, with applications ranging from separation to biodetection

methods.

Initial attempts to incorporate TMV particles into multilayers using

electrostatic interactions revealed that, unlike spherical cowpea mosaic virus

particles, the rods floated on top of the structures (Steinmetz et al., 2008).

This problem was solved by sequentially alternating layer-by-layer appli-

cation of two differently charged TMV variants yielding stable multilayer

films that could be converted into free-standing TMV membranes that,

in turn, could be used as tissue engineering supports (Tiu et al., 2017).

One of the most rapidly advancing applications of TMV carrier templates

is the preparation of surfaces that foster cell attachment and differentia-

tion. TMV-coated culture supports appear to have advantages for the cul-

tivation of certain cells; they also enable the spatially defined presentation

of peptide ligands over nanometric distances. Applications, such as the

osteogenesis of bone marrow stem cells on arginine–glycine–aspartic acid

peptide-fashioned TMV layers, have been extensively explored (Kaur

et al., 2010; Sitasuwan et al., 2014). Tissue engineering approaches, making

use of TMV as a carrier for cell-binding peptide motifs to mimic extra-

cellular matrix proteins, also include the production of mats made from

electrospun composite polymer–virus nanorod fibers for improved hand-

ling (Wu et al., 2011) and layouts combining 3D nanostructures with

TMV-based effector rods (reviewed by Wen and Steinmetz, 2016; Zhao

et al., 2015; Fig. 2).
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7. TMV PARTICLES WITH NOVEL MORPHOLOGY:
FROM BOOMERANGS TO SPHERES

7.1 Variations on the Rod-Shaped Theme
Knowledge of the mechanism of assembly of TMV particles has allowed

the generation of rod-shaped particles with altered length and morphology

by RNA-guided assembly in vitro. Sets of shortened TMV rods of defined

size classes were initially produced to evaluate their ability to stabilize

and regulate the properties of ferrofluids (Wu et al., 2010). The TMV rods

enhanced and fine-tuned magnetoviscosity of the fluids to an unexpected

extent and suppressed shear thinning in a length- and surface charge-

dependent manner (Fig. 2). As rheological fluids are employed for such

purposes as vacuum-tight sealing of rotating shafts or for damping or heat trans-

fer tasks in technical equipment, the study suggested previously unforeseen

applications for TMV-based particles. TMV-like particles of differing length

grown in situ on solid flat or bead supports (see above) yielded high-surface

density arrays of carrier rods in nanobrush and nanostar layouts (Azucena

et al., 2012; Eber et al., 2013; Mueller et al., 2011; Fig. 3).

The reliable in vitro fabrication of TMV-based nanorods of other size

classes (Rego et al., 2013) has opened unprecedented opportunities for

biomedicine. Upon delivery into mice via the bloodstream, fluorescently

labeled TMV derivatives in distinct length classes underwent a selective,

aspect ratio-dependent uptake into tumor cells that could be modulated

by an additional display of cell surface receptor-targeting arginine–
glycine–aspartic acid ligands (Shukla et al., 2015). The concomitant good

rate of clearance suggests that there are good prospects for TMV-based

imaging and therapies as a result the shape of the viral carrier particle. These

results were extended by Liu et al. (2016) and might provide the basis for

future tumor-targeting treatments. RNA-scaffolded four-turn helices con-

stitute the lower size limit of TMV-derived assemblies. Such nanorings of

9.2nm thickness, stabilized by a 204nt OAS-RNA and containing blends

of distinct CP types, were not only used for attaching functional molecules

to technical substrates (Altintoprak et al., 2017; Fig. 3) but recently have

been employed as “pore-in-pore” inlays to implant their central 4nm

nanopores into solid-state membrane templates (Farajollahi et al., 2018).

As described in Section 5, straight TMV-like particles are not the only

structures accessible by RNA-mediated CP assembly as the presence of

more than a single OAS on an RNA can be used to generate angular
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nanostructures. These branched and kinked structures (Fig. 3) are interesting

candidates for subsequent processing into bioinorganic hybrids with unusual

physical properties, and supra(bio)molecular complexes for multimodal

delivery and display purposes.

7.2 Going Spherical
While TMV particles usually have a rod-shaped helical structure, it is pos-

sible to convert both RNA-containing and protein-only rods to a spherical

morphology by heat treatment (Atabekov et al., 2011; Bruckman et al.,

2015; Hart, 1956). This conversion is accompanied by a change in the sec-

ondary structure of the subunits from a primarily α-helical structure to one

that contains a significant proportion of β-sheet (Dobrov et al., 2014). These

spherical particles have proved to be an effective platform for displaying

antigens (Karpova et al., 2012) and have been investigated as delivery vehi-

cles for anticancer drugs (Bruckman et al., 2016). The molecular organiza-

tion of these TMV derivatives retains the right-side-out orientation of the

viral components with CP termini accessible on the outer surface of the

nanospheres.

8. CONCLUSIONS

As we hope we have shown in this review, the study of TMV particles

has come a long way since the virus was first described in the late 19th cen-

tury. In some ways it seems amazing that so simple a structure, consisting of

multiple copies of a single type of protein and a single molecule of RNA,

could be the object of such intense study for over 100 years. However, it

is this very simplicity that has made TMV such a tractable system both

for fundamental studies and, latterly, for exploitation for applications in

bionanotechnology. Indeed, the number of publications regarding the uses

of TMV particles continues to increase rapidly, so much so that it is difficult

to keep pace with all the developments and certainly to do them all justice in

a review of this length. However, we hope that we have at least given our

readers an insight into how basic research has been translated into possible

applications.
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