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Abstract

Background: Cancer Stem Cells (CSCs) hypothesis asserts that only a small subset of cells within a tumour is capable of both
tumour initiation and sustainment. The Epithelial-Mesenchymal Transition (EMT) is an embryonic developmental program
that is often activated during cancer invasion and metastasis. The aim of this study is to shed light on the relationship
between EMT and CSCs by using LC31 lung cancer primary cell line.

Materials and Methods: A549 and LC31 cell lines were treated with 2 ng/ml TGFb-1 for 30 days, and 80 days, respectively.
To evaluate EMT, morphological changes were assessed by light microscopy, immunofluorescence and cytometry for
following markers: cytokeratins, e-cadherin, CD326 (epithelial markers) and CD90, and vimentin (mesenchymal markers).
Moreover, RT-PCR for Slug, Twist and b-catenin genes were performed. On TGFb-1 treated and untreated LC31 cell lines, we
performed stemness tests such as pneumospheres growth and stem markers expression such as Oct4, Nanog, Sox2, c-kit
and CD133. Western Blot for CD133 and tumorigenicity assays using NOD/SCID mice were performed.

Results: TGFb-1 treated LC31 cell line lost its epithelial morphology assuming a fibroblast-like appearance. The same results
were obtained for the A549 cell line (as control). Immunofluorescence and cytometry showed up-regulation of vimentin and
CD90 and down-regulation of cytocheratin, e-cadherin and CD326 in TGFb-1 treated LC31 and A549 cell lines. Slug, Twist
and b-catenin m-RNA transcripts were up-regulated in TGFb-1 treated LC31 cell line confirming EMT. This cell line showed
also over-expression of Oct4, Nanog, Sox2 and CD133, all genes of stemness. In addition, in TGFb-1 treated LC31 cell line, an
increased pneumosphere-forming capacity and tumours-forming ability in NOD/SCID mice were detectable.

Conclusions: The induction of EMT by TGFb-1 exposure, in primary lung cancer cell line results in the acquisition of
mesenchymal profile and in the expression of stem cell markers.
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Introduction

Two important hypothesis have been postulated in the genesis,

formation, growth, and metastasis of epithelial cancer: the role of

Cancer Stem Cells (CSCs) or Tumour Initiating Cells (TICs) and the

involvement of the so called Epithelial-Mesenchymal Transition

(EMT).

Cancer stem cells have been defined as ‘‘a cell within a tumour that

possess the capacity to self-renew and to cause the heterogeneous

lineages of cancer cells that comprise the tumour’’ [1]. These two

definitive biological properties are what make the CSCs the prime

candidate for initiation of relapse.

CSCs hypothesis asserts that only a small subset of cells within a

tumour is able of both tumour initiation and sustainment [2,3].

These cells express stemness markers, are able to form floating

spheres in serum-free medium, a property associated with stem

cells, and are also able to differentiate in an aberrant cell

phenotype constituting tumour heterogeneity [4]. Experimentally,

this population is identified by its ability to form new tumours

through serial transplantations in immunodeficient non-obese

diabetic (NOD)/severe combined immunodeficient (SCID) mice,

re-establishing tumour heterogeneity [5].

There are two basic topics that underline the hypothesis that

CSCs originate from normal tissue stem cells. First of all, the CSCs

have normal stem cell properties such as self-renewal, differenti-

ation, drug resistance and migration capacity. Then, the longevity

of stem cells make them susceptible to accumulating genetic and

epigenetic damages so as to make them good candidates for the
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emergence of neoplastic transformation [6,7]. The CSCs are the

only cells that are capable of generating tumours similar to the

original patient specimens when transplanted into immunocom-

promised mice such as NOD/SCID mice [8].

Existing therapies have enhanced the length of survival after

diagnosis of cancer, but completely failed in terms of recovery.

Cancer therapy failures may be due to inefficient effects of current

therapy upon potentially quiescent CSCs, which remain vital and

retain the capacity to regenerate the tumour [9]. In most cases,

current therapeutic strategies are developed to target the bulk of

cancer and likely do not eradicate CSCs completely. CSCs are more

resistant to therapies, due to survival advantage with increased anti-

apoptotic activities and drug resistance due to increased levels of drug

efflux pumps such as BCRP (breast cancer resistance protein) and

MDR (multi-drug resistance) complexes [10,11].

The CSCs have been identified in a variety of solid tumours

including glioblastomas [12], breast [13], and lung cancer [14,15].

There are three distinct main methodologies to isolate CSCs from

solid tumours: i) isolation of CSCs by flow cytometry according to

CSC-specific cell surface markers such as CD44 or CD133; ii)

detection of side population phenotype by Hoechst33342

exclusion; iii) the sphere formation under the cultivation of

defined serum-free medium with growth factors which maintains

the CSCs undifferentiated.

The Epithelial-Mesenchymal Transition (EMT) is an embryonic

key developmental program that is often activated during cancer

invasion and metastasis [16,17]. It is a process by which cells

undergo a morphological switch from the epithelial polarized

phenotype to the mesenchymal fibroblastoid phenotype. As a

result of EMT, epithelial cells lose their defined cell–cell/cell–

substratum contacts and their structural/functional polarity, and

they become spindle shaped and morphologically similar to

activated fibroblasts [18]. At the molecular level, EMT is defined

by the loss of cell–cell adhesion molecules (eg, E-cadherin and ZO-

1), down-regulation of epithelial differentiation markers including

cytokeratins and E-cadherin and transcriptional induction of

mesenchymal markers such as vimentin, fibronectin and N-

cadherin with a nuclear localization of beta-catenin [19]. Nuclear

beta-catenin induces a gene expression pattern favouring tumour

invasion, and mounting evidence indicates multiple reciprocal

interactions of E-cadherin and beta-catenin with EMT-inducing

transcriptional repressors to stabilize an invasive mesenchymal

phenotype of epithelial tumour cells [20,21]. Other genes involved

in EMT are Snail, Twist e SIP-1/ZEB-2, all repressors of gene

CDH1 that codes for E-cadherin [16]. Several distinct traits have

been conveyed by EMT, including cell motility, invasiveness,

resistance to apoptosis, and some properties of stem cells. Many

signalling pathways have contributed to the induction of EMT,

including transforming growth factor-beta (TGFb-1), Wnt,

Hedgehog, Notch, and nuclear factor-kappa B (NFkB) [22].

Kyoung-Ok Hong et al. [23] have shown that activation of PI3K/

Akt axis is one of the key mechanisms in the process of EMT and it

seems that its inhibition by treatment with phosphatidylinositol

ether lipid analogues (PIA) may regulate the reverse process

Mesenchymal Epithelial reverse Transition (MErT) leading to the

re-expression of both E-cadherin and b-catenin, and reducing

expression of vimentin, mesenchymal marker, in oral squamous

lines carcinoma stabilized. During the process of tumour

metastasis, which is often enabled by EMTs, disseminated cancer

cells would seem to require self-renewal capability, similar to that

exhibited by stem cells, in order to spread macroscopic metastases

[24]. This raises the possibility that the EMT process, which

enables cancer cell dissemination, may also impart a self-renewal

capability to disseminating cancer cells. Indeed, the metastatic

process is at least superficially similar to the processes that occur

during tissue repair and regeneration and enable adult stem cells

to exit tissue reservoirs such as the bone marrow, enter and survive

in the circulation, and get into secondary tissue sites, where they

proliferate, differentiate, and participate in tissue reconstruction

[25]. Together, these diverse lines of evidence suggest a possible

link between cancer stem cells and the mesenchymal-appearing

cells generated by EMTs and the reverse process termed

Mesenchymal Epithelial reverse Transition (MErT). Mani et

colleagues [26] were the first to demonstrate such correlation in

immortalized human mammary epithelial cells (HMLEs).

In this context, it is important to identify which factors could

induce EMT and how the EMT cells could become a resource for

cancer stem-like cells, developing novel and targeted therapies for

lung cancer. Therefore, the aim of this study is to shed light on the

possible relationship between EMT and CSCs by using LC31

primary cell line obtained from tissue sample after surgery in

patient affected by Non Small Cell Lung Cancer (NSCLC).

Results

TGFb-1 treatment induces morphologic changes in
NSCLC cell lines

In order to investigate the effect of TGFb-1 on LC31 and A549

cell lines, we treated them with 2 ng/ml of TGFb-1. As already

also demonstrated by Ju Hee Kim [27], A549 cells treated with

TGFb-1 lost their epithelial morphology observable after 48 hours

of treatment; they were dispersed and assumed a fibroblast-like

appearance with longed shape and central nucleus.

LC31 cells treated with TGFb-1 lost their epithelial morphology

and acquired mesenchymal traits starting from 21 days of

treatment. The cells became longed, fibroblast like with central

nucleus and started to grow as bundles. This morphology was

maintained for all time of treatment (Fig. 1A–D).

TGFb-1 treatment induces growth inhibition in NSCLC
cell lines

In all cell lines tested, TGFb-1 induced growth inhibition. In

A549, growth curves analyses showed a strong growth inhibition

during culture time with DT 28 h for treated A549 respect to DT

18 h of the corresponding untreated cell line. In LC31 cells, the

DT was 72 h for treated cells whereas DT was 36 h for untreated

cells (Fig. 1E–F).

TGFb-1 treatment promotes a shift from epithelial to
mesenchymal phenotype

The morphological effect of TGFb-1 on A549 and LC31 cell

lines suggested that TGFb-1 promoted an EMT. The morpho-

logical changes characteristic of cells undergoing EMT is

accompanied by a shift in expression from an epithelial to a

mesenchymal repertoire. To determine whether TGFb-1 induced

such shift, we used cytometry, immunofluorescence and RT-PCR

to examine the expression and distribution of CD90, CD326,

vimentin, e-cadherin and cytockeratins markers and b-catenin,

Slug and Twist genes.

According to cytometric analysis, in untreated cell lines, CD90

was weakly expressed on A549 (mean percentage 10%) and LC31

(mean percentage 4%). CD326 and cytokeratins expression levels

were low both in A549 (mean percentage 10% and 1,1%

respectively) and LC31 (mean percentage 1% and 18,6%

respectively). Vimentin was weakly positive in A549 (mean

percentage 22%) and LC31 (mean percentage 17%). After

TGFb-1 treatment, CD90 (mean percentage 93%) and vimentin

EMT in Primary Lung Cancer Cell Line
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(mean percentage 91%) levels increased, whereas CD326 and

cytokeratins decreased in A549 and LC31 (Fig. 2A,B).

In immunofluorescence assay, in the untreated cell lines, vimentin

was expressed both in A549 and LC31 but it was contained in

perinuclear vescicles. Cytokeratins and E-cadherin were weakly

expressed in both cell lines. After TGFb-1 treatment, the vimentin

was strongly and uniformly distributed in all A549 and LC31 cells,

whereas cytokeratins and E-cadherin remained weakly expressed and

localized in perinuclear areas of cells until to be abrogated after 30

days for A549 and 40 days for LC31 (Fig. 3 A–L).

The RT-PCR data showed that there was massive shift of gene

expression from a pattern characteristic of epithelial cells to that of

mesenchymal cells in LC31 cell line with a considerable increase in

the expression of EMT-inducing transcription factors, specifically

beta-catenin (,1,5 fold), Twist (,1,5 fold), and Slug (,2,7 fold)

indicating their EMT phenotype. Up-regulation of these genes

Figure 1. Morphological changes and growth curves after TGF-b1 treatment. A: untreated A549, OM 2006; B: treated A549, at 2 days TGFb-
1 treatment, OM 4006; C: untreated LC31, OM 4006; D: treated LC31, at 30 days TGFb-1 treatment, OM 4006; E: growth curves of untreated and
treated A549; F: growth curves of untreated and treated LC31.
doi:10.1371/journal.pone.0021548.g001
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mentioned above was TGFb-1 dependent time except for beta-

catenin for which there was an increase at 20 and 80 days of

treatment respect to untreated cell line and a weak decrease at 50

days respect 20 and 80 days of treatment but always increased

respect to untreated cell line (Fig. 3M).

Gene expression profiling of stemness markers in
EMT-LC31 cell line

To investigate the genes regulating and maintaining the stem

cell phenotype of LC31 cells having EMT signatures (termed

EMT-LC31 cell line), we performed RT-PCR for OCT4, Nanog

and Sox2. Interestingly, transcription factors OCT4, Nanog,

Sox2, known to be sufficient to reprogram mouse or human

somatic cells to undifferentiated, pluripotent stem cells, were found

to be significantly increased in EMT-LC31 cell line with an

increase of 3,5 fold, 3,0 fold, and 1,4 fold for OCT4, Nanog and

Sox-2, respectively more than parental cell line indicating their

stemness phenotype (Fig. 4A).

CD133 and c-kit markers were increased in EMT-LC31 cell
line

To further determine whether cells with EMT phenotype could

show cancer stem like cell characteristics, we evaluate expression

of CD133, main marker in identifying cancer stem cells in NSCLC

[14,15] and c-kit [28], mesenchymal stem marker.

Cytometry analyses showed that in LC31 parental cell line, the

percentage of CD133 was 3% of total cell population. After

TGFb-1 treatment, the results showed that no differences in

CD133 expression levels between parental and EMT-cells were

detectable (data not shown). This result is different respect to those

obtained by RT-PCR and western blotting for CD133. Both RT-

PCR and western blotting showed an increase of CD133 (,2,3

fold for RT-PCR) after different times of TGFb-1 treatment.

Regarding c-Kit gene, the latter resulted up-regulated in EMT-

LC31 cells with an increase of ,2,3 fold more than parental cell

line (Fig. 4B,C).

Pneumospheres formation ability was increased in EMT-
LC31 cell line

Liu et al. [29] and others [30] have demonstrated that the

ability to form mammospheres in vitro depends on the presence of

self-renewing. We tested pneumophere-forming ability of EMT-

LC31 cells compared to parental cell line.

Significantly, after we induced an EMT in LC31 cells by exposing

them to TGF-b1, we found that EMT-LC31 cells showed

significantly increased ability to form pneumopheres compared to

parental cell line forming at least .40-fold more pneumospheres than

parental cells. The ratio of pneumospheres size and their growth was

significantly greater than those of untreated cells. Moreover, the

EMT pneumospheres were more than 50 mm in diameter after 5

days, while parental pneumospheres were 20 mm (Fig. 5A,B). In

addition all EMT pneumospheres were positive for CD133 (Fig. 5C).

Based on this functional assay, we concluded that the cells generated

by an EMT acquired yet another attribute of lung cancer stem cells.

Colony efficiency analyses
One of the methods of analysing the tumorigenic potential is the

soft agar assay that measures anchorage-independent growth,

which is an indicator for cell transformation. As described in

Table 1, assessment of growth kinetics revealed major colony

efficiency of EMT-LC31 cell line compared to parental cell line

with 18 and 3 fold increase for 1,000 and 10,000, respectively, of

seeded EMT cells respect to parental cell line (Fig. 6A–C).

Figure 2. TGF-b1 up-regulates mesenchymal markers expression and down-regulates epithelial markers expression. A: Cytometric
analysis for CD90, CD326, vimentin and Cytokeratin in untreated (line red) and TGFb-1 treated [line green] in A549 cell line after 20 days of treatment;
B: Cytometric analysis for CD90, CD326, vimentin and Cytokeratin in untreated [line red] and TGFb-1 treated (line green) in LC31 cell line after 30 days
of treatment. Isotype controls are in black.
doi:10.1371/journal.pone.0021548.g002

EMT in Primary Lung Cancer Cell Line

PLoS ONE | www.plosone.org 4 June 2011 | Volume 6 | Issue 6 | e21548



EMT in Primary Lung Cancer Cell Line

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e21548



EMT-LC31 generates tumours greater than
corresponding parental cell line

In our previous studies [15], we showed that the tumours from

LC31 cells grown as pneumopsheres grew much faster compared to

that from corresponding cells grown in adherent culture condition.

In order to test whether TGFb-1 treatment succeeded in altering the

tumour-initiating frequency of transformed cells, we injected EMT-

LC31 cells and corresponding cell line into immunodeficient hosts.

As reported in Table S1, we found that the volume of tumour

induced by EMT-LC31 cells was significantly larger than that of

parental cells (Fig. S1). These results suggest that the cells with EMT

signature promoted tumorigenicity in vivo.

Discussion

Epithelial to mesenchymal transition (EMT) is a fundamental

physiologic process whereby epithelial cells lose their polarity and

Figure 3. TGF-b1 promotes EMT. Immunofluorescence for vimentin (A), cytokeratin (B) and e-cadherin (C) on untreated A549 cell line; vimentin
(D), cytokeratin (E) and e-cadherin (F) on treated in A549 cell line after 20 days of TGFb-1 treatment; vimentin (G), cytokeratin (H) and e-cadherin (I) on
untreated LC31 cell line; vimentin (J), cytokeratin (K) and e-cadherin (L) on treated in LC31 cell line after 30 days of TGFb-1 treatment. All
immunofluorescence images have OM 2006; M: RT-PCR analysis and densitometry evaluation for Slug, Twist and b-catenin on untreated and TGFb-1
treated in LC31 cell line after 0, 20, 50 and 80 days of treatment. *, p,0,001, **, p,0,0001 compared to parental cell line (0 day of treatment).
doi:10.1371/journal.pone.0021548.g003

Figure 4. Stemness markers distribution on LC31 and EMT-LC31 cell lines. A: RT-PCR and densitometry evaluation for Oct4, Sox2 and
Nanog genes on LC31 and EMT-LC31 cell lines after 0, 20, 50 and 80 days of treatment; B: RT-PCR and densitometry evaluation for CD133 and c-kit
genes on LC31 and EMT-LC31 cell lines after 0, 20, 50 and 80 days of treatment; C: western blot for CD133 LC31 and EMT-LC31 cell lines after 0, 20, 50
and 80 days of treatment. *, p,0,001, **, p,0,0001 compared to LC31 cell line (0 day of treatment). a-tubulin is used as loading control.
doi:10.1371/journal.pone.0021548.g004
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undergo a transition to a mesenchymal phenotype. Hallmarks of

EMT include loss of cell-cell adhesion, re-organization of the

cytoskeletal actin and acquisition of increased migratory charac-

teristics [31,32].

EMT is a crucial event in tumour progression and several studies

state that the EMT is activated in many types of cancers [33–35].

Despite recent progress, further studies are needed to clarify the role

of EMT in the invasion and metastasis of tumours. During the

process of tumour metastasis, cancer cells, that metastasize, acquire

skills of self-renewal, similar to that exhibited by stem cells in order

to spread the metastases [24].

Together, these evidences suggest a possible link between cancer

stem cells and the mesenchymal-appearing cells generated by EMTs.

In this context, aim of this study is to show that EMT

acquisition is associated with an increase of stemness signatures in

a primary cell line obtained in our laboratory. A549 lung cancer is

a well-characterized cell line that has been used as a model system

to study the mechanisms of carcinogenesis, apoptosis and cancer

progression in lung cancer [36,37]. Because EMT plays a key role

in the tumor progression, we chose A549 cell line as model system

of EMT. We focused our attention on LC31 cell line obtained in

our laboratory and investigate the effect of TGFb-1 on EMT and

stemness mechanism on this line. In agreement with previous

reports [38,39], we showed that TGFb-1 induces EMT in A549

cells by acquisition of mesenchymal morphology, increased

expression of mesenchymal markers such as vimentin and CD90

and decreased expression of epithelial markers such as cytokeratins

and CD326. Once defined that our EMT study model is useable,

we tested the effect of TGFb-1 on LC31 cell line. We treated

LC31 cell line with TGFb-1 2 ng/ml for 80 days. Only after about

20 days, we observe morphological changes that are consistent

with the acquisition of EMT phenotype as characterized by the

loss of expression of epithelial markers such as cytokeratins, e-

cadherin and CD326 and the gain or increased expression of

mesenchymal markers such as vimentin replacing cytokeratins.

After 20 days of treatment, LC31 cells became elongated, central

nucleus with fibroblast like shape and increased stress fiber

reorganization.

EMT takes 48 hours in A549 because it has stronger mesenchymal

markers expression than LC31 needing 20 days to undergo EMT.

Therefore, the LC31 cell line displays several features typical of

EMT: reduction in cell-cell adhesion, flattening and scattering,

expression of mesenchymal markers. Slug, Twist and b-catenin,

main transcriptional factors involved in EMT, are up-regulated in

the cells treated and these factors increase with increasing TGFb-1

treatment time, confirming their EMT phenotype.

These results open the way to verify if LC31 primary lung cancer

cell line, sensitive to TGFb-1 treatment, could increase stem cell

characteristics. Interestingly, EMT-LC31 cells also display stem-

like cell phenotype characterized by increased pneumosphere-

forming capacity compared with parental LC31 cell line with EMT

pneumospheres greater than parental pneumopheres. Moreover

EMT pneumospheres were positive for CD133 marker reinforcing

the stemness signature. Most importantly, it is well known that the

co-expression of Sox-2, Nanog and Oct4 in human or mouse

somatic cells can reprogram these cells into pluripotent embryonic

stem-like cells [40,41]. In our study, we found that the expressions

of Sox-2, Nanog and Oct4 were dramatically up-regulated in

EMT-LC31 cell line compared to parental cell line. Taken together

these data, LC31 cell line with EMT signature showed an increase

of stem-like cell characteristics associated with over-expression of

Sox-2, Nanog and Oct4.

Recent studies have shown that c-kit and its ligand are

expressed in lung cancer. Immunohistological studies on the c-

kit expression showed that the protein is aberrantly expressed only

in lung cancer cells and not in pneumocytes or normal bronchial

epithelial cells [42]. In addition, Levina et al. [43,44] have showed

that the treatment of lung tumour cells with doxorubicin, cisplatin,

or etoposide resulted in the selection of drug surviving cells

expressing CD133, CD117, SSEA-3, TRA1-81, Oct-4, and

nuclear beta-catenin with low expression of the differentiation

markers cytokeratins 8/18. In our study, we demonstrate that

TGFb-1 induces also an increase of c-kit m-RNA expression,

another stemness marker, reinforcing the hypothesis that LC31

cell line with EMT signature showed an increase of stem

phenotype. Another interesting result is the up-regulation of

CD133 in EMT-LC31 cell line, main marker for CSCs

identification in lung cancer as reported by Eramo et al. [14]

and Tirino et al. [15]. In our study, we observed an increase of

CD133 both in RT-PCR and Western blot, but not in cytometry

and immunofluorescence on adherent cells. There are many works

in which doubts about the limitations in the use of antibody are

discussed [45]. The antibodies more commonly used recognize

Figure 5. Pneumospheres formation ability evaluation and CD133 expression on LC31 and EMT-LC31 cell lines. A: LC31
pneumospheres; EMT-LC31 pneumospheres; C: CD133 expression on EMT-LC31 pneumospheres.
doi:10.1371/journal.pone.0021548.g005

Table 1. % colonies formation for LC31 cell line.

N6
seeded
cells

% colonies
formation
LC31

% colonies
formation
EMT-LC31

Fold
increase p-value

1.000 0.82 15 18 0.0001

10.000 5.10 14.80 3 0.002

doi:10.1371/journal.pone.0021548.t001

EMT in Primary Lung Cancer Cell Line

PLoS ONE | www.plosone.org 7 June 2011 | Volume 6 | Issue 6 | e21548



AC133 and AC141 highly glycosylated epitopes [46]. Therefore,

their use carries the risk of underestimated non glycosylated forms

of the antigen. Moreover, several CD133 mRNA splicing have

been identified, which would in turn give rise to protein products

not recognizable by common antibodies; finally, intrinsic limita-

tions of immunofluorescence and cytometry methodologies, which

implies antibody sensitivity, epitope damage due to routine

fixation/inclusion procedures, antigen retrieval, enzymatic steps

of cell preparation must be taken into account [47]. In this context,

we can also hypothesize that TGFb-1 treatment give rise to

conformational change of CD133 epitopes and its antibody is not

able to recognize the molecule in cytometry and immunofluores-

cence procedures. In the pneumospheres, most probably,

tridimensional structure allows the exposure of the epitopes

recognized by common antibodies. Moreover, they are not subject

to enzymatic steps that could damage cellular structure.

Although this consideration, RT-PCR and Western blot

confirm the same the stemness feature of EMT-LC31 cell line

after treatment of TGFb-1 with up-regulation both CD133 m-

RNA and CD133 protein.

Finally, to evaluate TGFb-1 effect on tumorigenic potential , we

performed both soft agar assay and tumorigenicity in vivo. TGFb-1,

in line with cancer stem cells concept, induces an increase of

colonies formation in soft agar experiments and the volume of

tumours was significantly larger than that of untreated LC31 cell

line confirming that EMT phenotype not only promoted stemness

phenotype but also the tumorigenicity. In conclusion, the cells with

EMT phenotype promoted tumorigenicity.

Therefore, the high probability that the EMT generates cells

with many of the properties of self-renewing stem cells is verified

by increased expression of Nanog, Oct4 and Sox2 , determinant

self-renewal factors and CD133 and c-Kit, main stemness markers

of CSCs in lung cancer.

In conclusion, we report that the induction of EMT by TGFb-1

treatment in a primary lung cancer cell line results in the acquisition

of mesenchymal profile and in up-regulation of the expression of

stem cell markers.

This study highlights the possibility to address a novel pharmaco-

logical approach versus EMT-phenotype cells or cancer stem-like cells

for the prevention of tumour progression and metastasis formation.

Materials and Methods

Ethics Statement
The experimental protocols have been evaluated and approved

from the ethical committee on animal use of Biogem. The

experimental project have the approval ID 10.08 and have been

communicated in May 26th, 2008 to the Italian Minister of Health,

following the national laws concerning the protection of animal

welfare. The patient, enrolled in this study, had signed informed

consent, approved by our Internal Ethical Committee (National

Cancer Institute, Naples).

Cell Culture
A549 cell line was purchased from ATCC Cell Bank and was

cultured in RPMI1640 (Lonza, Milan, Italy) at 10% fetal bovine

serum (FBS) at 37uC, 5%CO2. LC31 cell line has been obtained in

our laboratory by a patient affected from lung squamous adenocar-

cinoma with written informed consent, approved by our Internal

Ethical Committee (National Cancer Institute, Naples) and was

cultured in IMDM (Lonza) at 10% FBS [14]. For experiments, cells

were grown to 90% confluence.

TGFb-1 treatment and Growth Curves
In order to induce EMT process, A549 and LC31 cell lines were

treated with 2 ng/ml TGFb-1 (AbCAM, Milan, Italy) for 30 and

80 days, respectively. TGFb-1 has been added twice a week in the

medium. To test the possible growth inhibition due to TGFb-1

treatment, 10,000 cells were plated in 24well plates for each cell

line and TGFb-1 untreated and treated cells were detached every

24 hours for 10 days. The number of cells for each experimental

condition was counted and represented on a linear graph. The

doubling time (DT) was determined from the growth curves by

using the formula:

DT~(t-t0)log2=(logN-logN0)

where t and t0 were the times at which the cells were counted, and

N and N0 were the cell numbers at times t and t0, respectively.

Pneumospheres assay
In order to evaluate the effect of TGFb-1 on pneumospheres

growth and formation, the LC31 cell line was plated at a density of

60,000 cells per well in six-well ultra-low attachment plates (Corning

Inc., Corning, NY, USA) in BEBM cell medium, supplemented with

BEGM [prepackaged SingleQuots containing retinoic acid, bovine

pituitary extract, insulin, hydrocortisone, transferrin, triiodotyronine,

epinephrine, human epidermal growth factor, gentamicin and

amphotericin B (all from Lonza Group Ltd., Basel, Switzerland) plus

human EGF (10 ng/ml; Sigma, Milan, Italy) and human bFGF

(10 ng/ml; Sigma, Milan, Italy). Cells were incubated in a humidified

atmosphere at 37uC with 5% CO2. Fresh aliquots of TGFb-1, EGF

and bFGF were added twice a week. After 48–72 h of culture,

spheres were visible at inverted phase-contrast microscopy.

Figure 6. Colony efficiency analyses. A: photographs of colonies from LC31 cell line and [B] EMT-LC31 cell line; C: the colony number was
counted and the data were presented as CFU (%) respect to cell number seeded.
doi:10.1371/journal.pone.0021548.g006
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Flow Cytometry
In order to evaluate the effect of TGFb-1 on both stemness and

differentiation phenotype of A549, and LC31 cells lines, 200,000

cells were stained with the following antibodies (2 mg/ml): mouse

anti-human CD90 FITC (Becton & Dickinson, Buccinasco, Milan,

Italy), mesenchymal marker, mouse anti-human CD133 PE

(Miltenyi Biotec, Calderara di Reno, Bologna, Italy), mouse anti-

human CD326 PerCP (EpCAM, Becton & Dickinson), epithelial

marker, mouse anti-human vimentin (DAKO, Milan, Italy) and

mouse anti-Cytokeratin (clone CK3-6H5, Miltenyi Biotec). The

antibodies were incubated for 30 minutes at 4uC in the dark. After

incubation, the samples were washed with PBS and analyzed by

FACSAriaII (Becton Dickinson). For vimentin and citokeratin

intracellular staining, Fix and Perm kit (Invitrogen, Milan, Italy)

was used according manufacturer’s instructions. The secondary

antibody for vimentin assay was goat anti-mouse PE conjugated

(AbCAM). All data were analysed by Diva Software.

Immunofluorescence Assay
TGFb-1 untreated and treated A549 and LC31 cells were

plated in 24 well plates and were fixed with 70% ethanol/0,1%

Triton for 30 minutes at 4uC, washed with PBS, treated with 5%

Bovine Serum Albumin for 60 minutes at room temperature and

then stained with primary antibodies at 4uC over night. The

primary antibodies used were mouse anti-human CD133/1

(Miltenyi Biotec), mouse anti-human vimentin (DAKO), anti-

human E-cadherin (DAKO) and mouse anti-human citokeratin

(DAKO). The secondary antibody, goat anti-mouse FITC

(AbCAM) diluted 1:200 in PBS, was incubated for 60 min at

4uC, and the DAPI (Sigma, Milan, Italy), used to stain the nucleus,

was incubated for 7 minutes at room temperature. The same

procedure for CD133 staining was performed on LC31 cells

grown as pneumospheres after treatment of TGFb-1. Cells were

then washed twice as described above and observed under the

fluorescence microscope (Zeiss, Milan, Italy). Isotypes and non-

probed cells were used as controls.

RT-PCR
Total RNA was extracted using TRIzol Reagent (Invitrogen,

Milan, Italy) according to the manufacturer’s protocol. RNA

concentration and purity were determined by A260 and A260/A280

ratios, respectively. The integrity of total RNA was assessed on

standard 1% agarose/formaldehyde gels. The RNA samples were

treated with DNase I to remove residual traces of DNA. cDNA

was obtained from 1 mg of total RNA, using reverse transcriptase

(Promega Italia Srl, Milan, Italy) and random primers (Promega)

in a final volume of 20 ml. cDNAs (1 ml for each sample) were

amplified by PCR using the primer sequences as follows:

CD133: 59-TCTTGACCGACTGAGACCCAAC-39(sense) and

59-ACTTGATGGATGC ACCAAGCAC-39(antisense); OCT3/
4: 59-ACATGTGTA AGCTGCGGCC-39 (sense) and 59-GTT-

GTGCATAGTCGCTGCTTG -39 (antisense); Nanog: 59-TTC-

AGTCTGGACACTGGCTG-39 (sense) and 59-CTCGCTGAT-

TAGGCTCCAAC-39 (antisense); SOX2: 59-CGATGCCGA-

CAAGAAAACTT-39 (sense) and 59-CAAACTTCCTGCAAAG-

CTCC-39 (antisense); Twist: 59-TCTCGGTCTGGAGGATG-

GAG-39(sense) and 59-GTTATCCAGCTCCAGAGTCT-39 (an-

tisense); Slug: 59-GAGCATTTGCAGACAGGTCA-39 (sense)

and 59-CCTCATGTTTGTGCAGGAGA -39 (antisense); b-

catenin: 59-GCCGGCTATTGTAGAAGCTG-39 (sense) and 59-

GAGTCCCAAGGAGACCTTCC-39 (antisense); c-kit: 59-CC-

GGTCGATTCTAAGTTCTAC-39 (sense) and 59-GATTGGT-

GCTCTCTGAAATCTG-39 (antisense).

Thermal cycle parameters were: 95uC for 2 minutes, 35 cycles of

95uC for 30 seconds, 52–60uC (depending on the Tm of each

individual set of primers) for 1 minute and 72u for 30 seconds.

GAPDH: 59-TGGACTCCACGACGTACTCAG-39 (sense) and

59-ACATGTTCC AATATGATTCCA-39 (antisense) was ampli-

fied as an internal control. The RT-PCR products were separated

by 2% agarose gel electrophoresis, stained with ethidium bromide,

and photographed under UV illumination. RT-PCR was per-

formed on TGFb-1 treated and untreated LC31 cell line at different

treatment times (0, 20, 50 and 80 days).

Western Blotting
Total cell lysates of TGFb-1 treated and untreated LC31 cell line

at different treatment times [0, 20, 50 and 80 days] were obtained

by lysing the cells in RIPA buffer containing 50 mM Tris-HCl,

150 mM NaCl, 1% NP-40, 0,1% SDS, 0,5% sodium deoxycholate,

2 mM sodium fluoride, 2 mM Na3VO42, 1 mM EDTA, 1 mM

EGTA and protease inhibitor cocktail. Protein concentration was

determined using bicinchoninic acid protein assay (Pierce, Rock-

ford, IL). The proteins were separated by SDS-PAGE, transferred

to nitrocellulose, blocked, and incubated with the following primary

antibodies: CD133 (AbCAM) diluted 1:500 and a-tubulin (Sigma,

Milan, Italy) diluted 1:100 that was used as loading control. The

membrane was washed and incubated with the respective secondary

antibodies conjugated with peroxidase. Protein detection was done

with chemiluminescence detection system (Pierce).

Soft Agar Assay
To evaluate the clonogenicity due to TGFb-1 treatment, treated

and untreated LC31 cells, at a density of 1,000, 5,000 and 10,000

cells per well in 24-well plates were plated in soft agar , in

triplicate. The test was performed using 0.8% and 0.3% agar in

IMDM as the base and top layers, respectively.

Cells were incubated for 21 days at 37uC in a humidified

atmosphere at 5% CO2 in air and 50 ml of IMDM culture medium

were added twice a week. At the end of the incubation period,

colonies were stained with nitrobluetetraziolium (NBT, Sigma,

Milan, Italy) at a concentration of 50 mg/100 ml in PBS and

counted using an inverted microscope (Nikon TS 100, Milan, Italy).

The colony efficiency was calculated as proportion of colonies per

total number of seeded cells. The data were analyzed by Image Pro

Plus software.

Nonobese diabetic (NOD)/severe combined
immunodeficiency (SCID) xenotransplantation

In order to evaluate the effect of TGFb-1 on tumorigenicity, in

vivo experiments were performed. TGFb-1 untreated and treated

LC31 cells grown as pneumospheres were subcutaneously injected

in NOD/SCID mice (Charles River, Wilmington, MA). For this

purpose, cells were harvested diluted in PBS, mixed with matrigel

and injected subcutaneously in six-week-old female NOD/SCID

mice at following serial dilutions: 1 and 56104; 1 and 56105;

16106 cells. After 60 days, mice were sacrificed and the tumour

tissue collected, in part fixed in buffered formalin and subsequently

analysed by immunohistochemistry and in part minced to re-

obtain the cell line. Haematoxylin and eosin staining followed by

immunohistochemical analysis were performed to analyse tumour

histology. The injection experiments were in triplicate.

Statistical analyses
The data are presented as the mean values 6 SD. Comparison

between groups were evaluated by a two-tailed student’s t test.

Values of p,0,05 were considered statistically significant.
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Supporting Information

Figure S1 EMT-LC31 cells promoted tumour growth. A:

Hematoxylin and Eosin evaluation of the LC31 human tumour; B:

Hematoxylin and Eosin evaluation starting from EMT-LC31 cells

injected in NOD/SCID mice that resembles human original

tumour; C: Tumor growth curve showing EMT-LC31 cells

promote tumor growth in NOD/SCID mice much faster than

LC31 cells starting from 100,000 cells injected.

(TIF)

Table S1 Tumour incidence of LC31 cells versus EMT-LC31

cells injected in NOD/SCID mice in limiting dilutions.

(DOC)
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