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ABSTRACT: In this study, a newly designed adhesion promoter, a modified ethylene−propylene−diene terpolymer (m-EPDM),
was constructed via a simple thiol−ene click reaction between the ethylene−propylene−diene terpolymer (EPDM) and 3-
mercaptopropyltrimethoxysilane (MPTS) to employ polyolefin elastomer (POE) encapsulants in photovoltaic modules. The grafting
reaction of MPTS on an EPDM backbone (thiol−ene click reaction) was verified using 1H NMR, 29Si NMR, and SEM/EDX. The
thermal and mechanical characteristics of the POE compounds did not significantly change with an increasing m-EPDM content
irrespective of the cross-linking state. Interestingly, the adhesion strength to the glass substrate increased linearly with an increasing
m-EPDM content until 9 phr. Also, the POE compounds containing more than 12 phr m-EPDM showed cohesion failure of the
encapsulant layer, remaining as a residue of the encapsulant layer on the glass surface after peel testing. The damp-heat test was
conducted to evaluate the long-term durability of the photovoltaic module encapsulated with m-EPDM, and no significant power
loss was found even after 1000 h under the test conditions.

■ INTRODUCTION
To operate photovoltaic (PV) modules for a lifetime of more
than 20 years, a high-quality encapsulant (also known as an
encapsulation material) with long-term durability must be
selected.1−5 It acts as an adhesive or sealant between the top
glass and crystalline silicon cells with metalization on the front
and rear. In addition, it protects electrical components from
corrosive environmental factors to prevent PV module
degradation, such as delamination, corrosion, and discolor-
ation.6

Because of the demanding requirements mentioned above,
only a few polymeric materials have been suggested as
encapsulants. The most popular polymeric encapsulation
materials include ethylene vinyl acetate (EVA),7−13 silicone
resin,14−20 polyvinyl butyral (PVB),21,22 ionomers,23−25

thermoplastic polyolefins (TPO),26 and polyolefin elastomer
(POE).13,27

Among these, EVA has been widely applied as an
encapsulation material for more than 30 years owing to its
low cost, high flexibility, and good optical transmittance.6,28,29

However, there are still some problems to be solved with the
PV encapsulation of EVA films because EVA can trigger the
formation of volatile organic compounds (VOCs) during the
cross-linking process, which accelerate the degradation of the
encapsulant in the PV module for field operation.6,7 In
addition, its water absorption generates and accelerates acetic
acid via the chemical reaction with the acetate moiety of the
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EVA backbone, accelerating the failure of PV modules.30−34

Thus, alternative polymers should be sought to replace EVA.
Recently, hydrocarbon-based polyolefin elastomers (POEs)

have been considered as a new polymeric encapsulation
material for PV modules owing to their lower potential-
induced degradation (PID) compared to that of EVA.2,13

Thus, polyolefin encapsulation materials will offer great market
prospects over the next decade. However, because POEs are
obtained via the copolymerization of ethylene and higher α-
olefins using the metallocene catalyst,35−38 their poor adhesion
to the top glass substrate in a PV module has remained a
bottleneck for the development of POE encapsulants. There-
fore, the adhesion strengths of POEs to glass must be
enhanced to make them encapsulation materials. Despite being
on the market for several years, only one study39 has been
performed on the incorporation of an adhesion promotor into
POE to realize long-term reliability during the operation of PV
modules.

In this study, we selected and modified the ethylene−
propylene−diene terpolymer (EPDM) as an adhesion
promoter, which was compounded with a neat POE to
improve their adhesion strength to the glass substrate. For this
purpose, EPDM was chemically modified with 3-mercapto-
propyltrimethoxysilane (MPTS) via a simple thiol−ene click
reaction. The expected POE compound series containing the
cross-linking agent, dicumyl peroxide (DCP), were prepared
using a secondary master batch process. Here, the physical
properties of POE encapsulant films were tested to determine
the applicability of POE encapsulants to PV modules in
crystalline silicon-based solar cells.

■ EXPERIMENTAL SECTION
Materials. POE (ENGAGE 8137; density: 0.864 g/cm3;

MFI: 13 g/10 min) was obtained from Dow Chemical Co.
(Midland, MI, USA). EPDM (KEP330, ENB content: 7.9 wt
%, ethylene content: 57 wt %) was generously donated by
Kumho Polychem (Seoul, Korea). Dicumyl peroxide (DCP)
and 3-mercaptopropyltrimethoxysilane (MPTS) were pur-
chased from Sigma-Aldrich, Inc. (Milwaukee, WI, USA).
Other organic solvents and chemicals were purchased from
Duksan Company (Ansan, Gyeonggi-do, Korea). The solar
cells (multicrystalline silicon cells, p-type, 200 μm-thick, 13.5 ×
14.0 cm in size) used in this study were purchased from Hae
Sung Solar Co., Ltd. (Gimpo, Korea).
Synthesis of m-EPDM. The thiol−ene click reaction was

conducted via the grafting reaction on EDPM using MPTS.
First, 20 g of EPDM was dissolved in toluene (200 mL);
consequently, 2 g of MPTS was added to the mixture. The
mixture was stirred until complete dissolution of solutes in a
nitrogen atmosphere was observed. Next, the mixture was
exposed to UV black light (18 W, Philips Co., Netherlands) for
150 min. Finally, the mixture was poured into excess acetone
to precipitate the product, which was filtered, washed with cold
acetone several times, and then kept in vacuo at 60 °C for 1 day
to dry completely.
POE Compounding. POE compounds with EPDM and m-

EPDM were conducted in a batch-type internal mixer
(RheoComp system, MKE, Deajeon, Korea) for 8 min at
105 °C with a rotation speed of 50 rpm. In the case of cross-
linkable POE compound samples, 2 phr (parts per hundred
POE resin) DCP was added to the POE compound during the
melt compounding. The m-EPDM contents in the POE
compounds were controlled as 3, 6, 9, and 12 phr. The

uncross-linked POE compound film was carefully prepared
using a manual hot-press apparatus under mild conditions
(<110 °C), after which the obtained uncross-linked POE
compound film was cured in a manual hot press under 170 °C
for 10 min for the instrumental analysis.39

Determination of the Gel Content. The gel contents
were determined according to ASTM D2765-16. The cross-
linked samples were placed in folded 120-mesh copper screen
cages, and their weights were measured before immersion in
xylene. The sample was placed in xylene and refluxed for 8 h.
The residue specimens were washed with hot xylene several
times, vacuum-dried at 120 °C for 3 days, and subsequently
reweighted.
Lamination Process for Preparing the PV Module.

Encapsulant laminator curing was performed using an
automatic laminating machine (YDS-0707, Radiant Automa-
tion Equipment Co., Ltd.; Qinhuangdao, China) for 18-cell
multicrystalline solar-cell-based PV modules. The detailed
procedure and conditions of the lamination process were as
follows: The lamination was done at 140 °C and a pressure of
100 kPa for 300 s in the laminator. Then, the pressure on top
of the sample was sequentially reduced to 90 kPa and kept for
30 s and then to 55 kPa for 30 s. Thereafter, the pressure was
reduced to 25 kPa and kept for 600 s and was finally vented to
atmospheric pressure. The stack structure of the PV modules
was polyolefin-based backsheet/encapsulant/silicon solar cell/
encapsulant/glass (Scheme 1).

Equipment and Experiments. Nuclear magnetic reso-
nance (NMR) was performed on an Agilent 400 MHz NMR
magnet spectrometer (Agilent Technologies, Inc., Santa Clara,
CA, USA) using chloroform-d1 (CDCl3) as a solvent.
Transmittance spectra were recorded in the wavelength
range of 250−800 nm using a SINCO S-3100 UV/vis
spectrophotometer (SINCO, Seoul, Korea). The thermal
analysis was measured using a DSC 1 differential scanning
calorimeter (Mettler Toledo Co., Greifensee, Switzerland)
under a nitrogen atmosphere. The samples were quickly heated
to 120 °C, held for 2 min to destroy anisotropy, and then
cooled to −75 °C at a rate of 20 °C/min to analyze the
recrystallization behavior. Afterward, the crystallized sample
was reheated to 120 °C at a rate of 20 °C/min again to analyze
the melting behavior. The morphological study of the POE
compounds was examined by a JSM-7100F FE-SEM (Jeol,
Japan) at 10 kV. The chemical composition of the m-EPDM
surface was analyzed using EDX (energy-dispersive X-ray;
Oxford Instruments) attached to the FE-SEM. Tensile tests
(ASTM D412) were performed using an Instron universal
testing machine (model 6800; Instron Co., Norwood, MA,
USA) equipped with a 1 kN load cell, and measurements were

Scheme 1. Camera Image of the Test PV Module (A) and
Its Laminate Structure Diagram (B)
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conducted at a constant crosshead speed of 500 mm/min. The
tests were evaluated from the averages of at least five parallel
tests. The peel strength measurement was conducted using an
ASTM 3330M method at a separation angle of approximately
180° and a separation rate of 150 mm/min at 25 °C. The
detailed treatment is described in the literature.39 The
characteristics of the encapsulated PV modules were measured
using a Newport solar simulator (Newport Corp., Irvine, CA,
USA). The current−voltage (I−V) characteristics were
determined using a digital source meter (Keithley 2400,
Keithley Instruments, Inc., Solon, OH, USA) under standard
testing conditions (irradiance of 1000 W/m2 with an AM 1.5 G
spectrum at room temperature). Damp-heat exposure was
conducted under no light, 85 °C, and 85% relative humidity
(RH) (85/85 test) for 1000 h.40

■ RESULTS AND DISCUSSION
The bonding strength between the POE encapsulant film and
the other components of the PV modules is a very important
factor in determining their long-term durability. However, it is
difficult to bind the POE-based film and the glass substrate for
a long time because the POE is a nonpolar polymer while glass
is a polar inorganic material with a smooth surface. Therefore,
to achieve strong bonding between them, we designed a new
organic additive that can promote the adhesion of the POE
encapsulant to the glass substrate. The additive, m-EPDM,
used in this study is an EPDM grafted by silane coupling
agents because the grafting of silane coupling agents can
improve the adhesion strength to the other components of PV
modules, as well as the glass substrate.41 Also, to obtain m-
EPDM under milder conditions, the light-mediated thiol−ene
click reaction42,43 was conducted using MPTS (Scheme 2). 1H

NMR measurements were performed to confirm the grafting of
MPTS to EPDM, and the obtained spectra are presented in
Figure 1A. On the 1H NMR spectrum of the neat EPDM, the
typical resonances of the aliphatic CH, CH2, and CH3 units
were detected at δ = 0.5−1.7 ppm, and the proton bound to a
carbon comprising a double bond in the ENB units showed
two resonances at δ = 5.3 and 5.1 ppm in a 3:1 ratio, reflecting
the E:Z conformation ratio of the methyl group in the ENB
unit. After the thiol−ene click reaction, the distinctly isolated
chemical shift was detected at δ = 3.56 ppm, assigned to the
three methoxy (−OCH3) groups from the MPTS moiety in
addition to the expected signals for the neat EPDM. Figure 1B
shows the 29Si NMR spectrum for m-EPDM, and a new single
resonance peak was detected at δ = −42.0 ppm attributed to
the silicon atom of the alkyl trimethoxysilane [C-Si(OCH3)3]

group. The SEM/EDX analytical method was applied to verify
the presence of silicon elements on the m-EDPM film, which
indicates the chemical modification of the neat EPDM with
MPTS. The SEM micrograph, EDX spectrum, and silicon
element mapping image for m-EPDM are shown in Figure 2.
On the mapping image (inset image of Figure 2A), a wide-
spreading bright spot over the background indicated that the
silicon element was widely and evenly distributed across the m-
EPDM surface. Although the intensity of the silicon peak (1.75
keV)44 was low (Figure 2B), the result suggested that siloxane
moieties were distributed evenly on m-EPDM. Based on the
1H NMR, 29Si NMR, and SEM/EDX results, we concluded
that the grafting reaction of MPTS to the neat EPDM was
performed successfully.

To clarify the thermal behavior of POE compounds
depending on the addition amount of m-EDPM, DSC
thermograms were recorded during cooling and second
heating, and their results are listed in Table 1. For the cooling
scan, the peak maximum (Tc) of uncross-linked neat POE was
detected at 36.3 °C. Meanwhile, the Tc of the POEs did not
change much with an increasing m-EPDM content. On the
second heating DSC scan, the uncross-linked neat POE
showed one melting peak (Tm) induced from the melting of
monoclinic crystals45 measured at 64.0 °C. Also, the melting
temperature of the POE compounds was similar to that of the
neat POE. These results mean that adding m-EPDM into the
POE matrix did not significantly impact the second heating
thermogram shape and the shifting of the exothermic peak.
However, when the neat POE and its POEs compounded with
m-EPDM were cross-linked, they showed different thermal
behavior compared with the uncross-linked counterparts. As
shown in Table 1, their Tm and Tc values were lower than
those of the uncross-linked samples. These phenomena might
be attributed to the increased content of shorter crystallizable
chain blocks and the crystal regions surrounded by the cross-
linked amorphous region in the POE matrix, respectively.46,47

The glass transition temperature (Tg) of the neat POE was
detected at approximately −53.3 °C, and the Tg values of its
compounds were detected at a similar temperature because m-
EPDM and POEs have similar Tg values.48 Meanwhile, the Tg
values of all samples cross-linked using peroxide were detected
at a higher temperature than that used to detect the uncross-
linked counterparts. In addition, the Tg values of the POE
compounds increased with an increasing m-EPDM content. It
might be attributed to the cross-linking effect and the degree of
cross-linking, which disturbs the polymer backbone chain
mobility.

To define the degree of cross-linking for the cross-linked
samples, their gel contents were measured, and the results are
shown in Figure 3. The gel content of the cross-linked samples
slightly increased with an increasing m-EPDM content.
Although the silane coupling agent having a double bond in
the POE curing system accelerates its curing reaction and
induces a high degree of cross-linking,41 the increasing degree
of cross-linking in this study is related to the existence of an
EPDM with free double bonds because this system does not
use silane coupling agents with a double bond. Therefore, the
silane grafting method on EPDM used in this study is a
reasonable pathway to incorporate the coupling agent without
any disturbance in the curing process of the POE encapsulant.

The UV/vis spectra were recorded in the transmission mode
for the cross-linked film samples of the neat POE and its
compounds. The results are presented in Figure 4. All

Scheme 2. Synthetic Scheme of m-EPDM under Thiol−Ene
Click Reaction Conditions
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compound film samples showed a similar curve pattern to that
of neat POE, which blocked the radiation under 250 nm and
showed a transmittance of nearly 20%. Generally, the

commercial polymeric encapsulation material, which was
formulated with a UV blocker, has a UV cutoff wavelength
below 300−400 nm at a low transmittance of less than 10%.49

Unfortunately, this POE encapsulant requires the addition of a
UV blocker to be applicable to PV modules. Furthermore, the
cross-linked neat POE as well as its compounds transmitted
more than 90% light effectively from 400 to 800 nm, which had
a transmittance similar to that of EVA.

The mechanical behavior between the uncross-linked and
cross-linked POE films was characterized using tensile tests,
and the results are presented in Figure 5. According to the
literature,50 the addition of a small amount (10 wt %) of
EPDM into the POE matrix does not significantly affect to the
instinctive mechanical properties of the uncross-linked and

Figure 1. 1H NMR (A) and 29Si NMR (B) spectra for m-EPDM.

Figure 2. SEM micrograph (the inset shows the silicon element mapping image) (A) and EDX spectrum (B) of m-EPDM.

Table 1. Thermal Characteristics of Neat POE and POE
Compounds with m-EPDM before and after Cross-Linking

before cross-linking after cross-linking

m-EPDM content
(phr) Tg (°C)

Tm
(°C)

Tc
(°C) Tg (°C)

Tm
(°C)

Tc
(°C)

0 −53.3 64.0 36.3 −52.5 60.0 32.7
3 −53.2 64.4 36.2 −53.7 60.4 32.7
6 −52.3 64.0 35.1 −52.2 61.0 33.0
9 −53.3 62.9 36.1 −50.8 61.0 33.0
12 −52.4 63.1 36.0 −49.8 61.8 32.3

Figure 3. Gel content of the cross-linked neat POE and POE
compounds with m-EPDM.

Figure 4. UV/vis light transmittance of the cross-linked neat POE
and POE compounds with m-EPDM.
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cross-linked compounds. In the case of uncross-linked film
samples, the remarkable changes in ultimate properties were
not detected with an increasing m-EPDM content. These
results matched well with the previous results. When those film
samples were cross-linked, their tensile strength values showed
higher than those of the uncross-linked film samples, but their
elongation at break values decreased. This result further proves
that the addition of m-EPDM into the POE matrix and their
dynamic cross-linking improve the mechanical properties of
the POE as a photovoltaic encapsulant.

According to ASTM 3330M, the 180° peel test was
conducted using a universal testing machine to obtain the
adhesion strength between the glass substrate and the
encapsulant film. To apply the encapsulation material to the
PV module with improved durability, enhancing the peel
adhesion strength must be considered. Whenever commercial
encapsulation materials are tested, the profile of peel testing
shows the fluctuation pattern owing to the uneven peeling path
between the encapsulant and the glass substrate.33,51 In this
study, the estimated peel adhesion strength was taken from the
mean of five repetitive peel testing results.34,52 As shown in
Figure 6, the obtained average adhesion strength of the neat
POE film was 14 N/cm, which is too low for a PV encapsulant
compared with the commercial EVA encapsulant (adhesion
strength, 80−100 N/cm49,52). Since the silane moieties can
help to enhance the adhesion strength to the glass
substrate,6,53,54 we conducted the thiol−ene click reaction
between the neat EPDM and MPTS to construct a silane-
grafted EPDM (m-EPDM); then, the POE was compounded

with m-EPDM. This strategy obviated the need for an
additional grafting of silane moieties during the lamination
process. With increasing m-EPDM contents until 9 phr (parts
per hundred resin) in the POE compounds, the adhesion
strengths increased linearly, indicating that m-EPDM modified
with silane moieties played a role as an adhesion promoter to
the glass substrate. When the amount of m-EPDM in the POE
compound increased until 12 phr, the peel test result had a
similar value with the POE compound containing 9 phr m-
EPDM. However, the POE compound film remained on the
glass substrate after finishing the peel test. It can be interpreted
that the adhesion strength of the POE compound containing
more than 12 phr m-EPDM to the glass substrate was much
stronger than the cohesion strength of the POE compound.
These results support that the adhesion strength improved
using m-EPDM can help to prevent moisture diffusion, which
occurs owing to interfacial debonding/delamination, hence
improving the reliability of PV modules.

To evaluate the longevity of PV modules installed outdoors,
the damp-heat test is performed as an accelerated testing
method at high levels of temperature and humidity in PV
research because the accelerated conditions can affect the
interfacial adhesion mechanism (e.g., mechanical interlocking,
chemical bonding, molecular interfacial diffusion, and polar−
polar interaction). To conduct the damp-heat test, we
fabricated PV modules encapsulated using the POE compound
containing m-EPDM, and the testing was conducted at 85 °C
and 85% RH for 1000 h, as per the IEC-61215
recommendation. The I−V curves of the PV modules

Figure 5. Tensile strength (A) and elongation at break (B) behaviors of the neat POE and POE compounds with m-EPDM before and after cross-
linking (circles, uncross-linked samples; triangles, cross-linked samples).

Figure 6. Peel strength of the cross-linked neat POE and POE compounds with m-EPDM.
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encapsulated by using the neat POE and POE compounds with
m-EPDM are shown in Figure 7. From the I−V curves, the fill
factor (FF) and power conversion efficiency (PCE) values
were calculated, and the results are listed in Table 2. The initial
PCE values of the PV modules fabricated using the neat POE
or POE compounds ranged from 18.3 to 20.0%. There was no
significant power drop (less than 5%) after 1000 h of the
damp-heat test for the PV modules. Consequently, the
addition of m-EPDM could help to enhance the creep
resistance of POE and plays an important role in the thermal
stability of PV modules under different conditions.

■ CONCLUSIONS
In this study, a POE encapsulation material designed for PV
modules was successfully prepared by compounding it with a
newly modified EPDM via a simple thiol−ene click reaction.
The constructed POE compounds showed thermal character-
istics similar to that of neat POE after the addition of m-EPDM
until 12 phr. After cross-linking the neat POE and its
compounds, their recrystallization temperature (Tc) and
melting temperature (Tm) were depressed down owing to
the interruption of polymer chain mobility. However, they did
not show significant differences regardless of the amount of m-
EPDM. In addition, with an increasing m-EPDM content in
the POE compounds, their transmittance was more 90%. The
cross-linking reaction of the neat POE and POE compounds
affected their tensile properties compared to those of the
uncross-linked neat POE and POE compounds. However, the
addition of m-EPDM in the neat POE was independent of
their tensile properties even cross-linked or uncross-linked
thereof. Until the addition of m-EPDM at 9 phr, the peel
strength increased linearly, and the encapsulant was peeled off
from the glass substrate. However, the addition of more than
12 phr did not increase the adhesion strength of the
encapsulant, and the encapsulant remained as a residue on

the glass substrate. The damp-heat test results showed no
significant power drop after 1000 h under the test conditions.
Finally, m-EPDM medicated by a simple thiol−ene click
reaction could provide an alternative strategy to improve the
adhesion strength of an encapsulation material for the
development of high-quality PV modules with long-term
durability.
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