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Abstract

We consider a demand response program in which a block of apartments receive a discount

from their electricity supplier if they ensure that their aggregate load from air conditioning

does not exceed a predetermined threshold. The goal of the participants is to obtain the dis-

count, while ensuring that their individual temperature preferences are also satisfied. As

such, the apartments need to collectively optimise their use of air conditioning so as to sat-

isfy these constraints and minimise their costs. Given an optimal cooling profile that secures

the discount, the problem that the apartments face then is to divide the total discounted cost

in a fair way. To achieve this, we take a coalitional game approach and propose the use of

the Shapley value from cooperative game theory, which is the normative payoff division

mechanism that offers a unique set of desirable fairness properties. However, applying the

Shapley value in this setting presents a novel computational challenge. This is because its

calculation requires, as input, the cost of every subset of apartments, which means solving

an exponential number of collective optimisations, each of which is a computationally inten-

sive problem. To address this, we propose solving the optimisation problem of each subset

suboptimally, to allow for acceptable solutions that require less computation. We show that,

due to the linearity property of the Shapley value, if suboptimal costs are used rather than

optimal ones, the division of the discount will be fair in the following sense: each apartment

is fairly “rewarded” for its contribution to the optimal cost and, at the same time, is fairly

“penalised” for its contribution to the discrepancy between the suboptimal and the optimal

costs. Importantly, this is achieved without requiring the optimal solutions.

Introduction

The transition to a smart electricity grid presents one of the greatest engineering challenges of

this century, as countries face dwindling non-renewable energy sources and work to minimise

the adverse effects of greenhouse gas emissions [1]. The Smart Grid represents a modern

PLOS ONE | https://doi.org/10.1371/journal.pone.0227049 January 10, 2020 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Maleki S, Rahwan T, Ghosh S, Malibari A,

Alghazzawi D, Rogers A, et al. (2020) The Shapley

value for a fair division of group discounts for

coordinating cooling loads. PLoS ONE 15(1):

e0227049. https://doi.org/10.1371/journal.

pone.0227049

Editor: Baogui Xin, Shandong University of Science

and Technology, CHINA

Received: May 6, 2019

Accepted: December 11, 2019

Published: January 10, 2020

Copyright: © 2020 Maleki et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: SM received a post-doctoral fellowship

from the National Elites Foundation of Iran. TR, SG,

AR and NJ were supported by the EPSRC in the

United Kingdom through "Intelligent Agents for

Home Energy Management" project (EP/I000143/

1) and ORCHID programme grant (EP/I011587/1).

AM, DA and NJ were supported by the Deanship of

Scientific Research at King Abdulaziz University (9-

http://orcid.org/0000-0003-2945-0737
http://orcid.org/0000-0002-5533-3203
https://doi.org/10.1371/journal.pone.0227049
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227049&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227049&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227049&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227049&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227049&domain=pdf&date_stamp=2020-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227049&domain=pdf&date_stamp=2020-01-10
https://doi.org/10.1371/journal.pone.0227049
https://doi.org/10.1371/journal.pone.0227049
http://creativecommons.org/licenses/by/4.0/


vision of a dynamic electricity grid, where the delivery, monitoring, and control of power are

fully automated [2]. Currently, due to the high costs of upgrading equipment, it is often more

economically viable for countries to create smart grids within the limits of the existing infra-

structure, and pave way for the integration of renewable sources. However, this places a bur-

den on conventional suppliers with ageing equipment to better manage supply and demand

such that not only is the balance maintained at all times, but also peak demand is reduced.

Peaks in consumption are a consequence of unregulated demand. Meeting peaks needs

large generation capacities which are only in use during peak periods. This is a significant inef-

ficiency from a technical and financial point of view. This problem can be addressed through

demand response programs by distributing peak loads throughout the day. To encourage con-

sumers, financial incentives must be given, so that they shift their loads to off-peak periods.

Policies that enforce such user behaviour are based on dynamic pricing which take into

account changes in demand. This is in contrast to static pricing, such as flat tariffs, which offer

electricity at fixed rates, regardless of the load.

Researchers divide electricity tariffs into the following categories: flat, block rate, seasonal,

time of use, superpeak time of use, critical peak, variable peak, real-time, and peak-time rebates

[3–5]. Under flat tariffs, prices remain fixed even with changes in demand. Block rate tariffs

offer tier based pricing, where higher levels of consumption are charged at higher rates. Sea-

sonal rates change from one season to another, to reflect increase or decrease in demand due

to the time of year. Time of use, superpeak time of use, critical peak and variable peak charge

users based on pre-declared rates that vary depending on the time of day. They are generally

designed such that prices are high during peak hours and low during off-peak hours, with the

difference being the duration and start of peak hours. Real-time tariffs offer prices that are

adjusted every few minutes to the real cost of generation and delivery. Finally, peak time rebate

schemes provide rebates for consuming below a predetermined threshold during peak hours.

Against this background, we design a demand response program whereby a block of apart-

ments are rewarded for coordinating their cooling loads. More specifically, in order to encour-

age consumers to use less energy for air conditioning, which constitutes a significant amount

of electricity consumption in warm-climate countries [6, 7], the electricity supplier offers a dis-

count scheme similar to peak time rebate tariffs, but for a group of apartments. If the aggregate

cooling load of all apartments in a block that sign up to the scheme does not exceed a certain

threshold, they will be offered a discounted price for the entire day. To achieve the discount,

the apartments coordinate and optimise their loads collectively, while also ensuring that their

individual temperature preferences are met. Each householder specifies their preference in

terms of deviations of the internal temperature from a setpoint temperature over a period of

the day during which comfort is desired. Given a coalition of apartments, one can formulate a

binary integer program so as to find the optimal cooling plan of each member, such that all

temperature constraints as well as the load threshold are all satisfied. A cooling plan deter-

mines the periods of time when each apartment is allowed to turn on their air conditioning,

which in turn, determines the cost of individual apartments.

Once the cooling plans that secure the discount are determined, the primary question that

arises is how the apartments should divide the discount among themselves. Since the apart-

ments need to cooperate together to get the discount, it is important that the way the discount

is divided prevents abuse. For instance, it is possible that some apartments act as free-riders [8,

9]. That is, some apartments may not cooperate as much but reap the benefit of the joint effort

at the cost of other apartments. Therefore, our aim is to put forward a division mechanism

that is fair to all participants in the program. The most straightforward solutions that may

come to mind are perhaps an equal division, or one proportional to consumptions. The former

is obviously not necessarily fair, and the latter simply overlooks the complex interdependencies
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between apartments that actually result in the desirable coordination of loads. Moreover, as we

discuss later, the thermal characteristics of apartments such as how well they are insulated, and

how strict their preferences are, have a direct relationship with their ability to shift their loads.

Therefore, the division must ensure that each apartment receives a share of the discount that

corresponds to how much they have actually contributed to meeting the threshold and obtain-

ing the discount.

Given this problem and its cooperative nature, we first propose that the apartments in the

program are modelled as agents that form a coalition with the common goal of coordinating

their cooling loads. This allows us to apply methods from cooperative game theory that will

enable us to appropriately distribute the payoff of the game, which we define as the total cost

of the grand coalition (i.e., the coalition that consists of all agents).

There are extensive studies in the smart grid domain on using cooperative game theory in

this context [10–14]. The majority of payoff distribution concepts in the literature are con-

cerned with some sort of stability of coalitions. A well known such concept is called the core,
which is a set of distributions that satisfy an exponential number of certain constraints [15]. If

a payoff distribution is a member of the core it guarantees that no subgroups of agents can be

better off by breaking away and forming a different coalition. The drawback of the core is that,

in the general case, it does not always exist and is difficult to compute. In fact, for several well

studied problems it is co-NP-complete to even check whether a payoff distribution is a mem-

ber of the core [16, 17]. Another stability concept, called the bargaining, deals with the dissatis-

faction of agents with the share of payoff they receive. Suppose that an agent that is allocated a

share of the payoff is unsatisfied with it. It can make an objection to it by requesting some part

of the share of a particular agent. If that agent does not challenge this request, it is called a justi-

fied objection. The set of payoff distributions in which no agent has a justified objection

against any other agent is the bargaining set and is always a superset of the core [18]. A some-

what similar concept is the kernel with weaker stability constraints than the core. The idea is

that agents compare their strength with one another in terms of how much more they can gain

by forming a new coalition. If their strengths differ, stronger agents can threaten to leave,

unless they receive a higher payoff that balances the strengths [15].

In addition to the stability solution concepts, the Shapley value is a widely celebrated

method in the literature that focuses on fairness of payoff distributions [19]. It satisfies a num-

ber of desirable fairness axioms (see Section cooperative game theory definitions), and is the

only payoff division that does so. The Shapley value is based on the idea that the payoff of the

game should be divided such that each agent’s share is proportional to its contribution to the

payoff. This characteristic is particularly useful in our problem, given that we would like to

divide the discount based on how much each apartment has contributed to it. Therefore, we

use the Shapley value to divide the total cost of cooling all apartments. As we will explain later,

this then results in a fair division of the discount.

However, the use of Shapley value in our problem poses two computational challenges:

(i) the time complexity of the Shapley value itself, which is exponential in the number of

agents, and (ii) solving an exponential number of binary integer programs, each being an NP-

hard problem, in order to find the value (i.e., consumption cost) of every possible coalition. To

address the former issue, several algorithms have been proposed to approximate, rather than

calculate, the Shapley value [20–24]. Most of these approximations work by considering only a

sample of coalition values, thus avoiding the need to consider an exponential number of such

values. However, to obtain a reasonable bound on the approximation, the sample would often

consist of tens of thousands (or more) of coalition values. In our setting, even a single coalition

value can be hard to compute. In such a case, sampling techniques will fail, and a fundamen-

tally different approach is needed in order to tackle the computational challenge. As such, we
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focus on mitigating the second issue, by assuming that coalitions are computationally bounded
rational. That is, a coalition would internalise its limited computational resources when mak-

ing decisions. This is opposite to most typical scenarios where agents are assumed to be per-

fectly rational (i.e., they are able to maximise their utility), which may not be always possible

due to the limited computational resources of agents.

In the demand response problem stated above, we trade off optimality for the feasibility of

dividing the total cost in a fair way, we model coalitions as computationally bounded rational.

That is, due to limited computational resources, the rational value of each coalition (i.e., the

optimal solution to the coalition’s load optimisation problem) cannot be computed in a rea-

sonable time. More specifically, building upon the bounded rationality model proposed by

Sandholm and Lesser [25] we argue that, given a suboptimal value for each coalition, it is still

possible to divide the discount in a fair way. Our proposition leverages the additivity axiom

[19], whereby the Shapley value of a game can be represented as the sum of the Shapley values

of some alternative games (see section shapley value of bounded rational agents). Based on

this, we represent the Shapley value of the game where every coalition is assigned its rational

value as the sum of the Shapley values of two games:

• The game where the value of any coalition is its bounded rational value—the total consump-

tion of the coalition given the best suboptimal solution found to the load optimisation

problem.

• The game where the value of any coalition is its rationality discrepancy (i.e., the difference

between its rational and bounded rational values).

Importantly, the bounded rational coalition values are possible to calculate, while using

the limited computational resources available the rational values and the rationality discrep-
ancy are not. As such, we can only compute the Shapley value of the game with bounded

rational coalition values. We call this the bounded rational Shapley value. We argue that

this payoff division scheme is fair in that it produces a payoff distribution that results from

the following procedure (which is impossible to carry out given the available limited

resources):

• Step 1: Divide the rational value of the grand coalition (despite the fact that we do not know

it) “fairly” among the agents, i.e., in a way that meets Shapley’s axioms. Intuitively, the share

of each agent can be thought of as a reward for its contribution to the rational value.

• Step 2: Divide the rationality discrepancy of the grand coalition (which again is unknown)

fairly among the agents, in a way that meets Shapley’s axioms. Intuitively, each share can be

thought of as a penalty for contributing to the failure of finding the rational value in reason-

able time. For instance, if the presence of an agent in any coalition consistently increases the

rational discrepancy (e.g., due to the agent’s strict constraints which increase the time

required to compute the rational value), then this agent will be penalised. Note that the pen-

alty may be negative if coalition values represent a cost.

• Step 3: Assign to each agent its fair reward minus its fair penalty.

Given this division mechanism, we introduce two greedy algorithms for optimising the

cooling plan of apartments individually and collectively. These algorithms will help us find a

reasonably good (but not necessarily optimal) solution in a timely manner, and as we explain

later, these algorithms have useful features that we exploit to significantly expedite the optimi-

sation of coalition loads. In more detail, the first algorithm incrementally finds intervals in a

given day in which switching on the air conditioner results in the largest reduction of the
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discrepancy between householder’s preferences and the estimated temperature during the

comfort period. The second algorithm optimises the load of a coalition of apartments (subject

to the predetermined threshold and individual temperature preferences) by shifting the load of

apartments that are more flexible in terms of their preferences. This algorithm exploits the fact

that the more flexible an apartment is, the easier its preferences are satisfied. Using these two

algorithms, we can identify a suboptimal coordination of loads (leading to a potentially lower

saving from the discount compared to the optimal solution), while satisfying the householders’

temperature preferences. Then, our bounded rationality proposition establishes that, it is pos-

sible to obtain a fair division of the discount using the Shapley value.

As we mentioned earlier, the bounded rational Shapley value requires a suboptimal value

for every coalition. To obtain this value, we use the above greedy algorithms to determine the

minimum cost of the coalition when they coordinate their loads. However, instead of running

the algorithms over and over for every coalition, we show that this process can be carried out

much more efficiently using a dedicated dynamic programming algorithm. This is because the

information accrued from the optimised load of a coalition can be re-used in optimising the

load of some other coalitions.

Finally, our experimental results evaluate how the costs incurred by an apartment vary, as

its cooling preferences are changed, on a single day. We compare the costs that an apartment

would be charged for its consumption in four different cases: (i) when the apartment does not

sign up to the discount scheme and optimises its load independently, (ii) when the apartment

optimises its load as a member of the coalition and and benefits from the discount, but only its

consumption in the grand coalition is considered (unlike the Shapley value which considers all

subsets of the grand coalition), (iii) when the apartment optimises its load as a member of the

coalition and each apartment receives an equal share of the total saving from the discount (the

difference between the payment of the grand coalition at the discounted and normal rates is

equally divided and deducted from the payment of each apartment), and (iv) when the apart-

ment optimises its load as a member of the coalition and receives its bounded rational Shapley

value. The results show that with higher setpoint temperatures the payments drop, with higher

rates of thermal leakage (poorer insulation) they increase, and with higher tolerances of set-

point deviation the payments decrease.

In summary, our main technical contribution in this paper includes: (i) exploiting an often

less noted property of the Shapley value to extend it to games with bounded rationality, (ii)

designing a demand response program to help mitigate peaks caused by cooling loads, (iii)

designing two greedy algorithms to coordinate the loads of individual and groups of apart-

ments to cap aggregate loads and avoid peaks, and (iv) developing a dynamic program for the

greedy algorithms to speed up calculation of the Shapley value even further.

The rest of this article is organised as follows. Section cooperative game theory definitions

introduces cooperative game theory definitions and provides a background on the Shapley

value. Section coordinating cooling loads discount scheme formalises the discount scheme as a

cooperative game. Sections thermal dynamics of apartments and user comfort model present

formal models of thermal dynamics of apartments and the cooling preferences of users. In sec-

tions independent optimisation of loads and collective optimisation of loads we formalise the

problem of optimising cooling loads of apartments individually and as coalitions. Section an

example with three apartments provides an example of optimising the load of a block consist-

ing of three apartments. In section computationally efficient optimisation of loads, we provide

two greedy algorithms for efficient optimisation of loads. In section calculating payments

using the Shapley value, we present the bounded rationality model and provide a dynamic pro-

gramming algorithm to calculate the Shapley value efficiently. Section evaluation of the pay-

ments of apartments presents an experimental evaluation of our model and algorithms.

The Shapley value for a fair division of group discounts for coordinating cooling loads
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Finally, section conclusions and future work concludes the article and states potential direc-

tions for future work.

Cooperative game theory definitions

In this section, we introduce cooperative game theory notations and definitions, borrowed

from [15], which we will refer to throughout the paper. Given a set of agents, N = {1, . . ., n}, a

coalition C is a subset of N. The coalition N is referred to as the grand coalition. The value or

worth of a coalition is expressed by a characteristic function, v, which maps each subset of N to

a real number, i.e., v : 2N 7!R. A cooperative characteristic function game is specified using a

pair, (N, v), consisting of the set of agents N and a characteristic function v. A payoff distribu-
tion is a vector x = [x1. . .xn], where xi represents how much of the value of the coalition

should be allocated to agent i. A game is super-additive if the value of every coalition is at least

equal to the sum of the values of any two disjoint subsets of that coalition, i.e., 8C, D� N;

C \ D = ;) v(C [ D)� v(C) + v(D).

The Shapley value

In order for the agents to evaluate their prospects of playing a superadditive game, Shapley

proposed a value [19], whereby agents receive a payoff equal to their value. More specifically,

Shapley argued that a coalition of n agents can form in n! different ways (considering all

the possible joining orders), and that in each order, as an agent steps in the coalition, it

makes a marginal contribution to the agents who joined before it. The marginal contribution

of agent i to coalition C is the difference in C’s value that is due to i joining C, i.e., it is equal

to v(C [ {i}) − v(C). Shapley argued that the fair way to divide the payoff of the grand coali-

tion is to allocate each agent its average marginal contribution in all joining orders. This

solution concept is known as the Shapley value. More formally, the Shapley value of agent i
in game (N, v) is calculated as:

�½i; v� ¼
1

n!

X

p2PðNÞ
vðPpi [ figÞ � vðPpi Þ
� �

ð1aÞ

¼
X

C�Nnfig

jCj! ðn � jCj � 1Þ!

n!
ðvðC [ figÞ � vðCÞÞ ; ð1bÞ

where P(N) is a set containing all possible permutation of agents, and Ppi is the set of agents

that precede i in the permutation π. We will refer to the coefficient of the marginal contribu-

tions in the second formula using the notation ω. More formally, let s denote the size of coa-

lition C in the marginal contribution v(C [ {i}) − v(C), this coefficient is given as:

oðn; sÞ ¼
s! ðn � s � 1Þ!

n!
ð2Þ

The Shapley value satisfies the axioms of symmetry, efficiency, null-player, and additivity.

Symmetry states that if two agents make the same marginal contributions to any coalition,

their values are equal. Efficiency implies that the value of the grand coalition is fully divided.

The null-player axiom states that any player whose marginal contribution to every coalition is

zero, would have a value of zero. Finally, the additivity axiom states that if a new game is

obtained by adding the characteristic function of two different games with the same set of

agents, the value of an agent in the new game is equal to the sum of its values in the two games.

More formally:
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• Symmetry: 8i, j 2 N 8C� N\{i, j} v(C [ {i}) = v(C [ {j}), xi = xj;

• Efficiency: ∑i2N xi = v(N);

• Null player: 8i 2 N 8 C� Nv(C [ {i}) = v(C), xi = 0;

• Additivity: Let the game (N, v) be the sum of two other games, namely (N, v1) and (N, v2),

i.e., 8C� N, v(C) = v1(C) + v2(C). Furthermore, let x, x1, x2 denote the payoff distributions

of (N, v), (N, v1), and (N, v2), respectively. Then, the following holds: 8i 2 N; xi ¼ x1
i þ x2

i .

As is common in the literature, we say that a division of the grand coalition value is fair if it

satisfies the above axioms. In fact, the Shapley value is the only value that satisfies them [19].

The Shapley value is also individual rationality in superadditive games (8i 2 N;ϕ[i, v]� v({i})).

Coordinating cooling loads discount scheme

Consider a set of n apartments in a block, indexed by i 2 N≔ {1, 2, . . ., n}. Denote by lti the

cooling load of apartment i at time t (in kW), and denote by p the price at which every kWh is

charged. In order to encourage consumers to use less energy for cooling, which constitutes a

significant amount of the domestic load in warm-climate countries [6, 7], the electricity sup-

plier offers a discount scheme. Specifically, each apartment in a block is offered a binary option

of signing up to the scheme or not. Let K = {1, . . ., k} represent an entire day divided into k
equal-length time slots, and li ¼ ½l1i l

2
i . . . lki � represent the vector of cooling loads of apartment i

in all time slots in K. If at any point in time throughout the day, the cooling load of the block is

not more than ψ kW, i.e., 8t 2 K;
P

i2Nl
t
i � c, then those apartment that have signed up are

charged at f< p per kWh of usage, and the rest are charged at p per kWh. The cooling load of

an apartment i at time t is:

lti ¼ Pi � Z
t
i ; ð3Þ

where Pi is the electric power of the AC (in kW), and Zti 2 f0; 1g represents a cooling action,

which is a binary variable that indicates whether or not air conditioning has been used at

time t.
Since the discount is offered only when the whole block’s load is below ψ, the price at which

a coalition C� N is charged is also influenced by the behaviour of the apartments in the same

block that have not subscribed to the scheme, i.e., NnC. In cooperative game theory terms, the

value of the coalition in this case is influenced by the agents outside it. If those apartments

could form other coalitions, then we would have a game with externalities (also known as a

partition function game), which is a game where the value of a coalition depends on how other

agents are structured [26]. However, since the discount scheme does not cater for other

arrangements, the apartments that do not sign up cannot form any other coalitions. Therefore,

we have a special case of externalities where the agents outside the coalition can only be struc-

tured as singletons, and the game is reduced to a characteristic function game.

Naturally, each apartment, whether signed up to the scheme or not, would want to optimise

its use of the AC such that its internal temperature preferences are satisfied with minimal elec-

tricity consumption. In order to secure the discount, those apartments that do sign up need to

coordinate their loads so that the aggregate load will be kept below the threshold and their

internal temperatures remain as they individually deem comfortable. Clearly, if an apartment

decides not to sign up, it can only optimise its load independently, without any coordination

with other apartments.
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Assuming that some of the n apartments form a coalition, C, and sign up to the scheme, the

aggregate cooling load of all n apartments (in kW) at time t is given by:

ltN ¼ l�tC þ
X

i2NnC

l�ti ;

where l�tC represents the aggregate optimal cooling load at time t of the apartments that have

signed up, and l�ti represents the optimal cooling of apartment i, at time t, which has not signed

up.

Observe that a coalition can meet the threshold mostly through running its members’ ACs

for longer periods (e.g., during off-peak times). Therefore, meeting the threshold potentially

requires extra consumption of electricity, which would incur a higher cost. In theory, it is pos-

sible that the extra consumption becomes so high that even at the discounted rate the cost

becomes higher than the sum of independent costs. This outcome is clearly not desirable,

Therefore, if the discounted cost turns out to be higher, or if a feasible solution to the collective

optimisation cannot be found, then the apartments optimise their loads independently. Based

on this, we can write the optimal consumption of a coalition (measured in kWh) as:

cðCÞ ¼

X

t2K

l�tC � Dt
X

t2K

l�tC Dt f �
X

i2C

X

t2K

l�ti p

X

i2C

X

t2K

l�ti � Dt
X

t2K

l�tC Dt f >
X

i2C

X

t2K

l�ti p

8
>>>>><

>>>>>:

; ð4Þ

where Δt is the duration of a time slot (in seconds). Based on the above consumption function,

we now define the characteristic function, v, of the cooperative game (N, v) that represents the

above discount scheme. In more detail, v(C) is equal to the total cost of consumption of its

members. More formally, v(c) is given by:

vðCÞ ¼ cðCÞ �
f 8t 2 K ; ltN � c

p 8t 2 K ; ltN > c

(

ð5Þ

With respect to the above characteristic function, it is clear that the apartments will not be

worse off by joining the grand coalition. Therefore, it would be in the interest of all apartments

to sign up and benefit from the potential discount.

In the next section, we explain how the cooling load of each apartment can be optimised so

as to minimise the electricity consumption and satisfy its temperature preferences. We first

present the model of thermal dynamics of an apartment that governs the evolution of its inter-

nal temperature.

Thermal dynamics of apartments

We use a standard thermal model in which heat is assumed to enter an apartment (by thermal

conduction) at a rate that is proportional to the temperature difference between the cold air

inside and the hot air outside [27–29]. This model also incorporates the thermal capacity of

the building structure, since through experimentation on real data collected from apartments

in Jeddah, Saudi Arabia we found that this model best explains the observed data. This thermal

model is represented as a set of coupled difference equations as per:

Ttþ1
int ¼ Tt

int � rZtDt þ aDtðTt
env � Tt

intÞ

Ttþ1
env ¼ Tt

env þ bDtðT
t
int � Tt

envÞ þ gDtðT
t
ext � Tt

envÞ;
ð6Þ
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where Tt
int 2 R

þ denotes the internal temperature (measured in ˚C) of apartment i at time t,
Tt
env 2 R

þ
denotes the temperature of the building structure, or envelope, (measured in ˚C),

and Tt
ext 2 R

þ denotes external temperature (measured in ˚C). We assume that Tt
ext is the same

for all apartments in N. Furthermore, r (measured in ˚C/hr) represents the rate at which the

AC reduces the internal temperature, and α, β and γ (measured in 1/hr) are the rates of leakage

from the envelope to the inside, from the inside to the envelope, and from the outside to the

envelope, respectively. Hereafter, when we refer to an apartment in a coalition we index the

notation by i.
Eq (6) is the discrete equivalent to a set of coupled differential equations which has been

used previously to model data collected from real buildings [30]. In this model, an envelope is

introduced to act as an additional thermal mass to minimise internal temperature changes due

to extremes of temperature outside. Given historical observations of Tt
int and Tt

ext, and the

times during which the AC was on (which we collected from a number of apartments in Jed-

dah, Saudi Arabia) we predicted the evolution of the internal temperature, Tt
int . The error in

this prediction is given by
P

t2KðT
t
int � Tt

intÞ
2
. Consequently, the best estimates of the parame-

ters are those that minimise this error and can be learned through recursive least squares [31].

User comfort model

We outline a few assumptions that underpin the operation of the cooling system in an apart-

ment. We assume that an apartment has a central air conditioning driven by a heat pump that

transfers heat from a lower temperature heat source (the apartment) into a higher temperature

heat sink (external ambient air). This system is connected to a thermostat within the apart-

ment, where a user can set a desired temperature to be maintained, i.e., the setpoint tempera-

ture, denoted as Tset (˚C).

The user in each apartment can specify the time interval during which “comfort” is desired.

That is, the time slots when the user wants the internal temperature to be maintained at, or

close to, Tset. We refer to this interval as the comfort period, and define it as: H = {t 2 K|CST�
t� CET}, where CST 2 K and CET 2 K are the comfort start time and comfort end time,

respectively. A tolerance level is specified by the user to limit deviations of the internal temper-

ature from the setpoint temperature, during the comfort period. We denote this tolerance by

y 2 Rþ (˚C). Note that lower values of Tset suggest that a user feels more comfortable at lower

temperatures, and smaller values of θ indicate that a user is sensitive to deviations of the tem-

perature from the setpoint.

Intrinsically, the above preferences have an impact on the cooling load (Eq (3)). Fig 1 shows

the effect of varying Tset, θ and γ on the temperature and cooling profiles. The bottom of each

subplot shows the cooling actions over the course of a day. As Tset is lowered, the amount of

cooling required increases proportionately to achieve lower temperatures. As can be seen in

the corresponding plots in Fig 1, more cooling is required when Tset = 21˚C than internal tem-

perature profile in an apartment when Tset equals 21˚C Tset = 23˚C. The total time when the

AC is on is 52% less in the latter case. Similarly, when θ is small, a user is more sensitive to

deviations of the internal temperature from Tset. Consequently, the AC is turned on for longer

to ensure that the deviation of the internal temperature from Tset lies within the tolerance level,

resulting in higher energy consumption. This is evident in Fig 1, where the θ is set to 0.6˚C

and 1.5˚C. As can be seen, more cooling is required for a larger θ. The total time when the AC

is on is 12% less in the former case. Furthermore, as per Eq (6), an apartment that is well-insu-

lated will have a small γ value, whereas a leaky apartment will have a high value. This observa-

tion is of interest as more cooling is required to maintain a leaky apartment at a certain

temperature. This effect is evident in Fig 1, where the value of γ used to generate the plots are
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0.36 1/hr and 0.48 1/hr, respectively. The total amount of time when the AC is on is 24% more

for γ = 0.48.

Independent optimisation of loads

Having introduced the comfort model, we describe how an apartment optimises its use of the

AC so as to satisfy only its own comfort preferences. In summary, as we described in section

user comfort model, the preferences of an apartment are: (i) the desired setpoint temperature,

denoted by Tset, (ii) a tolerance level on the deviation of the internal temperature from the set-

point, denoted by y 2 Rþ, and (iii) the comfort start time (CST) and comfort end time (CET)

which determine H—the set of time slots representing the comfort period. Based on these, we

define an optimal cooling plan for apartment i to be a vector of cooling actions [η1 η2. . .ηk],
that result in meeting the above preferences as well as the following requirements: (i) the over-

all energy consumption is minimised, i.e., all constraints are satisfied with the AC running in

as few time slots as possible, (ii) the internal and envelope temperatures at the start and end of

Fig 1. The impact of varying Tset, θ and γ on the temperature and cooling profiles.

https://doi.org/10.1371/journal.pone.0227049.g001

The Shapley value for a fair division of group discounts for coordinating cooling loads

PLOS ONE | https://doi.org/10.1371/journal.pone.0227049 January 10, 2020 10 / 28

https://doi.org/10.1371/journal.pone.0227049.g001
https://doi.org/10.1371/journal.pone.0227049


the day converge. Note that the latter requirement is to ensure that the cooling plan is opti-

mised over an infinite horizon, which prevents erroneous solutions that minimise AC use in

the short term, but require additional cooling later, as would be the case if a finite planning

horizon were used. Given the above preferences and requirements, the optimal cooling load of

an apartment throughout the day can be computed as per Eq (3) using η1, η2, . . ., ηk found by

solving the following optimisation problem:

minimise
X

t2K

Zt

subject to 8h 2 H; jTh
int � Tsetj � y; and

T1
int ¼ Tk

int ; T
1
env ¼ Tk

env:

ð7Þ

Observe that our formulation avoids the explicit trade-off between consumption and com-

fort within a single objective function, which is dependent on specifying appropriate weights

for both objectives. This is because, in practice, there is no principled way to specify such

weights [32].

Collective optimisation of loads

We now describe how a coalition of apartments, C, collectively optimise their cooling loads.

Similar to the single apartment case, the user in each apartment in C specifies their individual

cooling preferences. These include their desired setpoint temperature, Tset[i], their tolerance

on the deviation of the internal temperature during the comfort period, θi, and their comfort

start and end times which determine Hi. In finding an optimal cooling plan for the coalition,

we introduce a key additional constraint, which ensures that at all times, the total load of all

apartments in the coalition, plus the total load of the apartments who optimise their loads

independently, is less than or equal to ψ. More formally, the vector of optimal cooling actions,

½Z1
i Z

2
i . . . Zki �, for every apartment i 2 C is given by the following optimisation problem:

8i 2 C minimise
X

t2K

Zti subject to :

8h 2 H jTh
int½i� � Tset½i�j � yi; and

8t 2 K ltN ¼
X

i2C

Pi Z
t
i þ

X

j2NnC

l�tj � c; and

T1
int½i� ¼ Tk

int½i� ; T
1
env½i� ¼ Tk

env½i�:

ð8Þ

If a feasible solution to the above optimisation did not exist, the apartments would optimise

their loads individually as per Eq (7). Note that it is possible for an individual apartment in C
to have a significant impact on the feasibility of C satisfying the threshold constraint. For

instance, if Tset[i] is set to a particularly low temperature, or θi is particularly small, the corre-

sponding energy consumption in that apartment will be greater, which in turn increases the

likelihood of the aggregate load exceeding the threshold. As the individual apartments become

more flexible and less stringent with their preferences, the aggregate cooling load, ltN , is more

likely to satisfy the constraint on the threshold.

An example with three apartments

Having established the theoretical underpinnings of how cooling loads are independently and

collectively optimised, we now illustrate how they work in practice through a simple example.
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Consider a 3-player game (N = {1, 2, 3}), where a block consists of three apartments. All three

apartments agree to participate in the discount scheme. Apartment 1 desires that the tempera-

ture be maintained at 21˚C (Tset[1] = 21˚C) for 6 hours from CST = 10:00 to CET = 16:00, and

is satisfied with wide swings of temperature (θ1 = 1.5˚C). Apartment 2 desires the temperature

to be at 22˚C (Tset[1] = 22˚C) for 8 hours from CST = 09:00 to CET = 17:00, and has very strict

preferences over temperature (θ2 = 0.5˚C). Apartment 3 too desires the temperature to be at

21˚C (Tset [3] = 21˚C) from CST = 10:00 to CET = 16:00, and is satisfied with wide swings of

temperature (θ1 = 1.5˚C).

We assume that the AC in each apartment operates on a 10-minute cycle, i.e., a cooling

decision is made for each 10-minute interval in a day (Δt = 600s). As a result, K = [1, . . ., 144]

and the decision variable is Zti , 8t 2 K. We also assume that the ACs in all three apartments are

similar and consume at a rate of 3 kW when on, i.e. Pi = 3 kW. Hence, the total possible energy

load of all three apartments if they optimise their loads independently is 9 kW. Now, when the

apartments participate in the scheme, a threshold at 3 kW (i.e., a 2

3
reduction), is set on their

total load.

We first consider the case where all 3 apartments optimise their cooling loads indepen-

dently. The bottom of plots in Fig 2 show the individual cooling profiles of each apartment for

a single day. Each profile is obtained by solving the optimisation problem in Eq (7) using

CPLEX, to yield Zti (8t 2 K). Also shown in Fig 3 are the corresponding internal temperature

profiles, which are estimated by iterating Eq (6) for each apartment, using the cooling actions,

Fig 2. The temperature and cooling profiles when loads are optimised individually.

https://doi.org/10.1371/journal.pone.0227049.g002

Fig 3. The temperature and cooling profiles when loads are optimised collectively.

https://doi.org/10.1371/journal.pone.0227049.g003
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Zti as inputs. It is evident from the plot that the internal temperature is within the desired set-

point deviation tolerance at times when the users desire cooling. Also, this deviation is greater

in Apartment 1 and 2, as they are less sensitive to large swings in temperature. Finally, the opti-

misation ensures that the temperature at the start and end of each day is the same, as required.

Next, we consider the case where all 3 apartments form a coalition and collectively optimise

their loads to ensure that their aggregate load does not exceed the threshold. The bottom of

plots in Fig 3 show the cooling profiles of each apartment for a single day. Each profile is

obtained by solving the optimisation problem in Eq (8) using CPLEX, to yield Zti (8t 2 K),

which in turn generate a temperature profile based on the thermal model as per Eq (6).

More importantly, as shown in Fig 4, the collective optimisation results in the aggregate

never exceeding the threshold during the day, making the block eligible for the discount. This

is not the case when optimised independently.

Since optimising the loads of the three apartments is tractable, we can readily divide the

total cost of the apartments based on the Shapley value as per Eq (1b). We assume that the elec-

tricity cost is $0.15 per kWh when apartments optimise their cooling loads independently. As

per the discount scheme, if they ensure that their aggregate load does not exceed 3 kW, then

the electricity cost will be reduced to $0.08 per kWh.

When optimised collectively to keep the aggregate load below the threshold, Apartment 2’s

preferences are so strict that a somewhat small change is only possible. However, Apartment 1

and Apartment 3 are able to shift their cooling loads to satisfy their preferences as well as the

threshold constraint, but to do so, they have to run their AC earlier and longer. These are natu-

rally reflected in the value of each coalition as shown in Table 1. As can be seen, all apartments

would incur the same cost if they did not participate in the scheme. However, when they do

participate, interestingly, Apartment 2’s share of the discount becomes slightly less than that of

the other two. This is due to its stricter preferences that are harder to satisfy in the collective

optimisation. Also note that the optimal loads of Apartment 1 and Apartment 3, who have

identical preferences, are the same. Therefore, all of their marginal contributions (and their

Shapley values, in turn) are equal. Based on the coalition values given in the table and the Shap-

ley value formula (Eq 1b), the payments of apartments 1, 2 and 3, are $3.08, $3.20 and $3.08,

respectively.

Computationally efficient optimisation of loads

In the simple example of three apartments, optimising the cooling loads did not require a con-

siderable amount of computation, and calculating the Shapley value was easy. However, as

more apartments are added to the game, satisfying the constraints takes considerably more

Fig 4. Total load when loads are optimised individually and collectively.

https://doi.org/10.1371/journal.pone.0227049.g004
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time. Considering the fact that, in calculating the Shapley value, an exponential number of coa-

litions must be optimised, the time it takes to calculate the payoff of only a few agents can be

very long. In order to overcome this, we next present two greedy algorithms, namely, iOPT

and cOPT, for optimising the cooling load of the apartments independently and collectively.

Due to the difficulty of finding the optimal solutions in reasonable time, we use these algo-

rithms and trade off optimality for computation speed. Thus, we consider a feasible cooling

plan given by these algorithms to be the best solution we can find given our limited computa-

tional resources, which may or may not coincide with the actual optimal solution. Given this,

we call such a solution best-found.

Algorithm 1 Greedy Algorithm For Optimising Apartments Independently
function iOPT (Tset, θ, Text, Λ, maxIterations)
η  []
for iteration = 1 to maxIterations do
bestTime  −1
minDiscomfort  1
maxDeviation  0
for t = 0 to k do
if t 2 Λ then
continue

end if
ηtest  η
Zttest  1

8t 2 K update Tt
int½test� and Tt

env½test� as per Eq (6)
Calculate ΔDtest
if ΔDtest < minDiscomfort then
bestTime  t
minDiscomfort  ΔDtest

end if
end for
if bestTime > −1 then
ηbestTime  1
8t 2 K update Tt

int and Tt
env

end if
end for
return maxDeviation � θ

First, we explain the workings of iOPT, the pseudocode of which is presented in Algorithm

1. Using a heuristic, iOPT searches for a set of cooling actions that satisfy the constraints of an

individual apartment as per Eq (7). This heuristic, which we call the discomfort of an apart-

ment, represents the discrepancy between an apartment’s preferences (as outlined in section

user comfort model) and the temperature profile resulting from a cooling plan found by the

algorithm. More formally, the discomfort of apartment i, denoted by ΔDi, is the largest

Table 1. The cost of coalitions when members optimise their loads collectively and independently.

Coalition (C) Threshold Cost Independent Apartments (NnC) Cost

{} Not Satisfied $0 {1},{2},{3} $17.55

{1} Not Satisfied $5.85 {2}, {3} $11.70

{2} Not Satisfied $5.85 {1}, {3} $11.70

{3} Not Satisfied $5.85 {1}, {2} $11.70

{1, 2} Satisfied $6.24 {3} $5.85

{1, 3} Satisfied $6.00 {2} $5.85

{2, 3} Satisfied $6.24 {1} $5.85

{1, 2, 3} Satisfied $9.36 {} $0

https://doi.org/10.1371/journal.pone.0227049.t001
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deviation of the internal temperature from the setpoint temperature during the comfort

period. This is given as:

DDi ¼ max
h2H
ðTh

int½i� � Tset½i�Þ ð9Þ

The algorithm incrementally finds the time slots where switching the AC on results in the

largest discomfort reduction. Initially, the AC is off in all time slots (i.e., 8t 2 K; Zti ¼ 0), and is

then switched on only if it results in a reduction of the discomfort. This way, in addition to

searching for a feasible solution, the consumption is also minimised (as required in the optimi-

sation problem in Eq (7)). However, as soon as the constraints of the apartment are satisfied,

the algorithm will not seek to minimise the consumption further. Since this procedure is inde-

pedent of the number of apartments, the time complexity of the algorithm is constant. To be

more exact, it is a function of |K|2, which implies even with finer time resolutions the computa-

tion will increase very reasonably. Similarly, the space complexity of iOPT is independent of n,

and is only a multiple of |K|, which is also constant.

Furthermore, recall that one of the constraints in Eq (7) is that the internal and envelope

temperatures at the start and end of the day should converge (i.e., T1
int ¼ Tk

int and T1
env ¼ Tk

env).

To ensure this, one can run Algorithm 1 repeatedly, and in each iteration calculate T1
int based

on Tk
int from the previous iteration. We have found through experiments that, this way, no

more than 4 iterations are typically needed for the internal and envelope temperatures at the

end of the day to be within 0.1˚C of the start of the day. Moreover, if iOPT does not find a fea-

sible solution, the algorithm will terminate after maxIterations iterations. Lastly, iOPT takes a

set of time slots Λ as input, which, as we explain later, is used in cOPT to indicate the time

slots in which the aggregate load is greater or equal to the threshold. When an apartment is

optimised independently, this set is empty.

If iOPT finds a feasible solution for apartment i, it gives a vector of Zti values, based on

which we calculate the best-found cooling load of the apartment when is independent of the

coalition. This load is then used to calculate the consumption of apartment i as per Eq (4),

based on which we obtain the bounded rational value of the singleton {i}, i.e., vBR({i}). Next,

we describe the workings of cOPT, which optimises the cooling load of the members of a coali-

tion. The pseudocode is given in Algorithm 2.

Algorithm 2 Algorithm For Optimising Apartments Collectively
function cOPT (C, N, ψ, Tset, θ, Text, maxIterations)
for all i 2 N do
iOPT(Tset[i], θi, Text, ;, maxIterations)

end for
if 8t 2 K ltN � c then
return true

end if
// C is sorted beforehand based on Eq (10)
for all i 2 C do
L ft 2 Kj ltN � cg
successfullyReOptimised iOPT (Tset[i], θi, Text, Λ, maxIterations)
if successfullyReOptimised then
if 8t 2 K ltN � c then
return true

end if
else
Revert i to its individually optimised state

end if
end for
return false
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Given a coalition, all member apartments are first independently optimised using iOPT. If

by doing so the constraints of all apartments, as well as the threshold constraint are already sat-

isfied, then the best-found cooling plan of the members of the coalition, in this case, is the

same as when the apartments optimise their loads independently. However, if the threshold is

not satisfied, it means that at least in one time slot there is congestion, i.e., the aggregate load is

higher than the threshold. We denote the set of congested time slots by Λ, which is formally

defined as: ft 2 KjltN � cg. The objective of the algorithm is to decongest these time slots by

re-optimising at least some of the apartments such that they do not run their ACs in these time

slots. Re-optimising an apartment given a set of congested time slots means that after all apart-

ments are initially independently optimised, the apartment in question is again optimised

using iOPT, such that its AC is not turned on in any of the congested time slots. Obviously,

those members of the coalition that are stringent with their temperature preferences may not

be able to avoid the congested time slots. As such, the algorithm performs decongestion with

respect to the flexibility of the load of the apartments. The idea is that the more flexible an

apartment is, the more likely it can satisfy its constraints without having to run its AC in the

congested time slots. Observe that the longer the comfort period is, the more cooling is needed.

Furthermore, as we saw in Fig 1, the higher the tolerance on the setpoint temperature of an

apartment is, the less cooling it requires, and thus, it can be considered more flexible than an

apartment that has a lower tolerance. Based on these observations, we use the following ratio

as a heuristic to determine the severity of the preferences of the apartments relative to one

another:

yi
Pi � jHij

ð10Þ

Using the above heuristic, we initially sort the apartments in the coalition in ascending

order, so that the least flexible apartment is dealt with first. Given a set of congested time slots,

cOPT iteratively re-optimises the apartments using iOPT. In each iteration, the set of con-

gested time slots, Λ, is computed anew. If Λ is not empty (i.e, the threshold constraint has not

been satisfied yet), iOPT will be called again to optimise the apartment in the current iteration

without being allowed to run its AC in the congested time slots. If the constraints of the apart-

ment are successfully satisfied this way, the algorithm moves on to the next member, and

repeats this procedure until the threshold is satisfied or all apartments have been re-optimised.

In any iteration, if the constraints of the apartment are not successfully satisfied, its best-found

cooling plan (as a member of the coalition) will be reverted to its independently optimised

case. Similarly, if at the end of the process the threshold constraint is not satisfied, the best-

found cooling plan of all apartments will be reverted to their independently optimised cases.

Since cOPT deals with each member of C at most once, its time complexity is a linear function

of |C|. With the average coalition size being (n + 1)/2, the time complexity complexity is

O((n + 1)/2) in the average case. As for memory requirement, for each member of C, we do

not need to store more than what iOPT requires. Therefore, the space complexity is again a lin-

ear function of |C|, which in the average case is O((n + 1)/2).

The effect of this collective coordination on individual apartments is that those that are

more flexible turn out to lower their internal temperature ahead of their comfort period, so

that they can avoid running their AC in the congested time slots. This process can potentially

result in an incremental reduction of the congestions, until the threshold is eventually satisfied.

While the end result may not be optimal, this ensures that joining the grand coalition will not

make any member worse off in any case, making it rational for them to sign up to the discount

scheme.
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Calculating payments using the Shapley value

Recall from section coordinating cooling loads discount scheme that the value of a coalition is

given by the sum of the consumption of its members, when they collectively optimise their

loads. Furthermore, we explained how a coalition can optimise its cooling plan in a computa-

tionally efficient manner. Therefore, based on the best-found cooling plans, we can calculate

the coalition values and in turn the Shapley value of apartments, which is what they must pay

for their consumption. In the next subsection, we argue why using the Shapley value based on

the best-found cooling plans still results in a fair division of the discounted total cost. We then

explain how the Shapley value in this setting can be efficiently calculated.

Shapley value of bounded rational agents

A common assumption in cooperative game theory literature is that the characteristic function

has a negligible computational cost, e.g., it can be done in constant time. However, in many

real world problems, such as our discount scheme, and those considered in [33, 34], comput-

ing the value of a coalition C involves solving a hard optimisation problem. In our setting, v(C)

is hard to compute optimally. As such, we will refer to v(C) as the rational value (rather than

simply the value) of C. The corresponding bounded rational game of (N, v) is a new game,

denoted by (N, vBR), where vBR(C) is the best-found solution to the cooling plan of C that is

obtained given the available computational resources. We will refer to vBR(C) as the bounded
rational value of coalition C.

Under the full rationality assumption, the rational value of every coalition is known, and

thus, the value of the game can be fairly divided using the Shapley value. However, with

bounded rational agents, the rational values of the coalitions are unknown, and it is not imme-

diately clear how a fair division of the value of the game can be obtained. Next, we propose one

way to deal with this issue.

We assume that it is possible to find a suboptimal solution to the cooling plan of every coali-

tion in reasonable time (i.e., the bounded rational value). We also assume that an equal

amount of computational resource is dedicated to calculating the value of each coalition. Note

that this assumption does not imply that the cost of finding the bounded rational value of all

coalitions is the same. Furthermore, in order to treat all agents without discrimination, we

assume that the algorithm by which the coalition values are found is the same for all coalitions.

Proposition 1. Given a game, (N, v), by allocating to each agent its Shapley value of the corre-
sponding bounded rational game, (N, vBR), a payoff division is obtained that is fair in the follow-
ing sense: (i) it fairly allocates each agent a payoff for its contribution to the total value of the
game, i.e., v(N), (ii) each agent is fairly penalised for contributing to v(N) not being equal to
vBR(N).

Let us introduce some additional notation to better understand the intuition behind this

proposition. For every C� N, let vRD(C) denote the rationality discrepancy of coalition C,

defined as the difference between the rational and bounded rational values of C. This can be

viewed as a penalty that C as a whole has to pay due to its members’ lack of full rationality.

More formally,

vRDðCÞ ¼ jvðCÞ � vBRðCÞj: ð11Þ

From Eq (11) it is evident that the game (N, v) can be written as the sum of (N, vBR) and

(N, vRD). Therefore, based on the additivity axiom of the Shapley value, the following holds:

�½i; vBR� ¼ �½i; v� � �½i; vRD�: ð12Þ
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The sign in the above equation is negative or positive depending on whether v represents

profit or cost, respectively. While both ϕ[i, v] and ϕ[i, vRD] are unknown by assumption, it is

possible to calculate ϕ[i, vBR]. Importantly, this is in fact agent i’s fair share of the total cost of

the grand coalition (i.e., v(N)), which also factors in agent i’s fair share of the penalty due to its

bounded rationality.

The implication of Proposition 1 is that when agents cannot find an optimal solution, they

can still expect to receive a fair share of vBR(N). This is because ϕ[i, vBR] also satisfies the Shap-

ley value axioms, and is the only value that does so.

Intuitively, the more rational a coalition’s members are (i.e., more computational resources

are used to optimise their cooling loads), the smaller the rationality discrepancy of the coalition

is. Therefore, if the agents in a game were fully rational, they would be able to diminish their

penalty completely (i.e., vRD(C) would be zero), and thus, ϕ[i, vBR] would become exactly equal

to ϕ[i, v] for all agents.

To illustrate Proposition 1 further, consider an example of a block consisting of three apart-

ments that participate in the discount scheme. Through optimal coordination of their cooling

loads, they are able to cap their aggregate load and achieve a discount of 50% per unit of elec-

tricity consumed. However, suppose that due to the thermal characteristics of the apartments

and their temperature preferences, finding an optimal coordination in practice is so complex

that they can manage to meet the threshold requirement, but can only approximately minimise

their consumptions. As a result, the cost associated with coalitions is potentially higher than

what would be possible if coordinating their loads were easier or more computational

resources were available.

Now, to highlight the significance of Proposition 1, let us assume that Apartment 1 and 2

are identical in every respect, except that Apartment 1 is less flexible with its temperature pref-

erences. Consequently, if computational resources were unlimited and its load were optimally

coordinated with others, its cooling plan and temperature profile would be identical to those

of Apartment 2. However, since in practice computational resources are limited, Apartment

1’s stricter preferences require more computation to satisfy compared to Apartment 2. A set of

example values that describe this scenario, and the corresponding Shapley values are shown in

Table 2.

It is immediately clear that for all three apartments, Eq (12) holds. Note that when agents

are rational, Apartment 1 and 2 have identical values and marginal contributions, and

Table 2. Payments according to Proposition 1 in an example scenario.

C Threshold v(C) vBR(C) vRD(C)

{} Not Satisfied $0 $0 $0

{1} Not Satisfied $10 $10 $0

{2} Not Satisfied $10 $10 $0

{3} Not Satisfied $18 $18 $0

{1, 2} Not Satisfied $20 $20 $0

{1, 3} Satisfied $15 $18 $3

{2, 3} Satisfied $15 $16 $1

{1, 2, 3} Satisfied $24 $28 $4

i ϕ[i, v] ϕ[i, vBR] ϕ[i, vRD]

1 $7.50 $9 $1.50

2 $7.50 $8 $0.50

3 $9.00 $11 $2.00

https://doi.org/10.1371/journal.pone.0227049.t002
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therefore equal Shapley values. However, when they are bounded rational, the higher complex-

ity of coordinating Apartment 1’s load with others means that Apartment 2 deserves a lower

cost than Apartment 1, which is reflected by their bounded rational Shapley values. Proposi-

tion 1 establishes the fairness of this division. Apartment 1 and 2 are both fairly allocated a cost

for contributing to the cost of any coalition in which they are involved. Simultaneously, they

are individually penalised proportional to their contribution to the discrepancy between vBR

and v in any coalition in which they are involved. Moreover, Apartment 3, which has a higher

individual cost than the other two in the rational case, still receives a portion of the discount

when is bounded rational because it is able to coordinate its load when it is in a coalition with

others.

Efficient implementation of the Shapley value

Calculating the bounded rational Shapley value of all agents using the standard formula, i.e.,

Eq (1b), requires computing the value of each coalition multiple times. This is because in the

standard formula, for each agent, one must iterate through all C� N, and in doing so v(C) is

used multiple times. Therefore, the time complexity of computing the Shapley value for all

agents using the standard implementation is O(n × 2n × O(v)). This is not an issue in games

where the characteristic function does not have a considerable computational complexity.

However, given the bounded rationality assumption, computing v(C) more than once is highly

costly. One trivial way to overcome this is to store all coalition values in memory, but doing so

requires exponential memory space. Alternatively, instead of iterating through agents, we can

iterate through all subsets of N, and in each iteration, we calculate the value of the subset.

Then, we use this to update all marginal contributions of all agents that require that value.

This ensures that the value of any given coalition is computed exactly once. This results in a

time complexity of O(2n × O(v)), at no additional memory space cost. Next, we explain this

idea in more detail.

First, observe that calculating the marginal contribution of agent i to a coalition D requires

the following two terms: v(D [ {i}) and v(D), which represent the value of the coalition with
and without the agent, respectively. More formally:

MCi!D ¼ vðD [ figÞ � vðDÞ: ð13Þ

For each C� N, we can use v(C) to calculate the “with agent” and “without agent” terms in

marginal contributions of two groups of agents:

• 8i 2 C since 9D� C s.t. D [ {i} = C; v(C) corresponds to the “with agent” term.

• 8i 2 NnC; v(C) corresponds to the “without agent” term.

Furthermore, recall that in Eq (1b), each marginal contribution is multiplied by a weight

given by Eq (2). If we multiply each of the two terms above by its corresponding weight, they

become ω(n, |D|)v(D [ {i}) and −ω(n, |D|)v(D). Therefore, to calculate the Shapley value, we

sum all coalition values multiplied by their corresponding weight just as in Eq (1b):

• For every non-empty coalition C� N, v(C) is multiplied by ω(n, |C| − 1) for every i 2 NnC,

and multiplied by −ω(n, |C|) for every i 2 C, v(C).

• For C = ;, v(C), which only represents the value of a coalition without the agent, is multiplied

by −ω(n, 0).

• For C = N, v(C), which only represents the value of a coalition with the agent, is multiplied

by ω(n, n − 1).
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The pseudocode of this process is presented in Algorithm 3.

Algorithm 3 Efficient Implementation of the Shapley Value
function ShapleyValue(N, v)
�  [];
8i 2 N, �[i, v]  0;
for all C � N do
weightWithAgent  ω(|N|, max(|C| − 1, 0));
weightWithoutAgent  −ω(|N|, min(|C|, |N| − 1));
for all i 2 N do
if i 2 C then
�[i, v]  �[i, v] + (weightWithAgent × v(C));

else
�[i, v]  �[i, v] + (weightWithoutAgent × v(C));

end if
end for

end for
return �

Efficient calculation of the Shapley value using dynamic programing

In calculating the bounded rational Shapley value, when cOPT is sequentially applied to the

subsets of the grand coalition, some steps of optimising one coalition are repeated in optimis-

ing subsequent coalitions. By taking advantage of this recurrence, we can create a dynamic

programming (DP) algorithm to calculate the bounded rational Shapley value much more effi-

ciently. Next, we explain this approach in more detail.

To calculate the Shapley value using Algorithm 3, we need to optimise all subsets C of the

grand coalition one by one. Recall that based on the flexibility heuristic of Eq (10), we initially

sort N such that Apartment 1 and Apartment n are the least and most flexible members,

respectively. Then, cOPT independently optimises all apartments using iOPT, and the set of

congested time slots given the independent optimisations are identified. If the result of the

optimisations (and the congested time slots) up to this point were stored, we could avoid re-

computing them 2n times. This is because these steps are repeated in each iteration of the col-

lective optimisation.

The next step of cOPT is re-optimising the members of C given the congested time slots.

This is always done starting from the least flexible member. Clearly, in any subset of N, one

member is the least flexible, which is exactly the least flexible member in many other subsets as

well. Therefore, that member is always re-optimised first in all those coalitions, which always

results in exactly the same load profile for that apartment and the same set of congested time

slots. For instance, when cOPT wants to optimise any coalition containing Apartment 1, it

always performs decongestion starting from Apartment 1, since it is the least flexible member

of the coalition. If the re-optimisation of Apartment 1 is successful (i.e., merely its own prefer-

ences are satisfied, not necessarily the threshold), the optimisation results and the newly com-

puted congested time slots can be reused in any other coalition of which Apartment 1 is a

member. If the re-optimisation is not successful, we revert back to the independently opti-

mised load profile and the corresponding set of congested time slots which were previously

stored in the memory. Likewise, when the next least flexible apartment in the coalition is re-

optimised the results can be stored in the memory so that they are later used by cOPT in re-

optimising other coalitions. Taking advantage of this recursion can greatly reduce the compu-

tation needed for optimising the 2n subsets of N. The following example further illustrates the

recursion.

Suppose that in a game of 5 apartments, we want to optimise {1}. We must first optimise

all apartments independently, which yields a load profile for all members as well as a set of
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congested time slots Λ;. If Apartment 1 can be re-optimised such that its temperature prefer-

ences are satisfied, a new set of congested time slots, Λ{1}, will be yielded. Let us assume that

re-optimising Apartments 1 indeed results in satisfying its preferences, but Λ{1} is not empty

(i.e., there are some congested time slots). Here, although the best-found cooling plan of

Apartment 1 will be reverted to its independently optimised cooling plan (since the threshold

is not satisfied), we can store the result of re-optimising Apartment 1 as well as Λ{1} so that

they can be reused in optimising any other coalition that contains Apartment 1. Now, suppose

that we would like to optimise {1, 2}. After using the stored results from re-optimising {1},

since Λ{1} is not empty, we need to also re-optimise Apartment 2 which will yield Λ{1,2}.

Regardless of whether Λ{1,2} is empty or not, every time a coalition that contains Apartment 1

and Apartment 2 (e.g., {1, 2, 4, 5}) is optimised, re-optimising Apartment 1 and Apartment 2

will result in the same cooling plans for these two, and the same Λ{1} and Λ{1,2}. Therefore, if

after each re-optimisation we stored the cooling plans along with the resulting set of con-

gested time slots, we would not need to compute them again in optimising the subsequent

coalitions. This way, for each coalition we would need to re-optimise only one apartment,

which is essentially the most flexible member. Furthermore, note that when Shapley values

are calculated using Algorithm 3, it is important to iterate through the subsets of the grand

coalition such that optimising any coalition would depend only on the previously visited

ones. To ensure this, we use the natural order of subsets in binary representation. In this

representation, a non-empty coalition C = {c1, c2, . . ., cm} is represented by the binary equiva-

lent of 2c1 � 1 þ 2c2 � 1 þ . . .þ 2cm � 1, where each bit indicates whether or not the corresponding

agent is a member of the coalition. For instance, {2, 3} comes immediately before {1, 2, 3} as

their corresponding binary numbers are 110 and 111, respectively. Table 3 illustrates the

recursion in the collective optimisation using the binary representation. For example, for

optimising {1, 2, 4}, the right column shows that the result of optimising {1, 2} is re-used,

which is itself optimised using the result of optimising {1}.

Based on the recursion described above, we can construct a DP algorithm to calculate the

Shapley value of the apartments more efficiently. This will enable us to (re-)optimise only one

Table 3. Binary representation of coalitions in the 5 apartments example. The underlined members are the only

ones in each coalition that may be re-optimised.

Coalition A5 A4 A3 A2 A1 From Memory

{} 0 0 0 0 0 −
{1} 0 0 0 0 1 {}

{2} 0 0 0 1 0 {}

{1, 2} 0 0 0 1 1 {1}

{3} 0 0 1 0 0 {}

{1, 3} 0 0 1 0 1 {1}

{2, 3} 0 0 1 1 0 {2}

{1, 2, 3} 0 0 1 1 1 {1, 2}

{4} 0 1 0 0 0 {}

{1, 4} 0 1 0 0 1 {1}

{2, 4} 0 1 0 1 0 {2}

{1, 2, 4} 0 1 0 1 1 {1, 2}

{3, 4} 0 1 1 0 0 {3}

{1, 3, 4} 0 1 1 0 1 {1, 3}

. . . . . . . . . . . . . . . . . . . . .

{1, 2, 3, 4, 5} 1 1 1 1 1 {1, 2, 3, 4}

https://doi.org/10.1371/journal.pone.0227049.t003
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apartment per coalition—the most flexible apartment—since the cooling plan of the rest of the

members can be used from the previously optimised coalitions. In fact, the time complexity of

calculating the Shapley value of all agents can be reduced to O(2n), down from O(n × 2n). How-

ever, this computational benefit comes at a memory space cost of O(|C|) for each C� N, which

implies an exponential space complexity overall. We next formalise the recurrence relation.

Let a coalition sorted in the ascending order of its members’ flexibility (according to Eq 10)

be C = {1, 2, . . ., m}, such that apartments 1 and m are the least and most flexible apartments,

respectively. Furthermore, let ΛC denote the set of congested time slots obtained by re-optimis-

ing m, given the set of congested time slots, ΛCn{m}, obtained by re-optimising the most flexible

apartment in Cn{m} (i.e., m − 1). As such, Λ; is the set of congested time slots after optimising

all apartments independently, and ΛN is the set of congested time slots obtained by re-optimis-

ing apartment n given ΛNn{n}. Moreover, let a vector of re-optimised cooling actions of the

most flexible apartment in coalition C over an entire day be denoted by Z
LCnfmg
m , which is

obtained by re-optimising m given ΛCn{m}. Note that if m cannot be re-optimised based on ΛCn

{m} such that its temperature preferences can be satisfied, then Z
LCnfmg
m will simply be the inde-

pendently optimised plan that is found by iOPT. Denote by lLCnfmgm the vector of best-found

cooling load of apartment m that is given by Eq (3) using Z
LCnfmg
m . We can now compute the vec-

tor of best-found aggregate cooling load, l0C ¼ ½l
01
C l
02
C . . . l0kC �, of a coalition, C 6¼ ;, using the fol-

lowing recursive formula:

l0C ¼

X

i2C

l00i if jCj ¼ 1 or LC 6¼ ;

l0Cnfmg þ lLCnfmgm if LC ¼ ;

8
>><

>>:

; ð14Þ

where l00i is the vector of best-found cooling actions of apartment i when it optimises its load

independently. Using Eqs (14) and (4) we can easily find the bounded rational value of C, i.e.,

vBR(C). Our experiments in the next section verify that the DP method results in a significant

reduction of computation time.

Evaluation of the payments of apartments

We now undertake an evaluation of applying the bounded rational Shapley value to the dis-

count scheme. To this end, we consider a block of 15 apartments participating in the scheme.

However, since there are myriad ways in which 15 apartments can require cooling over the

course of a day, it is impossible to systematically evaluate their payments with all possible com-

binations of setpoints, tolerances and comfort periods. Therefore, our experiments investigate

how the payments incurred by one apartment change, as its preferences are varied, while other

apartments’ preferences remain constant. This is to isolate the effect of each varying parameter

on the payments. Our aim is to simulate the preferences and thermal characteristics of the

apartments in a way that represents a severe case in terms of satisfying the optimisation con-

straints–most, if not all, other cases will be arguably easier to deal with. One such case is real-

ised when a maximum peak occurs in all congested time slots. The following preferences and

thermal characteristics ensure this.

We assume that the AC system in all apartments operate on a 10-minute cycle, i.e., a cool-

ing decision is made for each 10-minute interval in a day (Δt = 1/6hr), and thus, K = [1, . . .,

144]. We also assume that the AC systems in all apartments are similar, with an r value of

1.0 ˚C/h and consume at a rate of 4.0 kW when on (i.e., Pi = 4.0 kW). Therefore, the maximum

possible load of the entire block is 60 kW. When the apartments participate in the scheme, a
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threshold (ψ) at 32 kW (representing a 47% reduction), is set on the block’s load. If the aggre-

gate load throughout the day is always below 32 kW, the price per kWh of energy consumed

over the entire day is $0.08, otherwise it is $0.15. All apartments have the same setpoint of

22˚C, tolerance level of 1˚C, and require cooling from 15:00 to 21:30. As can be seen in Fig 5,

these assumptions ensure that when all apartments optimise their load independently, their

AC is run during exactly the same time slots, causing a maximum peak (i.e., 60 kW) in all con-

gested time slots. Moreover, to exclude the impact of thermal characteristics of the other 14

apartments, we assume that all leakage rates are equal and as follows: α = 0.005, β = 0.005, and

γ = 0.05. These numbers are based on realistic values learned from real data collected from a

number of apartments in Jeddah, Saudi Arabia.

The total cooling load when the 15 apartments, with the above settings and parameters,

optimise their load individually and collectively are shown in Fig 5. As is evident, using cOPT

(Algorithm 2), the apartments are able to find an alternative cooling plan such that in addition

to their individual temperature preferences, the threshold of 32 kW is also met.

Having established the satisfiability of the threshold constraint, we now vary the preferences

of one of the 15 apartments, and keep the preferences and thermal properties of others con-

stant. We compare the payments that the apartment can be charged for its consumption in

four different cases: (i) when the apartment does not sign up to the discount scheme and opti-

mises its load independently, (ii) when the apartment optimises its load as a member of the

coalition and benefits from the discount, but only its consumption in the grand coalition is

considered (unlike the Shapley value which considers all subsets of the grand coalition), (iii)

when the apartment optimises its load as a member of the coalition and each apartment

receives an equal share of the total saving from the discount (the difference between the pay-

ment of the grand coalition at the discounted and normal rates is equally divided and deducted

from the payment of each apartment), and (iv) when the apartment optimises its load as a

member of the coalition and receives its bounded rational Shapley value. We additionally

show the bounded rational Shapley value of the rest of the apartments, which are essentially

equal due to identical settings. The value of a coalition in this experiment is calculated as per

Eq (5), which represents its bounded rationality value.

In our experiments, we investigate the relationship between payments and different values

of setpoint temperature, setpoint deviation tolerance, and leakage rate, the results of which are

depicted in Fig 6. These comparisons enable us to develop an in-depth understanding of how

sensitive the bounded rational Shapley value and the other naive payment mechanisms are to

the variations in the aforementioned parameters. As expected, all three experiments verify that

the payments based on the bounded rationality Shapley value are consistently smaller than

what the apartment would have to pay if it did not participate in the scheme.

Fig 5. Total load when apartments optimise individually and collectively.

https://doi.org/10.1371/journal.pone.0227049.g005
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To explore the relationship between the setpoint temperature settings and payments, we

vary Tset from 22˚C to 26˚C, while leaving the other preferences unchanged. We calculate the

four payment cases described above for each setpoint temperature setting, and calculate the

corresponding payment that the apartment incurs for a single day of cooling. From Fig 6, it is

evident that the relationship between the setpoint temperature and payments follows our intu-

ition that when the setpoint is increased, less cooling is required and hence the payment

reduces. This reduction occurs until the setpoint is set so high that very little cooling is needed,

at which point the payments do not change. It is also evident that an apartment stands to bene-

fit from its participation in the scheme by receiving its bounded rational Shapley value, since

the payment it incurs for a setpoint setting is always lower than what it would incur if it chose

to optimise its cooling load independently. Somewhat unsurprisingly, the bounded rationality

Shapley value of other apartments across different setpoints of the apartment in question

remains equal but consistently higher. This shows that the extra flexibility of this apartment

(due to its higher setpoint) does not make other members better off or worse off. However,

higher setpoint results in less cooling, hence the lower payment compared to others. Moreover,

when the independently optimised and the bounded rationality Shapley value curves converge,

it means that the energy consumption in and out of the coalition are very close, which occurs

when the setpoint is set relatively high. Note that if the payment goes below zero–which could

possibly occur due to the proportion of discount and consumption–the equivalent credit can

be awarded to the apartments so that it can be used towards their bill. Furthermore, note that

when the setpoint is 22.0˚C, all payments (including those of other apartments) except the

independently optimised one are equal. This indicates that when all apartments have identical

settings, all methods result in the same payment. Therefore, in that case one can simply use the

equally divided discount method whose computation is much simpler than the bounded ratio-

nal Shapley value.

Previously, we described how θ is indicative of the sensitivity of an apartment to deviations

of the internal temperature from the setpoint. We next explore how the payment incurred

for a particular setting changes as θ is varied from 1.0˚C to 4.0˚C. Again, we calculate the

Fig 6. The payments of an apartment versus setpoint, deviation tolerance and leakage rate.

https://doi.org/10.1371/journal.pone.0227049.g006
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corresponding payment cases for each setting, for a single day of cooling. From Fig 6, it is evi-

dent that the relationship between θ and payments is almost linear. As θ is increased, the pay-

ments decrease, which shows that the amount of energy required to satisfy the setpoint

constraint becomes less and less. Therefore, an apartment with a high setpoint tolerance is eas-

ier to satisfy, which is one of the facts that we exploit in the collective optimisation to satisfy

the load threshold. Observe that similar to the setpoint experiment, the payments of the other

apartments are constant throughout.

In previous sections, we established how the leakage rate, γ is related to the level of insula-

tion of an apartment. We also mentioned how an apartment with a high γ value will typically

incur higher energy consumption. Following this trend, we now establish the relationship

between γ and the payment that one apartment incurs for a single day of cooling. To do so, we

vary γ from 0.05˚C/hr, representing a relatively high level of insulation to to 0.096˚C/hr, repre-

senting a relatively poorly insulated apartment. For each γ value, the payment that the apart-

ment incurs for a single day of cooling is then calculated based on the four payment cases. Fig

6 depicts that the relationship between the leakage rates and the payments is monotonically

increasing in all cases. The discounted payments are initially close, but as the apartment

becomes leakier, the payments diverge, which makes it more justifiable to choose the method

that is fair. Of the three parameters considered in these experiments, the payments seem to

exhibit more sensitivity to leakage rate, as small changes in γ results in relatively higher

changes in the payments. Also, the larger gap between the bounded rationality Shapley value

and the independently optimised curves indicates a higher sensitivity of the payments to ther-

mal leakage when the apartment is in the coalition than when it is not. This can further moti-

vate a leaky apartment to sign up to the scheme and benefit from the better insulation of other

apartments which require less cooling. Interestingly, the other apartments also stand to benefit

from the existence of a leakier apartment in the coalition. As can be seen in the plot, the

bounded rationality Shapley value of other apartments (whose leakage is less) slightly decreases

with higher values of γ. This is in contrast to the two previous experiments.

The three experiments discussed above demonstrate the interesting properties of the

bounded rationality Shapley value as a payment mechanism. We also note the computational

advantage of using the bounded rational Shapley value particularly when it is calculated using

the DP method described in subsection efficient calculation of the Shapley value using

dynamic programing, which significantly reduces computation time. Fig 7 shows a

Fig 7. Computation time of the Shapley value with different coalition sizes.

https://doi.org/10.1371/journal.pone.0227049.g007
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comparison of the time it takes to calculate the bounded rational Shapley value of an entire

block, when there are 3 to 15 apartments, using the DP method and without it. In both cases,

the Shapley value is calculated using Algorithm 3, which is itself a significantly more efficient

implementation of the standard Shapley value formula. It is evident that an exponential gain in

computation time is achieved with the DP method.

Conclusions and future work

In this article, we considered a real-world problem where a block of apartments participate in

a demand response program to ensure their aggregate cooling load does not exceed a certain

threshold. In return, the apartments receive a discount for coordinating their loads. In this

problem, a coalition of apartments needs to optimise its members’ use of air conditioning sub-

ject to the individual temperature preferences of each apartment and the given threshold. Due

to the magnitude of the constraints involved, computing the optimal load of a coalition is com-

putationally intensive. Instead of solving this problem optimally, we used a greedy algorithm

which produced suboptimal solutions at a higher speed. Consequently, a suboptimal value for

each coalition could be found, enabling us to calculate the cost of coalitions in a reasonable

time. However, calculating the Shapley value in this setting still entails an extra computational

challenge, namely solving an exponential number of optimisation problems. Since optimising

the load of coalitions with respect to all constraints can take a considerable amount of time,

and the agents do not have infinite computational resources, the agents are considered to be

computationally bounded rational. While using the Shapley value as a fair division of the opti-

mal value of the grand coalition may not be possible in practice, we proposed that based on the

additivity axiom of the Shapley value it is still possible to obtain a fair division using the afore-

mentioned greedy algorithm, which is fast but not necessarily optimal.

The Shapley value given the suboptimal coalition values (which we call the bounded ratio-

nal Shapley value), is not only easier to calculate, but also provides a division of the grand coa-

lition that is fair in the following sense: all agents are rewarded for their contribution to the

total cost of the block (at the discounted rate), and simultaneously penalised for their contribu-

tion to the extra cost that is due to the discrepancy between the suboptimal and optimal

solutions.

Since in many real world problems the number of agents is beyond what the Shapley value

can be easily calculated for, one of our concerns is the scalability of the bounded rational Shap-

ley value. Therefore, in future work, we would like to explore how our approach can be applied

to similar demand response scenarios consisting of large number of agents. We would be

interested in investigating how approximation techniques could be used to scale up the game,

without losing the fairness properties of the bounded rational Shapley value.

Supporting information

S1 Dataset. The temperature data and thermal parameters of individual apartments.
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