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Abstract: In the process of preparing CsPbBr3 films by two-step or multi-step methods, due to the
low solubility of CsBr in organic solvents, the prepared perovskite films often have a large number
of holes, which is definitely not conducive to the performance of CsPbBr3 perovskite solar cells
(PSCs). In response to this problem, this article proposed a method of introducing InBr3 into the
PbBr2 precursor to prepare a porous PbBr2 film to increase the reaction efficiency between CsBr and
PbBr2 and achieve the purpose of In (III) incorporation, which not only optimized the morphology
of the produced CsPbBr3 film but also enhanced the charge extraction and transport capabilities,
which was ascribed to the reduction of the trap state density and impurity phases in the perovskite
films, improving the performance of CsPbBr3 PSCs. At the optimal InBr3 concentration of 0.21 M,
the InBr3:CsPbBr3 perovskite solar cell exhibited a power conversion efficiency of 6.48%, which was
significantly higher than that of the pristine device.

Keywords: CsPbBr3; perovskite solar cells; InBr3; PbBr2; incorporation

1. Introduction

After more than ten years of rapid development, lead halide-based perovskite solar
cells have made remarkable achievements, but they seem to be in a vicious circle where
high efficiency and high stability are contradictory to each other. Although the power
conversion efficiency (PCE) of organic-inorganic hybrid perovskite solar cells (PSCs) has
increased from the initial 3.8% to more than 25% at present [1–5], yet due to the strong
volatility of common A-site organic cations, such as organic methylammonium (MA+)
and formamidinium (FA+), the organic components disappear under thermal stress [6,7].
In terms of thermal stability, the all-inorganic cesium-lead halide perovskite CsPbX3 (X:
iodine or bromine), which is formed by using more stable inorganic cesium ions (Cs+) to
completely replace organic cations, usually performs better stability [8–11] and is not prone
to degradation at temperatures above 400 ◦C [8,12]. This provides the necessary conditions
for the long-term stable use of CsPbX3 PSCs [13–16]. The key factor, which influences
the stability of CsPbX3, is the moisture in the air. The presence of humidity changes the
phase of the perovskite and reduces the stability of the photovoltaic device, but this does
not directly cause the decomposition of CsPbX3 (mainly I-rich CsPbX3) and the lack of
components [8,17,18]. Of course, this phase change is reversible when heated [19].
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Compared with other Cs-based inorganic perovskites, the most prominent advantage
of CsPbBr3 is that it has a highly stable crystal structure. Whether it is the orthorhombic
γ-phase at room temperature or tetragonal β-phase and cubic α-phase when heated, the
geometric structures of CsPbBr3 have not changed much, so the electronic structures of
different phases are also relatively similar [20]. For this reason, CsPbBr3 is also regarded as
a perovskite material that presents better stability to humidity, heat, and light at ambient
temperature [2,8,21,22]. Since Kulbak et al. first prepared the CsPbBr3 PSCs by a two-step
solution-processing method in 2015 [22], in less than ten years, the PCE of the CsPbBr3
based PSCs have reached more than 10% with an ultrahigh open-circuit voltage (VOC) of
1.62 V [23], but it still has a large distance compared with CsPbBr3 PSCs theoretical limit
PCE of 16.4% [24] and the maximized PCE of 19.0% for inorganic CsPbI3 PSCs [10].

In the process of preparing CsPbBr3 PSCs by the solution-processing method, the sol-
ubility of CsBr in commonly used polar solvents is poor, and the concentration differences
between CsBr and PbBr2 solutions are large, which leads to the derivative phases PbBr2-
rich CsPb2Br5 and CsBr-rich Cs4PbBr6 in the process of the generation of CsPbBr3 [25].
At the same time, the thickness of the non-optimized prepared perovskite film is low,
and the ability to absorb light is inadequate; numerous pinholes appear in the film [26].
Consequently, a decrease appears in the PCE of CsPbBr3 PSCs. Regardless of whether it is
a two-step sequential deposition or a multi-step method to prepare CsPbBr3, it is necessary
to deposit PbBr2 first and then use CsBr to convert PbBr2 to CsPbBr3. Improving the
PbBr2 film preparation process and adjusting the PbBr2 preparation method can achieve
the goals of enhancing the reaction efficiency of the precursor, accurately controlling the
subsequent growth of CsPbBr3 crystals, and reducing the generation of by-products, and
finally obtain perovskite film with a high purity phase, large grain size, and high cover-
age [23,27]. By precisely regulating the film-forming temperature and pore diameter of the
PbBr2 precursor film, Zhao et al. [23] minimized the compressive stress of the perovskite
film and prepared CsPbBr3 grains with a size of up to 1.62 µm, which not only made the
PCE of the all-inorganic CsPbBr3 perovskite solar cell reach 10.7%, the open-circuit voltage
(VOC) as high as 1.6 V, and it also kept the device extremely stable in a high-humidity air
environment. Lee et al. [28] introduced CZISSE QDs quantum dots into the PbBr2 film.
CZISSE QDs acted as seeds to promote the crystallization of CsPbBr3 and, at the same time,
penetrated into the m-TiO2 and CsPbBr3 perovskite films to increase the electron extraction
and transportability of TiO2, thereby improving the conversion efficiency of the device
by 20.6%.

In this work, InBr3 was introduced into the PbBr2 precursor solution, so that the
multiple ordered crystal orientations of lead bromide grew, and the original rough and
extremely uneven grain distribution of the PbBr2 film evolved into a large uniform-porous
film with pores. This morphological change ensured the full diffusion and uniform reaction
of CsBr in the PbBr2 film during the synthesis of CsPbBr3 and was conducive to the
formation of polycrystalline surface growth, high purity phase, and uniform morphology
InBr3: CsPbBr3 film. The PCE of the small area (0.09 cm2) InBr3:CsPbBr3 PSC obtained
after conditions optimization was 6.48%, in particular, the VOC was significantly improved.

2. Experiment Section
2.1. Materials

PbBr2 (99.99%) and CsBr (99.9%) were purchased from Xi’an Polymer Light Tech-
nology Corp. (Xi’an, China) and were not purified. InBr3 (99.9%) was purchased from
Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). Titanium diisopropoxide
bis (acetylacetonate; 75 wt% in 2-propanol) was purchased from Sigma-Aldrich (Louis,
MO, USA). Titanium dioxide (TiO2) paste (18 NR-T) was purchased from Greatcell Solar
Limited (Queanbeyan, Australia). N,N-Dimethylformamide (DMF, chromatographic grade,
≥99.9%), methanol (chromatographic grade, ≥99.9%), ethanol (chromatographic grade,
≥99.8%), and isopropanol (≥99.5%) were purchased from Aladdin (Shanghai, China). The
fluorine-doped tin oxide coated glass (FTO, 6 Ω/�) and carbon paste were purchased from
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Opvtech New Energy Co., Ltd. (Yingkou, China) and Shanghai MaterWin New Materials
Co., Ltd. (Shanghai, China), respectively.

2.2. Device Fabrication

All the following processes were carried out in a fume hood environment, without
artificial control of the temperature, humidity, and airflow rate of the surrounding environ-
ment. The fluorine-doped tin-oxide-coated glasses were patterned by laser etching and
cleaned by ultrasonic with acetone, isopropanol, ethanol, and deionized water. After being
dried by high purity nitrogen, the FTO were further cleaned by an ultrasound treatment for
15 min and washed with ethanol. Afterward, the pre-conditioned FTO were spin-coated
with 0.15 M titanium diisopropoxide bis(acetylacetonate) in 1-butanol at 5000 rpm for
20 s and were heated at 125 ◦C for 5 min. After these substrates returned to room tem-
perature, the above procedure was repeated twice with 0.3 M titanium diisopropoxide
bis(acetylacetonate) in 1-butanol and compact TiO2 (c-TiO2) was obtained. After that, the
mesoporous TiO2 (m-TiO2) films were deposited on the above cooling c-TiO2 by spin-
coating at 5000 rpm for 30 s by means of TiO2 paste diluted with ethanol. Further, the
obtained layers were dried at 125 ◦C for 5 min followed by the muffle furnace at 500 ◦C for
30 min. After the muffle furnace was lowered to room temperature, pre-coated substrates
were acquired.

Perovskite films were synthesized by a multistep solution-processing method. 0.03,
0.09, 0.15, 0.21, and 0.27 mmol InBr3 were added into 1 mL DMF of PbBr2 (1 M) and stirred.
After the InBr3 was completely dissolved, the DMF mixed solution was spin-coated on
pre-coated substrates at 2000 rpm for 30 s and then heated to 90 ◦C for 30 min. Afterward,
the methanol solution of CsBr (0.07 M) was spin-coated on the InBr3:PbBr2 film at 5000 rpm
for 30 s and heated to 250 ◦C for 5 min, and this step was repeated five times. Next, the
prepared sample was placed in isopropanol and soaked for 30 min and annealed at 250 ◦C
for 15 min to remove excess CsBr. Finally, the carbon paste was deposited coated on the
perovskite films by using the doctor blade coating method and dried at 100 ◦C for 10 min.
The effective area of the back electrode was 3 mm × 3 mm, which defined the active area
of each device.

2.3. Characterization

The morphologies of the synthesized films and energy-dispersive X-ray spectroscopy
(EDS) mapping images were observed by a scanning electron microscope (SEM, FEI MAG-
ELLAN 400, FEI, Hillsboro, OR, USA). The crystal structure of the synthesized sample was
determined by means of X-ray diffraction (XRD, Cu Kα radiation, λ = 1.5418 Å, Rigaku
D/max2500, Tokyo, Japan). The steady-state photoluminescence (PL) spectra of perovskite
films were performed using a Renishaw InVia micro-Raman spectroscopy system (Ren-
ishaw, Wotton-under-Edge, UK) with a 473 nm excitation source. Ultraviolet photoelectron
(UPS) and X-ray photoelectron spectroscopy (XPS) were carried out by an X-ray photoelec-
tron spectrometer (EscaLab Xi+, Thermofisher, Waltham, MA, USA). UV-Vis spectrometer
(UV-3600, Shimadzu, Kyoto, Japan) was employed to measure the absorption spectrum in
the range of 200 nm to 800 nm. The current-voltage (J–V) characteristics and the external
quantum efficiency (EQE) of the fabricated solar devices were measured by a solar cells
test system (XP3000, Sanyou, Beijing, China) and an EQE measured system (QTest Station
1000A, CROWNTECH, Inc., Macungie, PA, USA), respectively. The impedance was exe-
cuted at 10−1~107 Hz by using an impedance analyzer in a dark environment (Solartron
1260 coupled to the dielectric interface 1296, Farnborough, UK).

3. Results and Discussion

In the two-step or multi-step method of preparation of perovskite, the quality of the
PbBr2 film determined the morphology of the following perovskite film. Figure 1 shows
the top-view SEM images of PbBr2 films by introducing different concentrations of InBr3.
When there was no InBr3 in the PbBr2 precursor solution, as shown in Figure 1a, the
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surface of the obtained sample was rough, and the PbBr2 grain distribution was extremely
uneven, and a large area of exposed m-TiO2 could be directly observed. When the PbBr2
precursor solution was introduced into 0.03 M InBr3, as shown in Figure 1b, the surface
of the PbBr2 film was flat, and the coverage of the m-TiO2 film was increased, and the
observable exposed m-TiO2 area was significantly reduced. With the gradual increase in
the concentration of introduced InBr3 (Figure 1c–f), the PbBr2 film appeared porous, but
the number of pores decreased as the concentration of InBr3 increased. Meanwhile, the
porosity volume increased as the concentration of InBr3 increased. From the cross-sectional
view of PbBr2 shown in Figure S1 (Supplementary Materials), we could clearly see that
the pure PbBr2 film has a flat surface and a uniform thickness of about 50~60 nm, and
the m-TiO2 was filled with PbBr2. As the concentration of InBr3 introduced gradually
increased, the thickness of the PbBr2 film also gradually increased (about 70 nm, 90 nm,
100 nm, 120 nm, 160 nm), and the film roughness increased. The above data could clearly
demonstrate that the introduction of InBr3 could effectively affect the morphology of the
PbBr2 film. The increase in the porosity volume, roughness, and thickness of the PbBr2 film
facilitated the diffusion of the subsequent CsBr solution, increased the reaction efficiency
with CsBr, and then achieved the full growth of CsPbBr3 grains [29,30].
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To investigate the influence of InBr3 on the structure of PbBr2, XRD patterns of
InBr3:PbBr2 films are shown in Figure 2a. It could be seen that Pure PbBr2 was in the or-
thorhombic phase crystal structure (PDF#84-1181) [23]. When InBr3 was introduced, for all
concentrations of InBr3 used, two new diffraction peaks of (011) and (200) crystallographic
planes of PbBr2 could be found at 2θ of 20.94◦ and 22.05◦, but no diffraction peak belonging
to InBr3 or other protobromides were found. Since InBr3 did not exist in the form of simple
In3+ and Br- in the DMF solution, it was self-ionized and formed various complexes [31–33].
Therefore, we speculated that in the process of PbBr2 crystal growth, In (III) could be in the
form of free In3+ to replace a part of the Pb vacancy or exchange it with Pb, or the In cluster
was directly bound to host lattice constituents [33–35]. Meanwhile, the PbBr2 crystal was
made to grow along multiple ordered crystal orientations. When using the XPS technique
to prove the presence of In in PbBr2 films, not surprisingly, characteristic peaks belonging
to Br 3d, Pb 4f, and In 3d were found in the XPS spectra for the pure PbBr2 and InBr3:PbBr2
films, as shown in Figure 2b. According to Figure 2c–e, the core level In3d5/2 and 3d3/2
were located at 445.4 eV and 452.9 eV, respectively, and the Pb 4f5/2 and 4f7/2 peaks in Pb
4f spectrum and Br 3d3/2 and 3d5/2 peaks in Br 3d spectrum all moved towards higher
binding energies, which showed that Pb-Br interactions were enhanced after In3+ or In
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cluster incorporation [36]. Additionally, the EDS mapping was also utilized to confirm the
presence of In in the InBr3:PbBr2 films. Figure S2 (Supplementary Materials) demonstrated
that all elements were uniformly distributed in the corresponding film, especially, there
was no aggregation of In elements.
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Figure 3 depicts the top-view SEM images of perovskite films without and with InBr3
with the corresponding cross-section SEM images inserted in the inset. The size of the
crystal grain of the pure CsPbBr3 was quite different, the film uniformity and coverage were
also bad, and the bare m-TiO2 could be clearly seen. As the concentration of introduced
InBr3 gradually increased (0.03~0.21 M), the coverage of m-TiO2 by CsPbBr3 films also
gradually increased, and the size and number of pores in each film showed a downward
trend. This morphological change was conducive to the performance of the perovskite cells.
However, when the concentration of InBr3 was further increased by 0.27 M, there were
again obvious holes in the CsPbBr3 film. This result indicated that the quality and surface
CsPbBr3 film depended on the morphology of the corresponding porous InBr3:PbBr2
film greatly that was, the morphology of CsPbBr3 film could be modified by changing
InBr3 concentration.

The XRD patterns shown in Figure 4a revealed that all CsPbBr3 films had a cubic
structure (PDF#54-0752) [23], and the positions of the diffraction peaks were not signifi-
cantly shifted to high or low angles, which demonstrated that, although In cluster could
promote growth along multiple ordered crystal orientations, it could not change the phase
of CsPbBr3. When the concentration of the introduced InBr3 was 0.00 M and 0.03 M, there
existed two peaks located at 11.7◦ and 29.4◦, respectively, which belonged to (002) and
(213) lattice planes of the CsPb2Br5 phase [37]. As the concentration of InBr3 was further
increased (0.09~0.27 M), no obvious impurity peak belonging to CsPb2Br5 or Cs4PbBr6
phase could be observed. In fact, the control of the reaction rate between CsBr and PbBr2
was a necessary condition for preparing CsPbBr3 films with a high purity phase and high
coverage. Based on Figure 1, the appropriate concentration of InBr3 could make the PbBr2
film have higher porosity, which provided more effective diffusion paths for the diffusion
of CsBr methanol solution in the PbBr2 film, and appropriately increased the contact area
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between CsBr and PbBr2. That could also ensure the full growth of CsPbBr3 crystal grains
and, at the same time, could prevent the formation of the impurity phase due to excessive
PbBr2 or CsBr. However, if the concentration of the InBr3 introduced into PbBr2 was too
low or too high, it was not conducive to controlling the reaction rate of CsBr and PbBr2. In
the process of the reaction, due to the incomplete reaction of the precursors or the excessive
growth of crystal grains, the morphology of the CsPbBr3 film was easily deteriorated,
accompanied by the formation of byproducts. Further XPS was employed to certify the
presence of the incorporated In3+ in the InBr3:CsPbBr3 film. Figure S3 (Supplementary
Materials) exhibited the XPS of Cs 3d, Pb 4f, Br 3d, and In (Ш) 3d for the CsPbBr3 and the
InBr3:CsPbBr3 films, respectively. As seen in Figure 4b, compared with CsPbBr3 film, two
In signals corresponding to In 3d5/2 and 3d3/2 core levels were detected in InBr3:CsPbBr3
film, and Cs 3d, Pb 4f, and Br 3d all moved towards higher values, which means that the
chemical state of the [PbBr6]4- octahedral was altered and Pb-Br and Cs-Br interactions
were enhanced after replacing Pb2+ (1.7497 Å) with In3+ (1.6590 Å) with a smaller ion radius
accompanied by the size of the [PbBr6]4- octahedral and the voids decreased [35]. The
contraction of lattice and the enhancement of the spatial symmetry of the crystal structure
caused by the incorporation of In3+ or In cluster could result in an efficient charge transport
along with multiple directions, which perhaps was one of the important factors to improve
the performance of CsPbBr3 cells [35,38]. The EDS mapping was used to characterize the
cross-sectional of InBr3:CsPbBr3, and it was confirmed that In was evenly distributed inside
the perovskite, which indicated the successful incorporation of CsPbBr3 by In (Figure S4,
Supplementary Materials).
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were enhanced after replacing Pb2+ (1.7497 Å) with In3+ (1.6590 Å) with a smaller ion radius 
accompanied by the size of the [PbBr6]4- octahedral and the voids decreased [35]. The con-
traction of lattice and the enhancement of the spatial symmetry of the crystal structure 
caused by the incorporation of In3+ or In cluster could result in an efficient charge transport 
along with multiple directions, which perhaps was one of the important factors to im-
prove the performance of CsPbBr3 cells [35,38]. The EDS mapping was used to character-
ize the cross-sectional of InBr3:CsPbBr3, and it was confirmed that In was evenly distrib-
uted inside the perovskite, which indicated the successful incorporation of CsPbBr3 by In 
(Figure S4, Supplementary Materials). 

Figure 3. Top-view and cross-sectional (insets) SEM images of CsPbBr3 films by introducing different concentrations of
InBr3: (a) 0.00 M; (b) 0.03 M; (c) 0.09 M; (d) 0.15 M; (e) 0.21 M; (f) 0.27 M.

Subsequently, UV-vis Spectrometer, UPS, PL were used to characterize the cells with
the FTO/c-TiO2/m-TiO2/CsPbBr3 structure. Figure S5a (Supplementary Materials) shows
the absorption spectra of the CsPbBr3 with different concentrations of InBr3. The absorption
edge of each perovskite film was at approximately 530 nm within the visible region,
which revealed that the concentration change of the introduced InBr3 did not significantly
affect the light absorption range of CsPbBr3. Correspondingly, the calculated bandgaps
(2.34 eV) did not reveal obvious and meaningful changes (Figure S5b, Supplementary
Materials). As the concentration of InBr3 increased, so did the film’s capacity to absorb
visible light. This was mainly attributed to the phase-purity of the perovskite film and the
full growth of crystal grains, which was beneficial to improve the short current density
(JSC) of the cells. The mechanism of this phenomenon was mainly attributed to the partial
substitution of Pb2+ by In3+ or In cluster [34,35]. Figure 5a,b present the UPS spectra
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of the pristine and InBr3 (0.21M):CsPbBr3 films. By formula valence band maximum
EVBM = 21.22 eV − (Ecutoff − Eonset) [39,40], it could be calculated that the valence band (EV)
of CsPbBr3 and InBr3:CsPbBr3 were −5.60 and −5.28 eV, respectively, which was ascribed
to the rearrangement of electrons outside the Cs, Pb, and Br atoms after the incorporation
of In3+ or In cluster [34,35]. Combined with Figure S5b, the corresponding calculated
conduction band (EC) was −3.26 and −2.94 eV, and the energy band diagram of isolated
semiconductors of the PSCs using carbon electrodes is plotted in Figure 5c [39,41]. For HTL-
free PSCs, Ev of the perovskite should be deeper than the work function (WF) of the carbon
electrode [39] so as to facilitate the extraction of photogenerated holes and reduce the
energy loss of the holes during the transmission process [39]. Obviously, the incorporation
of In3+ or In cluster effectively reduced the difference in interface energy levels, thereby
facilitating the charge extraction and transfer and enhancing the photovoltaic performance
of PSCs. In addition, the PL was conducted to analyze the carrier transfer behavior of
CsPbBr3 and InBr3:CsPbBr3 films. As shown in Figure 5d, all perovskite films showed
the typical emission band around 523 nm. InBr3 (0.21 M):CsPbBr3 film showed a strong
quenching in contrast with the pristine and other CsPbBr3 films introduced with InBr3,
which indicated that InBr3 could effectively inhibit the carrier recombination and enhance
the charge extraction ability. The main reason behind this was that the defect density
caused by the pinholes of CsPbBr3 films surface, and the impurity phase of CsPbBr3 films
are obviously improved by adding InBr3, and the enhancement of the spatial symmetry of
the crystal structure caused by partial substitution of Pb2+ by In3+ or In cluster [34,35,39,42].
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The HTL-free PSCs were synthesized based on the standard mesoscopic architecture
of c-TiO2/m-TiO2/InBr3:CsPbBr3/carbon, and the cross-section of the complete device
is given in Figure 6a. The current J–V characteristics of relevant devices under reverse
scanning are presented in Figure 6b, the corresponding forward scanning curve is shown
in Figure S6 (Supplementary Materials), and the key parameters including Jsc, Voc, FF,
PCE, and hysteresis index (HI) are summarized in Table 1. The PCE of all devices with
InBr3 introduced were better than that of the pristine ones, and all parameters showed a
regular trend of first increasing and then decreasing with an increase of the concentration
of InBr3 introduced. When the concentration of InBr3 was 0.21 M, the corresponding
device exhibited the best performance. Compared with the pristine device, the PCE of
InBr3 (0.21 M):CsPbBr3 device was significantly improved from 3.29% to 6.48% with the
continuously increased JSC of 4.21 and 6.52 mA/cm2, Voc of 1.28 and 1.38 V, FF of 0.61
and 0.72, and HI of 0.25 and 0.03. When the InBr3 concentration was further increased
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to 0.27 M, the JSC of the device dropped by about 0.5 mA/cm2, while the Voc and FF did
not change significantly, which was due to the deterioration of the InBr3:CsPbBr3 film
morphology. The PEC of PSCs was determined by a variety of complex factors. According
to the experimental results of SEM, UV-vis, UPS, and PL, the improvements of Voc and FF
were due to the rise in the energy difference between the perovskite conduction band and
electron transport layer, thereby reducing the energy loss of the holes in the transmission
process. The improved Jsc was not only ascribed to the quality of the InBr3:CsPbBr3 film
morphology or the increase in film coverage to absorb more photons to generate more
electrons but also reduced vacancy defects in the optimized CsPbBr3 films to improve
the charge extraction and transfer process after the incorporation of In3+ or In cluster.
In addition, the smaller hysteresis of the InBr3:CsPbBr3 cells performed than that of the
pristine device might be enabled by the passivation function of InBr3 to diminish the
defects of Pb2+ and Br− [34,35]. Figure 6c shows the external quantum efficiency (EQE)
spectrum. The highest EQE value of 84% was achieved at the InBr3 concentration of 0.21 M,
whereas the reference devices with less or excessive InBr3 concentration displayed lower
EQE responses. This regular change was consistent with the results of J–V characteristics.
Additionally, the integrated current density calculated by the EQE curve of each device
was very close to the JSC, and the mismatch was less than 5%. Figure 6d demonstrates the
Nyquist plots of pristine CsPbBr3 and InBr3 (0.21 M):CsPbBr3 devices measured at a reverse
potential of 1.0 V and the corresponding equivalent circuit model. Table S1 (Supplementary
Materials) also provides a list of the fitting values of the series resistance (Rs) and the charge
recombination resistance (Rrec). After the introduction of InBr3, Rrec increased from 765
to 1152 Ω, which showed that the incorporation of In had efficient repression of carrier
recombination due to the significantly improved film formation quality of perovskites, thus
reducing the trap state density and improving carriers mobility [39].
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Figure 5. (a,b) UPS spectra of the pristine and InBr3 (0.21 M):CsPbBr3 films. The linear fittings
indicate the photoemission cutoff energy boundary (Ecutoff) and onset (Eonset) values. (c) Energy level
diagram for the carbon-based pristine and InBr3 (0.21 M):CsPbBr3 PSCs. (d) PL spectra of the cells by
introducing different concentrations of InBr3.
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Table 1. Key J–V parameters of the InBr3:CsPbBr3.

Samples Scan JSC (mA/cm2) VOC (V) FF PCE (%) HI

InBr3: 0.00 M Forward
Reverse

4.05
4.21

1.27
1.28

0.48
0.61

2.46
3.29 0.25

InBr3: 0.03 M Forward
Reverse

4.82
4.87

1.27
1.29

0.53
0.62

3.24
3.90 0.17

InBr3: 0.09 M Forward
Reverse

5.14
5.08

1.31
1.32

0.59
0.65

3.97
4.36 0.09

InBr3: 0.15 M Forward
Reverse

5.45
5.49

1.33
1.35

0.64
0.68

4.63
5.04 0.08

InBr3: 0.21 M Forward
Reverse

6.49
6.52

1.37
1.38

0.71
0.72

6.31
6.48 0.03

InBr3: 0.27 M Forward
Reverse

5.95
6.01

1.35
1.37

0.66
0.70

5.30
5.76 0.08

4. Conclusions

In the process of preparing the CsPbBr3 film by the multi-step method, we introduced
InBr3 into the PbBr2 precursor, so that the PbBr2 film was transformed from a flat membrane
to a porous membrane, which was beneficial to improve the reaction efficiency of CsBr
and PbBr2, reduced the impurity in CsPbBr3, and optimized the surface morphology, and,
finally, enabled the performance of CsPbBr3 PSCs to be significantly improved. When
combined with host lattices, the In3+ or In cluster could effectively suppress the carrier
recombination in the CsPbBr3 film and shift up the Ev of CsPbBr3, thereby enhancing the
charge extraction and transportation capabilities. When the InBr3 concentration in the PbBr2
precursor solution was 0.21 M, the InBr3:CsPbBr3 device presented the best photovoltaic
performance with a PCE of 6.48% and, especially the VOC significantly increased by 100 mV
compared with the pristine CsPbBr3. These research results confirmed that InBr3 has solid
potentials for improving the performance of CsPbBr3 PSCs and also provided a reference
for InBr3 or some other metal bromide applications in the inorganic CsPbI3 PSCs field and
developmental direction.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11051253/s1, Figure S1: Cross-sectional SEM images of PbBr2 films by introducing

https://www.mdpi.com/article/10.3390/nano11051253/s1
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different concentrations of InBr3: (a) 0.00 M; (b) 0.03 M; (c) 0.09 M; (d) 0.15 M; (e) 0.21 M; (f) 0.27
M; Figure S2: The SEM image of InBr3:PbBr2 film (a) and the corresponding EDS mapping of Pb
(b), Br (c) and In (d); Figure S3: XPS spectra of InBr3:CsPbBr3 film; Figure S4: The cross-sectional
SEM image of InBr3:CsPbBr3 film (a) and the corresponding EDS mapping of Cs (b), Pb (c), Br (d)
and In (e); Figure S5: UV-vis absorption spectra (a) and (αhν)2 vs. hν plots (b) of the modules by
introducing different concentrations of InBr3; Figure S6: J–V curves with forward and reverse voltage
scanning for the InBr3:CsPbBr3 devices: (a) 0.00 M; (b) 0.03 M; (c) 0.09 M; (d) 0.15 M; (e) 0.21 M; (f)
0.27 M; Table S1: Electrochemical Impedance Spectroscopy parameters of the pristine and InBr3 (0.21
M):CsPbBr3 modules.
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