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Vaccinology at the beginning of the 21st century
Andreas Wack and Rino Rappuoli
Today, the main challenges for vaccinologists include

improving vaccines against as yet undefeated pathogens, rapid

identification and response to emerging diseases and

successful intervention in chronic diseases in which ongoing

immune responses are insufficient. Reverse genetics and

reverse vaccinology are now used to generate rapidly new

vaccine strains and to mine whole genomes in the search for

promising antigens. The rational design of adjuvants has

become possible as a result of the discovery of the receptors

that recognize microbial patterns and lead to dendritic cell

activation. Antigen-loaded dendritic cells, DNA in naked,

formulated or viral form, and other delivery systems are used to

maximize immune responses. Although work on the ‘easy’

vaccines has already been completed, it is hoped that a

combination of conceptual and technical innovation will enable

the development of more complex and sophisticated vaccines

in the future.
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Introduction
Although the eradication of smallpox in the 1970s and of

poliomyelitis hopefully in the coming years mark two of

the most important milestones in medical history, we now

face an unprecedented succession of new pathogens

which jump species barriers to infect humans, and the

frustration deriving from the inability to control devastat-

ing diseases such as HIV, malaria and tuberculosis. This

review will cover the recent progress in vaccinology

(Figure 1), largely resulting from dramatic technical

innovation that is now reaching the clinic, as well as

the huge challenges posed by old and new pathogens

that are facing us.

The diseases to fight
The three ‘big killers’, the pathogens that most heavily

afflict global health, are HIV, mycobacterium and plas-
www.sciencedirect.com
modium. Whereas the latter two represent long-term

companions of the human species, HIV is a virus that

spread in the human population only about 25 years ago

and has a nonhuman primate origin [1]. In fact, most, if

not all, of the recently emerging diseases go back to

animal reservoirs, from which they infect humans through

close contact during hunting and farming, in live animal

markets or through food processing, preparation or con-

sumption. An example is Ebola virus, which, after three

outbreaks between 1976 and 1979, has appeared in the

human population nine times since 1994, with each out-

break resulting from the handling of dead gorillas, chim-

panzees or duikers, which in turn are thought to have

been infected by an unknown natural host [2�]. The

variant Creutzfeldt–Jacob disease reached the population

through the food chain, from ‘rendered’ sheep and cow

carcasses fed to cows which were subsequently consumed

by humans. The severe acute respiratory syndrome

(SARS)–coronavirus sequences from the earliest identi-

fied cases are identical to those found in palm civets and

raccoon dogs in animal markets and farms [3�], strongly

suggesting an animal origin for this disease.

Rapidly changing ecosystems and human behavior, an

ever-increasing density of human and (farmed) animal

populations and their close vicinity, poverty, a high

degree of mobility and many other factors contribute to

the more frequent occurrence and often rapid dissemina-

tion of new diseases. Another example of this is the arrival

and persistence of West Nile virus in the USA, which is

probably a result of increased mobility, an exceptionally

broad host range and climatic changes [4]. Among the re-

emerging diseases of the past few years, diphtheria and

cholera should be mentioned [5], as well as the frequent

appearance of multidrug-resistant bacteria and the cases

of anthrax infection as a result of deliberate release in

2001.

In the case of influenza, concern for the advent of a new

pandemic has been fuelled by reports of 89 human

infections by the avian H5N1 virus strain (where H stands

for hemagglutinin and N for neuraminidase, the two

major surface glycoproteins of the virus) in 2004, leading

to 52 deaths (http://www.who.int/csr/disease/avian_

influenza/en/). This was the third time in the space of

a few years (after the previous outbreaks of infection in

1997 and 2003) that H5N1 avian flu viruses caused dis-

ease and death in humans. An H9N2 avian strain caused

infection in humans in 1999 and 2003. Because the

world’s population has not been exposed to these strains,

it is immunologically naı̈ve, and these or any other avian

flu strains with new surface glycoproteins would meet no
Current Opinion in Immunology 2005, 17:411–418
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Figure 1
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Possible intervention points for vaccine improvement. Schematic view of a pathogen- or vaccine-induced immune response. Vaccines or

pathogens cross epithelial barriers and are taken up by antigen-presenting cells such as DCs. Interaction between pattern recognition receptors

(PRRs) and their agonists activate DCs, resulting in increased antigen presentation, cytokine production and co-stimulation. CD4+ and CD8+

T cells recognize antigen presented by DCs and are activated. Cognate interaction between primed CD4+ T cells and B cells activates the

B cells, resulting in clonal expansion and antibody production. DC activation also leads to inhibition of the regulatory effect of CD4+CD25+ Treg

cells. Fully activated CD8+ cells can target tumor cells and pathogen-infected cells. The letters (a–i) indicate processes where improved vaccines

can lead to more efficient immune responses: (a) The site of administration influences the type of immune response and enables the usage of

lower vaccine doses [19,20]. (b) Particulate antigen is taken up more easily by macrophages and DCs than soluble antigen [47]. (c) TLR agonists

and other immunostimulants binding to PRRs increase the activation of DCs [32–35,36�,37�,38,40]. (d) DCs matured and loaded with antigen

in vitro are efficient vaccines [41��,42,43]. (e) DNA vaccination leads to efficient antigen presentation on MHC class I [48,49,50�,51��,52,53].

Crosspresentation of antigen on MHC class I of host DCs is facilitated after vaccination with antigen-loaded DCs undergoing delayed apoptosis

[44�]. (f) Cytokines can be added in protein or DNA form as natural adjuvants [32,33]. (g) Recruited NK cells can be an early source of Th1-driving

cytokines [39�]. (h) Vaccines can break tolerance when the suppressive effect of CD4+CD25+ Treg cells is overcome [54�]. (i) Pre-existing T cells

specific for tumor antigens not contained in the vaccine expand after vaccination and predominate in the antitumor response [55,56�].
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resistance provided by existing immunity and could

rapidly expand. Once an avian strain has developed a

more efficient means of human-to-human transmission,

devastating pandemics, such as those arising in 1918, 1957

and 1968, could ensue. It should be noted, however, that

older studies found seroprevalence rates for avian flu

strains among Chinese rural populations to be between

2% and 7% for H5 viruses and between 15% and 38% for

other avian strains [6,7]. Thus, it might in fact be the

quality of surveillance, rather than the frequency of out-

breaks, that has increased over the past few years [8].

However, the contact between humans and pathogens in

animal reservoirs is likely to intensify, and, consequently,

the emergence or re-emergence of diseases will occupy

vaccinologists frequently in the future.

How to react to new pathogens
One of the most important future challenges will be to

respond promptly to emerging diseases such as those

mentioned above. A striking example for rapid reaction

was in the case of the SARS outbreak, where the genome

sequence was publicly available in less than a month after

the virus was identified [9]. This enabled the speedy

development of diagnostic tools, as well as the identifica-

tion and recombinant expression of targets for vaccines

and therapeutic agents [10–12].

For the influenza virus, in addition to the annual defini-

tion of the relevant strains to be included in the vaccine

for the following season, the World Health Organization

closely monitors cases of avian flu (for further information,

see the World Health Organization website indicated

above), and prototype vaccines for these strains are being

developed. Apart from almost complete lack of protection

in the population, an additional threat of the avian flu

H5N1 isolate from 2003 is that it kills embryonated eggs,

the traditional virus growth substrate used for influenza

vaccine production. Such problems can now be solved,

owing to the discovery some years ago that influenza virus

can be generated entirely from transfected DNA (reverse

genetics [13,14]). In this particular case, Webby et al. [15�]
have used polymerase chain reaction-based mutagenesis

to replace the hemagglutinin cleavage site (which was

shown to be the cause of high pathogenicity) of the H5N1

strain with the sequence from a nonpathogenic strain.

Vero cells were then transfected with plasmids encoding

the neuraminidase and mutated hemagglutinin from the

circulating strain, together with the plasmids encoding

the remaining proteins from the laboratory-optimized

PR8 strain. The resulting vaccine strain was successfully

grown in eggs and shown to be nonpathogenic and stable.

Thus, the use of reverse genetics enables rapid produc-

tion of a reference vaccine virus in response to the

emergence of a new influenza variant [15�,16]. In addi-

tion, reverse genetics can be used for more far-reaching

vaccination strategies, such as the construction of

‘consensus’ strains expressing conserved amino acid
www.sciencedirect.com
sequences or more than one version of the surface gly-

coproteins, or additional immunoenhancing molecules,

such as cytokines [8]. Much research effort is also being

invested into the development of improved cell culture

systems that can replace completely the use of embryo-

nated eggs in vaccine production and would render the

production process more flexible and controllable.

Several reports have addressed the question of how to

stretch the available supply of vaccine doses in cases of

shortage or in the face of a pandemic. Two studies

indicated that intradermal, rather than intramuscular,

application of 40% [17�] or 20% [18�] of the usual vaccine

dose leads to equal or better immune responses. Both

theoretical models [19] and trials [20] have shown that

immunizing a high proportion of children, known to have

a high rate of infection and an important role in transmis-

sion, also decreases the incidence of influenza in older age

groups, a phenomenon known as herd immunity and

described in previous trials in Michigan and Japan [21,22].

Reverse vaccinology
The genomic revolution has opened up a completely new

approach to vaccine discovery. For pathogens that do not

grow in vitro, the availability of the genome sequence has

enabled the development of recombinant vaccines, as has

been carried out for hepatitis B virus (HBV) and is under-

way for hepatitis C. In regard to bacteria, group B

meningococcus posed insurmountable obstacles to con-

ventional vaccinology approaches; these were eventually

overcome by mining the information from the sequenced

genome [23]. A total of 600 potential vaccine candidates

were predicted by computer analysis, 350 of which were

expressed and tested for immunogenicity [24]. Some of

these candidates are now in clinical trials. This genome-

based approach, called reverse vaccinology, is now used

routinely in vaccine development, and is a major tool in

the quest for vaccines against pneumococcus, group B

streptococcus and chlamydia (see also Update).

Recently, genome sequencing of both Plasmodium falci-
parum [25] and its main vector, Anopheles gambiae [26], has

sparked off new hopes for an efficient vaccine against

malaria. For the rodent models of this disease, subtractive

cDNA techniques were used to identify genes that are

only expressed in pre-erythrocytic stages of the parasite

[27,28]. Plasmodium mutants deficient in one of these

genes, uis3, are blocked in their early liver-stage devel-

opment and all subsequent stages, and therefore do not

lead to disease. When uis3-deficient sporozoites are used

as genetically attenuated vaccines in mice, they confer

long-lasting, stage-specific protection [29��]. This is a

promising example of how molecular approaches are

employed for the rational design of new vaccines.

Another example of encouraging progress towards a

malaria vaccine was reported by Alonso et al. [30�]. They
Current Opinion in Immunology 2005, 17:411–418
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describe Phase IIb trials of a subunit vaccine consisting of

a recombinant protein (expressed in yeast) composed of

the carboxy-terminal of the P. falciparum circumsporo-

zoite protein and the HBV surface antigen. This fusion

protein, together with unfused HBV surface antigen

proteins, forms particles. The final vaccine formulation

includes the adjuvant AS02A, an oil in water emulsion

containing the immunostimulants monophosphoryl lipid

A (MPL) and Quillaja saponaria fraction 21. It had pre-

viously been shown that, indeed, a CD4+ T cell response

to an epitope contained in the vaccine correlates with

protection from infection and disease [31�]. In this trial in

children, the vaccine showed an efficacy of 30% and 58%

in preventing clinical episodes and severe episodes,

respectively [30�].

Adjuvants
The past ten years have changed our vision of the

immune response to pathogens. It has become clear that

the degree and type of antigen-specific, clonal B and T

cell responses (acquired immunity) depend crucially on

the prior action of a more ancient system of pathogen

detection (innate immunity). This system relies on the

activation of antigen-presenting cells such as dendritic

cells (DCs) upon recognition of patterns common to

viruses and bacteria and largely absent in mammals. With

the discovery of the involved pattern recognition recep-

tors, among which the Toll-like receptors (TLRs)

represent an important subgroup, immune-enhancing

molecules or adjuvants can no longer be considered as

the alchemistic ‘immunologist’s dirty secret’ but have

become amenable to rational design, providing a huge
Table 1

Human TLR agonists used as adjuvants in vaccine formulations in cli

Receptor Known natural agonist For

TLR1 (with TLR2) Lipopeptides

TLR2 Lipopeptides

Lipoteichoic acid

Porins

Zymosan

TLR3 Double-stranded RNA

TLR4 Lipopolysaccharide Mo

Heat shock proteins AS0

Fibrinogen

Fibronectin AS0

RC

TLR5 Flagellin

TLR6 (with TLR2) Lipoproteins

TLR7 Unknown

TLR8 Single stranded RNA

TLR9 Bacterial DNA CpG

TLR10 Unknown

TLR11 Components of uropathogenic

bacteria

a Data from [32,33] unless otherwise indicated.
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potential for manipulating the immune response. As

different TLR agonists elicit different types of immune

responses (reviewed in [59]), future adjuvants might be

able to tailor the immune response so that optimal pro-

tection to a given pathogen is induced. In fact, the

number of clinical trials involving TLR agonists as new

adjuvants is ever increasing [32,33] (Table 1).

The adjuvant function of nonmethylated cytidine-phos-

phate-guanosine (CpG) sequences, which are frequent in

microbes but under-represented in humans and are ago-

nists of TLR9, has been extensively demonstrated in

animal models [34] and is currently being tested in several

clinical trials. When CpGs are coadministered with

licensed HBV or flu vaccines, the combination leads to

increased antibody titers or increased (interferon-g)

IFN-g production, as compared with the response to

the vaccine alone [35,36�]. An additional effect of CpG

oligonucleotides appears to be the promotion of affinity

maturation and, as a result, a higher overall affinity of the

vaccine-specific antibody pool [37�]. Similarly, the TLR4

agonist MPL has been shown in the past to enhance the

immune response to HBV vaccination in humans [38]. In

addition, both the malaria subunit vaccine mentioned

above [30�] and a licensed melanoma vaccine contain

MPL. Another experimental vaccine that includes a

TLR2 agonist is described below, in the section on

synthetic vaccines.

Activation of DCs increases their ability to process and

present antigen and to attract and activate T cells through

cytokine secretion; consequently, several cytokines are
nical trials or licensed vaccinesa.

m used in vaccines Vaccine type

nophosphoryl lipid A Melanoma

2 (MPL + saponin QS-21) Malaria [30�], HBV, HPV,

HIV-1,cancer, tuberculosis

4 (MPL + alum) HBV [38]

-529 (MPL derivative) HBV

oligonucleotides HBV, flu [35,36�,37�]

ISS (CpG linked to antigen DNA)

www.sciencedirect.com
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currently being tested for their adjuvant function. As

mentioned above, the way the innate immune system

is activated influences the type of the ensuing acquired

immune response. Martin-Fontecha et al. [39�] showed

that the ability of adjuvants to elicit a Th1 type response

depends crucially on the recruitment of, and IFN-g

production by, natural killer (NK) cells, which indicates

a possible mechanism of the way in which adjuvants

direct the type of adaptive immune response induced

downstream. Another vaccine approach is the use of heat

shock proteins, which bind specifically and activate den-

dritic cells and, because they are loaded with endogenous

peptides, can be purified from tumor cells and function as

a combined antigen delivery system and adjuvant [40].

Antigen-loaded DCs as vaccines
Because the main targets of adjuvants are DCs, it is a

logical step to evaluate their direct use as a vaccine.

Despite the labor-intensive necessity of individual cell

culture for each patient, this approach can be attractive

where other approaches have failed, for instance as a

therapeutic vaccine in HIV or cancer patients. When

HIV patients were treated with autologous DCs loaded

with autologous, inactivated HIV, both virus-specific

CD4+ Th1 and CD8+ responses were induced and the

plasma viral loads were reduced [41��]. These results

closely reflect previous findings from a similar vaccination

of rhesus macaques [42], except for the lack of induction

of neutralizing antibodies in the human study. DC vac-

cination is also being tested in a variety of cancer treat-

ments [43].

In a study comparing the immunogenicity of DCs trans-

fected with cytopathic or noncytopathic viral RNA, the

former regimen was shown to be more efficient at inducing

protective immune responses [44�]. This suggests that

reprocessing of dying DCs by endogenous antigen-pre-

senting cells enhances immunogenicity, either through

additional danger signals triggered by the cell damage

or by the increased level of crosspresentation by endogen-

ous DCs. The same mechanism might be at work in

mycobacterium infection of macrophages, where apopto-

sis was shown to enhance crosspresentation by bystander

DCs [45]. Interestingly, following fractionation of the

cytoplasm of dying cells, uric acid was identified as a

highly efficient endogenous danger signal that enhances

immunogenicity [46], and might explain the above results.

DNA vaccines
The high expectations associated with DNA vaccination,

as a result of promising data obtained in mice, were

somewhat tempered by disappointing early results when

DNA was tested as a vaccine in humans. Therefore, the

latest generation of DNA vaccines rely on improved

delivery either through use of microparticles [47] or

through viral vectors. A particularly promising approach

is a heterologous prime-boost strategy, where adminis-
www.sciencedirect.com
tration of plasmid DNA is followed by recombinant virus

(modified vaccinia virus Ankara [MVA] or adenovirus)

expressing the same antigen. This regimen induced

strong T cell responses against P. falciparum in naı̈ve

adults [48] and enhanced the response in Gambian

men who are constantly exposed to P. falciparum [49].

Although partial protection against challenge with a dif-

ferent P. falciparum strain was observed, no significant

differences in the infection rate was found in the Gam-

bian trial [50�]. In spite of these setbacks, a very similar

regimen has been shown also to be highly immunogenic

against HBV, tuberculosis and HIV, and vaccination only

with MVA expressing the mycobacterium A85 antigen

elicited strong T cell responses [51��].

Because the induction of T cells is considered to be crucial

in anti-tumor immune responses, a huge number of trials

are presently being conducted to test DNA vaccination

regimens for anticancer treatment [52,53]. When viral

vehicles (vaccinia or adenovirus) were compared with

loaded DCs in terms of their ability to overcome estab-

lished tolerance and induce immune responses in a trans-

genic mouse model, the viral formulations were able to do

so, whereas DCs required repeated administration of TLR

agonists or irrelevant virus, or removal of suppressive

CD4+CD25+ Treg cells [54�]. Such models of established

tolerance might prove useful for testing the success of

vaccines in the face of long-term antigen exposure, as in

the case of cancer or chronic diseases.

Two studies analyzed in detail the T cell response after

vaccination with a recombinant canarypox virus expres-

sing melanoma-specific T cell epitopes [55�,56�]. Focus-

ing on the blood and metastases from a patient with

complete regression, these studies reconfirmed earlier

observations that the frequency of anti-tumor T cells

can be relatively high. Although vaccination leads to a

slight increase in vaccine-specific T cells, these remain

only a small fraction of total anti-tumor T cells. By

contrast, T cells directed against epitopes not contained

in the vaccine represent the vast majority of anti-tumor

cells, and their frequency increases both in the blood and

in metastases. Thus, it appears that with the appropriate

vaccine regimen, the inefficiency of pre-existing specific

T cells to combat the tumor was reversed in an indirect

manner, presumably by activating another subset of T

cells. It remains to be clarified, however, how much of this

reactivation is due to the action of vaccine-induced T

cells and how much is a general, antigen-independent

immune-enhancing effect. In any case, for the develop-

ment of therapeutic vaccines, it will be vital to understand

how the balance can be tipped back from a state of

tolerance to a successful immune response.

Synthetic vaccines
The development of vaccines aimed at the polysacchar-

ide (PS) capsule of bacteria is one of the great
Current Opinion in Immunology 2005, 17:411–418
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achievements in vaccinology. So far, the PS used in large-

scale vaccine production has been purified from the patho-

gen itself, grown in large quantities – an approach that is

costly and difficult to control. Through great simplification

of the carbohydrate chemistry involved, Verez-Bencomo

et al. [57�] have now demonstrated the first large-scale

production of an anti-Haemophilus influenzae type B vac-

cine, consisting of synthetic PS conjugated to tetanus

toxoid protein carrier. This vaccine has been shown to

be as efficient as commercially available vaccines in indu-

cing protective levels of antibody titers in infants.

An entirely synthetic vaccine with a branched structure

containing a TLR2 ligand, a CD4+ T cell epitope and

either a CD8+ T cell or a B cell epitope has been shown to

elicit strong CD8+ T cell and B cell responses, respec-

tively [58��]. Here, the minimal requirements for an

efficient vaccine are met in a single molecule: targeting

to and activation of DCs, T cell help and activation of

antigen-specific CD8+ T cells or B cells.

Conclusions
The world of vaccines is undergoing dramatic changes.

Never before have such sophisticated techniques and an

in-depth knowledge of immunological processes been at

hand to exploit fully the potential of protecting from, as

well as curing, diseases through vaccination. A formidable

task in the future will be the development of effective

therapeutic vaccines, in situations where chronic antigen

exposure by itself does not elicit a sufficiently strong

immune response, as is the case in cancer and chronic

infectious diseases. Compared with vaccines against self-

limiting infections, where the aim is to be as good as the

real pathogen (but less harmful), this requires the devel-

opment of vaccines that are better than the natural anti-

gens in inducing immunity. All of our knowledge will be

necessary to succeed in this challenge.

Update
A recent article describes the use of multigenome analysis

and screening against a large panel of strains to identify a

universal group B streptococcus vaccine. Although none

of the single antigens contained in the vaccine elicits

protection against all strains, the combination of four

proteins is able to cover a wide range of strains [60�].
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