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Abstract: Interaction between dislocations and grain boundaries (GBs) in the forms of dislocation
absorption, emission, and slip transmission at GBs significantly affects size-dependent plasticity in
fine-grained polycrystals. Thus, it is vital to consider those GB mechanisms in continuum plasticity
theories. In the present paper, a new GB model is proposed by considering slip transmission
at GBs within the framework of gradient polycrystal plasticity. The GB model consists of the
GB kinematic relations and governing equations for slip transmission, by which the influence of
geometric factors including the misorientation between the incoming and outgoing slip systems
and GB orientation, GB defects, and stress state at GBs are captured. The model is numerically
implemented to study a benchmark problem of a bicrystal thin film under plane constrained shear.
It is found that GB parameters, grain size, grain misorientation, and GB orientation significantly affect
slip transmission and plastic behaviors in fine-grained polycrystals. Model prediction qualitatively
agrees with experimental observations and results of discrete dislocation dynamics simulations.

Keywords: slip transmission; strain gradient; crystal plasticity; size effects; grain boundary

1. Introduction

Fine-grained polycrystalline materials with grain sizes ranging from hundreds of nanometers to
tens of microns can be widely used as structural or functional materials in small-scaled engineering
such as microdevices and microelectromechanical systems. Both their precision manufacturing and
processing and their safety and reliability in practical applications entail a deep understanding of the
plastic behavior in fine-grained polycrystals. As found in various experiments [1–6], if the average
grain size decreases to the micrometer range or even smaller, the plastic behavior in crystals such as
macroscopic yield strength and strain hardening rate become strongly size-dependent. Microscopically,
plastic deformation in crystals mainly originates from the collective behavior of a vast number of
dislocations, implying that size-dependent plasticity is closely related to the distinctive dislocation
activities in small-scaled crystals. Since the grain boundaries (GBs) to volume ratio in fine-grained
polycrystals is extremely high, interaction between dislocations and GBs may be an important, and in
some situations, dominant deformation mechanism therein. From numerous in situ experiments
as reviewed in [7] and atomistic simulations as reviewed in [8], dislocations interact with GBs in
several different ways. Due to the crystallographic incompatibility between adjacent grains, GBs act
as obstacles, impeding dislocations nucleated within the grain interior, which results in dislocation
pile-ups at GBs [9]. In response to stress concentrations resulting from dislocation pile-ups, GBs may
act as dislocation sinks or sources, absorbing the leading dislocation in the pile-up or emitting new
dislocations onto the slip planes in the adjacent grains [9–11]. Under certain conditions, dislocations
are transferred through GBs in a direct or indirect manner with the generation of residual GB defects
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for the conservation of Burgers vectors, which is also known as slip transmission [9,12–14]. Various
factors such as the initial GB structure, the GB orientation, the grain misorientation, and the stress state
near the GB affect dislocation-GB interactions [7,15]. As illustrated by experiments [16,17] and discrete
dislocation dynamics (DDD) simulations [18–20], dislocation-GB interactions can significantly affect
macroscopic plastic behaviors in fine-grained polycrystals. Moreover, due to the GB constraint, plastic
deformation in fine-grained polycrystals is strongly heterogeneous, which results in the accumulation
of geometrically necessary dislocations (GNDs) stored to accommodate lattice curvature [21]. There
exists a close connection between GNDs and size-dependent plasticity in crystals [22]. Conventional
plasticity theories fail to capture dislocation-GB interactions and the influence of GNDs and are
incapable of predicting size-dependent plasticity in fine-grained polycrystals. Thus, it is vital to
properly model the above microscopic dislocation-relevant mechanisms, especially dislocation-GB
interaction mechanisms at the continuum level, so as to construct non-classical plasticity theories
aimed at the accurate characterization of size-dependent plasticity in fine-grained polycrystals.

In the last three decades or so, many efforts have been devoted to develop various strain gradient
plasticity theories with consideration of the influence of plastic strain gradient or GNDs, which
are capable of predicting some experimentally observed size effects [23–27]. In higher-order strain
gradient plasticity theories [28–35], in addition to the traditional force balance equations, microscopic
governing equations involving higher-order stresses/microstresses or back stresses resulting from
interactions between GNDs are introduced. Consequently, additional microscopic boundary conditions
at GBs/surfaces are required for the completeness of the mathematical framework. This provides
the possibility to incorporate the GB/surface-dislocation interactions into those continuum theories.
Within the framework of high-order strain gradient plasticity theories, some GB/surface models
have been proposed. Two frequently used idealized GB/surface conditions are the microhard
or microclamped model (corresponding to impenetrable GBs/surfaces) and the microfree model
(corresponding to freely penetrable GB/surfaces). Additionally, some attention has been paid to
develop intermediate GB/surface models for realistic GBs/surfaces with finite resistance against
dislocation gliding. From the viewpoint of thermodynamics, the GB/surface-dislocation interaction is
of both energetic and dissipative nature since emission, absorption, and transmission of dislocations
may lead to the storage of residual defects/surface steps at GBs/surfaces, and such processes are
resistive. Thus, the existing intermediate GB/surface models can be classified into those of dissipative
ones [36–39], energetic ones [40–45], and both energetic and dissipative ones [25,46–52]. The majority
of these existing surface/GB models are phenomenological. A few physically based GB/surface
models [46–48,52] capture GB/surface effects to some extent.

Due the complication of interaction between dislocations and GBs, further modeling efforts are
still needed. In fact, different forms of dislocation-GB interaction such as GB absorbing, emitting,
and transmitting dislocations may affect the macroscopic plastic behaviors in fine-grained polycrystals
in different ways [53]. Therefore, it is necessary to distinguish these different GB mechanisms in
GB models.

Based on the above background, the aim of the present work is to model slip transmission at the
GB by considering the underlying physical mechanism. Within the framework of finite deformation
gradient polycrystal plasticity, a new GB model for slip transmission is proposed. The GB model
consisting of the GB kinematic relations and microscopic force balance equations for slip transmission
captures the influence of geometric factors including the misorientation between the incoming and
outgoing slip systems and GB orientation, GB defects, and stress state at GBs. The model is applied to
study the plastic behavior of a bicrystal thin film under plane constrained shear. Results predicted by
the model qualitatively agrees with those from experimental observations and DDD simulations.
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2. Model Framework

2.1. Bulk Kinematics: Finite Deformation Gradient Polycrystal Plasticity

Following [54], in finite deformation plasticity, the deformation gradient tensor F is assumed to
be multiplicatively decomposed into an elastic part Fe and a plastic part Fp,

F = Fe · Fp. (1)

Consider that plastic deformation induces no change to volume, one obtains detFp = 1 with det being
the determinant operator. In the following, if necessary, quantities in the intermediate and those in the
current configuration will be identified by the subscripts i and c, respectively.

The velocity gradient tensor L is defined as

L = ∇cu̇ = Ḟ · F−1 = Le + Fe · Lp · Fe−1, (2)

where [∇a]ij = ai,j represents the gradient of a vector a, u is the displacement vector, the superposed
dot denotes time derivative, and the superscript −1 denotes the inverse of a tensor. The elastic velocity
gradient Le and the plastic velocity gradient Lp are expressed as

Le = Ḟe · Fe−1, (3)

Lp = Ḟp · Fp−1. (4)

Studying polycrystals, in each grain, a set of slip systems is introduced. For each slip system α,
a unit vector of slip direction s(α) and a unit vector of slip plane normal m(α) attached to the lattice
space in the intermediate configuration are defined. s(α) and m(α) are assumed to be unaltered from the
reference configuration to the intermediate configuration. Following [55], the plastic velocity gradient
consisting of contributions from all active slip systems reads

Lp = ∑
α

γ̇(α)s(α) ⊗m(α), (5)

with γ̇(α) being the plastic slip rate of the slip system α.
The involved strain measures are the Green-Lagrange strain tensor E and the right Cauchy-Green

stretch tensor C, and their elastic parts Ee and Ce, which are expressed as

E =
1
2
[C− I], C = FT · F, (6)

Ee =
1
2
[Ce − I], Ce = FeT · Fe. (7)

The superscript T denotes the transpose of a tensor, and I is the second order identity tensor.
For the slip system α, the evolutions of the edge and screw GND densities (The GND density

characterizes the net density of polarized dislocations. Once the slip rate gradient is given, the edge

and screw GND densities can be evaluated by Equations (8) and (9), respectively). ρ
ge(α)
i and ρ

gs(α)
i

defined in the intermediate configuration are expressed as

ρ̇
ge(α)
i = − 1

b(α)
∇iγ̇

(α) · s(α), (8)

ρ̇
gs(α)
i =

1
b(α)
∇iγ̇

(α) · p(α), (9)
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where∇i(·) = Fp−T ·∇r(·), b(α) is the magnitude of Burgers vector, and p(α) = s(α)×m(α). In addition,

the initial conditions are ρ
ge(α)
i |t=0 = ρ

ge(α)
0i and ρ

gs(α)
i |t=0 = ρ

gs(α)
0i , with ρ

ge(α)
0i and ρ

gs(α)
0i being the

initial GND densities.

2.2. Kinematic Relations at GBs: Slip Transmission

As illustrated in Figure 1, slip transmission occurs in a way that dislocations on the incoming
slip systems in grain A are transferred through the GB ΩAB onto the corresponding outgoing slip
systems in grain B, during which the transmission of each dislocation produces a residual GB defect
for the conservation of Burgers vector. In the following, subscripts A and B are used to identify
quantities in grains A and B respectively. The outward normal unit vectors at the GB of grains A
and B are denoted as NGB

A and NGB
B in the intermediate configuration. In continuum crystal plasticity,

it is assumed that slip planes and dislocations are continuously distributed. Thus, we consider the
slip transmission as a point-level process at GBs. Generally, a specified incoming slip system may
correspond to several different outgoing slip systems, and vice versa. Thus, for an incoming slip
system α, the total number of incoming dislocations per unit time n(α)

A transmitted through a point xGB

on the GB ΩAB is expressed as
n(α)

A = ∑
β

nin(αβ)
AB , (10)

where nin(αβ)
AB denotes the number of incoming dislocations per unit time during the slip transmission

process between the incoming slip system α and the outgoing slip system β. Accordingly, for an
outgoing slip system β the total number of outgoing dislocations per unit time n(β)

B transmitted from
the point xGB on the GB ΩAB is expressed as

n(β)
B = ∑

α

nout(αβ)
AB , (11)

where nout(αβ)
AB is the number of outgoing dislocations per unit time during the slip transmission process

between the incoming slip system α and the outgoing slip system β. As illustrated in Figure 1, for a
specified slip transmission process between the incoming slip system α and the outgoing slip system β,
each incoming dislocation may result in one outgoing dislocation. Therefore, the number of incoming
dislocations per unit time equals the number of the outgoing dislocations per unit time, i.e.,

nin(αβ)
AB = nout(αβ)

AB . (12)

Given the number of dislocations per unit time n(α) gliding through a point x and the average distance
between slip planes L(α), the plastic slip rate γ̇(α) for a slip system α at that point can be expressed as

γ̇(α) =
n(α)b(α)

L(α)
. (13)

From Equations (10)–(13), the plastic slip rates γ̇
(α)
A and γ̇

(β)
B for the incoming slip system α and the

outgoing slip system β at the GB point xGB are written as

γ̇
(α)
A = ∑

β

γ̇
(αβ)
AB , γ̇

(β)
B = ∑

α

D(αβ)
AB γ̇

(αβ)
AB , (14)

with

γ̇
(αβ)
AB =

nin(αβ)
AB b(α)A

L(α)
A

, D(αβ)
AB =

b(β)
B L(α)

A

b(α)A L(β)
B

. (15)
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γ̇
(αβ)
AB and D(αβ)

AB γ
(αβ)
AB are the components of γ̇

(α)
A and γ̇

(β)
B contributed by the slip transmission process

between the incoming slip system α and the outgoing slip system β. Equation (14) represents the GB
kinematic relation in the present model.

Figure 1. Schematic of slip transmission: dislocations from an incoming slip system in grain A
propagate through the grain boundary ΩAB onto the outgoing slip system in grain B. The transmission
of each dislocation produces a residual grain boundary defect.

By taking advantage of the balance of Burgers vector at the GB [46] and the GB kinematic relation
in Equation (14), the rate of the density of residual GB defects G(αβ)

ABi contributed by the slip transmission
between the incoming slip system α and the outgoing slip system β in the intermediate configuration
can be expressed as

Ġ(αβ)
ABi = −γ̇

(αβ)
AB M(αβ)

ABi (16)

with
M(αβ)

ABi =
[
s(α)A ⊗

[
m(α)

A ×NGB
Ai

]
+ D(αβ)

AB s(β)
B ⊗

[
m(β)

B ×NGB
Bi

]]
. (17)

2.3. Balance Equations and Boundary Conditions

In the present work, the work-conjugate gradient crystal plasticity framework is adopted,
and, hence, the balance equations and boundary conditions are derived via the principle of virtual
power. Without loss of generality, a bicrystal domain consisting of grains A and B separated by the
GB ΩAB is considered. The total volume and the total surface area of the domain are Vi = VAi

⋃
VBi

and Si = SAi
⋃

SBi. Following [31], in the intermediate configuration, the second Piola-Kirchhof stress
tensor Se power-conjugate to the rate of the Green-Lagrange strain tensor Ėe, the microforce π

(α)
i

power-conjugate to the slip rate γ̇(α) and the microstress ξ
(α)
i power-conjugate to the slip rate gradient

∇iγ̇
(α) for each slip system α contribute to the internal power in the grain interiors. Following [52],

the contribution to the internal power by the surface microforce η
S(α)
i power-conjugate to the slip

rate γ̇ at the surface is considered to account for the influence of dislocation absorption by surfaces.
In addition, to incorporate the influence of slip transmission between the incoming slip system α

and the outgoing slip system β into the present theory, the contribution by the GB microforce η
GB(αβ)
ABi

power-conjugate to γ̇
(αβ)
AB at the GB is introduced. It is assumed that no GB sliding or opening occurs.
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In other words, displacements are continuous at the GB. Therefore, there is no macroscopic power
contribution at the GB. Thus, the total internal power Pint in the intermediate configuration is

Pint =
∫

Vi

Se : ĖedVi + ∑
α

∫
Vi

[
π
(α)
i γ̇(α) + ξ

(α)
i · ∇iγ̇

(α)
]
dVi

+ ∑
α,β

∫
ΩABi

η
GB(αβ)
ABi γ̇

(αβ)
AB dΩABi + ∑

α

∫
Si

η
S(α)
i γ̇(α)dSi,

(18)

where the second Piola-Kirchholf stress tensor Se is defined as

Se = Fe−1 · Jσ · Fe−T (19)

with σ being the Cauchy stress tensor, and J = detFe. In the absence of body forces, the traditional
traction Ti power-conjugate to the velocity u̇ at the surface and the microtraction Ξ(α)

i power-conjugate
to the plastic slip rate γ̇(α) at the surface contribute to the external power Pext, which gives

Pext =
∫

Si

Ti · u̇dSi + ∑
α

∫
Si

Ξ(α)
i γ̇(α)dSi. (20)

According to the principle of virtual power, the variation of the internal power with respect to the
velocity u̇ and the plastic slip rate γ̇(α) equals that of the external power, resulting in∫

Vi

Se : δĖedVi + ∑
α

∫
Vi

[
π
(α)
i δγ̇(α) + ξ

(α)
i · ∇iδγ̇(α)

]
dVi

+ ∑
α,β

∫
ΩABi

η
GB(αβ)
ABi δγ̇

(αβ)
AB dΩABi + ∑

α

∫
Si

η
S(α)
i δγ̇(α)dSi

=
∫

Si

Ti · δu̇dSi + ∑
α

∫
Si

Ξ(α)
i δγ̇(α)dSi.

(21)

Based on Equations (2), (3), (5) and (7), the variation of Ėe is expressed as

δĖe =
1
2

[
FeT · ∇iδu̇−∑

α

Ce · s(α) ⊗m(α)δγ̇(α)

]

+
1
2

[
FeT · ∇iδu̇−∑

α

Ce · s(α) ⊗m(α)δγ̇(α)

]T

.

(22)

Substituting Equation (22) into Equation (21) and using the GB kinematic relation (14) and the
divergence theorem, one can rewrite Equation (21) as∫

Vi

Divi(Fe · Se) · δu̇dVi −∑
α

∫
Vi

[
Diviξ

(α)
i + s(α) ·M ·m(α) − π

(α)
i

]
δγ̇(α)dVi

+ ∑
α,β

∫
ΩABi

[
ξ
(α)
Ai ·N

GB
Ai + D(αβ)

AB ξ
(β)
Bi ·N

GB
Bi + η

GB(αβ)
ABi

]
δγ̇

(αβ)
ABi dΩABi

+ ∑
α

∫
Si

[
ξ
(α)
i ·N

S
i + η

S(α)
i − Ξ(α)

i

]
δγ̇(α)dSi

+
∫

Si

[
[Fe · Se] ·NS

i − Ti

]
· δu̇dSi = 0,

(23)

where M = Ce · Se is the Mandel stress tensor, and NS
i is the surface outward normal unit vector.

Considering that Equation (23) should be satisfied for arbitrary δu̇, one obtains the following traditional
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balance of momentum and the corresponding standard traction condition in the intermediate
configuration,

Divi(Fe · Se) = 0 (24)

and
[Fe · Se] ·NS

i = Ti (25)

at the part of surface ST
i with prescribed traction. Further, given the validity of Equation (23) for

arbitrary δγ̇(α) and δγ̇
(αβ)
ABi , microscopic balance equations in the bulk and the associated microscopic

boundary conditions at the surface/GB are expressed as

Diviξ
(α)
i + τ

(α)
i − π

(α)
i = 0, (26)

with τ
(α)
i = s(α) ·M ·m(α) being the Schmid stress, and

ξ
(α)
i ·N

S
i + η

S(α)
i = Ξ(α)

i , (27)

ξ
(α)
Ai ·N

GB
Ai + D(αβ)

AB ξ
(β)
Bi ·N

GB
Bi + η

GB(αβ)
ABi = 0. (28)

As indicated in [52], Equation (27) is regarded as the governing equation for dislocation absorption
by surfaces. In the present GB model, Equation (28) acts as the governing equation for the slip
transmission process between the incoming slip system α in grain A and the outgoing slip system β in
grain B at the GB, in which the normal components of the microstresses ξ

(α)
Ai ·N

GB
Ai and ξ

(β)
Bi ·NGB

Bi from
both grains are treated as the driving force for slip transmission.

In some existing GB models [46,47], each slip system possesses an independent microscopic force
balance equation at the GB, and, hence, the correlation between plastic slips at one side of the GB
and those at the other side is not directly reflected. However, during slip transmission, the plastic
slip for the incoming slip system and that for the outgoing slip system should be coupled, which
is captured in the present work. In the present GB model, an incoming slip system α in grain A
and the corresponding outgoing slip system β in grain B involved in a specified slip transmission
process share a GB governing equation, and the GB kinematic relation (14) serves as an additional
boundary condition. In addition, since microstresses from both grains are involved in the GB governing
Equation (28), the intergranular interaction between dislocations from the two adjacent grains at the
GB is naturally considered.

2.4. Constitutive Relations

2.4.1. Bulk Constitutive Relations: Gradient Crystal Plasticity

The elastic behavior of the crystal is captured by a compressible neo-Hookean material model,
and, hence the hyperelastic constitutive relation for the second Piola-Kirchhof stress Se is given by

Se = µI + [λln(J)− µ]Ce−1, (29)

where J = detFe =
√

detCe, λ = 2νµ/[1− 2ν], µ is the shear modulus, and ν is Poisson’s ratio.
The microstress ξ

(α)
i generally consisting of an energetic part and a dissipative part [56–58] is

assumed to be purely energetic for the sake of simplicity. The constitutive relation for ξ
(α)
i based on the

elastic interaction between GNDs within the same slip system and those from different slip systems
suggested in [59] is adopted here, i.e.,

ξ
(α)
i =

µb(α)l2

8[1− ν] ∑
β

ρ
ge(β)
i Be(αβ) +

µb(α)l2

4 ∑
β

ρ
gs(β)
i Bs(αβ) (30)
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with

Be(αβ) =
[
3
[
s(α) · s(β)

][
m(α) · s(β)

]
+
[
s(α) ·m(β)

][
m(α) ·m(β)

]
+4ν

[
s(α) · p(β)

][
m(α) · p(β)

]]
m(β)

−
[[

s(α) · s(β)
][

m(α) ·m(β)
]
+
[
s(α) ·m(β)

][
m(α) · s(β)

]]
s(β),

Bs(αβ) = −
[[

s(α) · p(β)
][

m(α) · s(β)
]
+
[
s(α) · s(β)

][
m(α) · p(β)

]]
m(β)

+
[[

s(α) · s(β)
][

m(α) ·m(β)
]
+
[
s(α) ·m(β)

][
m(α) · s(β)

]]
p(β),

(31)

where l denotes the radius of the domain within which the interaction between GNDs is considered.
A visco-plastic power-law relation is adopted for the dissipative microforce π

(α)
i , i.e.,

π
(α)
i = Rb(α)

i

[
γ̇(α)

γ̇b
0

]mb

sgn
(

γ̇(α)
)

, (32)

where sgn() is the sign function, mb is the rate-sensitivity exponent in the bulk, and γ̇b
0 is the bulk

reference slip rate. The slip resistance Rb(α)
i resulting from the interaction between statistically stored

dislocations (SSDs) has the following linear hardening form,

Rb(α)
i = Rb(α)

0 + ∑
β

Hb(αβ)γ
(β)
acc , (33)

where γ
(β)
acc =

∫ ∣∣∣γ̇(β)
∣∣∣dt is the accumulated plastic slip, Rb(α)

0 is the initial slip resistance, and Hb(αβ) is
the local hardening modulus. Similar to some existing works [52,58], in the present model, the evolution
of the SSD density which quantifies the total non-polarized dislocation density is not explicitly
considered. Instead, the influence of SSDs is reflected by the dependence of the slip resistance Rb(α)

i on
the accumulated plastic slip which acts as a measure of the SSD density.

Inserting Equation (32) into Equation (26), one can rewrite the microscopic balance equation as

γ̇(α) = γ̇b
0


∣∣∣Diviξ

(α)
i + τ

(α)
i

∣∣∣
Rb(α)

i


1

mb

sgn
(

Diviξ
(α)
i + τ

(α)
i

)
, (34)

which acts as the evolution equation for the plastic slip in the bulk.

2.4.2. Surface Constitutive Relation: Dislocation Absorption by Surfaces

The surface model with consideration of the influence of dislocation absorption by surfaces
in [52] is summarized here. In order to consider energetic and dissipative surface effects respectively,
the surface microforce η

S(α)
i is divided into an energetic part η

Sen(α)
i and a dissipative part η

Sdis(α)
i .

The energetic surface microforce η
Sen(α)
i is expressed as

η
Sen(α)
i = Γ(α)

1

∣∣∣s(α) ·NS
i

∣∣∣sgn
(

γ(α)
)

+ ∑
β

Γ(αβ)
2

∣∣∣s(α) ·NS
i

∣∣∣∣∣∣m(α) ×NS
i

∣∣∣∣∣∣s(β) ·NS
i

∣∣∣∣∣∣m(β) ×NS
i

∣∣∣γ(β),
(35)

which is derived by considering the change of the surface energy due to the formation of surface
steps after dislocation absorption by surfaces. In Equation (35), Γ(α)

1 denotes the surface free energy

per unit surface step area, and Γ(αβ)
2 is the energetic surface hardening modulus measuring the
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interaction strength between surface steps from slip systems α and β. The dissipative microforce
η

Sdis(α)
i accounting for the dissipative resistance against dislocation absorption by surfaces has a

visco-plastic power-law form,

η
Sdis(α)
i = RS(α)

i

[
γ̇(α)

γ̇S
0

]mS

sgn
(

γ̇(α)
)

, (36)

where γ̇S
0 is the reference slip rate at the surface, and mS is the surface rate-sensitivity exponent. The

surface slip resistance RS(α)
i is expressed as

RS(α)
i = RS(α)

0 + ∑
β

HS(αβ)γ
S(β)
acc , (37)

where γ
S(β)
acc =

∫ ∣∣∣γ̇(β)
∣∣∣dt is the accumulated slip at the surface, RS(α)

0 is the initial surface slip resistance

depending on the initial density of surface defects, and HS(αβ) is the dissipative surface hardening
modulus. The surface parameters may depend on the initial surface state such as surface coatings,
oxide layers or initial surface defects.

The higher-order traction Ξ(α)
i is ignored in the following. Then, by taking advantage of

Equation (36), the microscopic surface boundary condition Equation (27) is rewritten as

γ̇(α) = γ̇S
0


∣∣∣−ξ

(α)
i ·NS

i − η
Sen(α)
i

∣∣∣
RS(α)

i


1

mS

sgn
(
−ξ

(α)
i ·N

S
i − η

Sen(α)
i

)
, (38)

which is the governing equation for dislocation absorption by surfaces.

2.4.3. GB Constitutive Relation: Slip Transmission

The key novelty of the present work is the consideration of slip transmission. To capture energetic
and dissipative GB effects due to slip transmission, the GB microforce η

GB(αβ)
ABi is assumed to consist of

an energetic part η
GBen(αβ)
ABi and a dissipative part η

GBdis(αβ)
ABi

η
GB(αβ)
ABi = η

GBen(αβ)
ABi + η

GBdis(αβ)
ABi . (39)

To consider the energetic GB effect, it is assumed that the power expended by η
GBen(αβ)
ABi at the GB

equals the increase rate of GB energy ψ̇GB
i induced by the accumulation of GB defects resulting from

slip transmission, namely

∑
α,β

∫
ΩABi

η
GBen(αβ)
ABi γ̇

(αβ)
AB dΩABi −

∫
ΩABi

ψ̇GB
i dΩABi = 0. (40)

A simple quadratic form with respect to GB Burgers tensor G(αβ)
AB is adopted for the GB energy density

such that ψ̇GB
i is expressed as

ψ̇GB
i = ∑

α,β,ϕ,ω
λ

GB(αβϕω)
AB

∣∣∣M(αβ)
ABi

∣∣∣∣∣∣M(ϕω)
ABi

∣∣∣γ̇(αβ)
AB γ

(ϕω)
AB , (41)

where |t1 ⊗ t2| =
√
[t1 · t1][t2 · t2], and λ

GB(αβϕω)
AB is the energetic GB hardening modulus.

In Equation (41), the interaction between GB defects from different slip transmission processes are
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considered. Combing Equation (40) with Equation (41), one obtains the following constitutive relation
for the energetic GB microforce η

GBen(αβ)
ABi

η
GBen(αβ)
ABi = ∑

ϕ,ω
λ

GB(αβϕω)
AB

∣∣∣M(αβ)
AB

∣∣∣∣∣∣M(ϕω)
AB

∣∣∣γ(ϕω)
AB . (42)

The dissipative GB microforce η
GBdis(αβ)
ABi captures the resistance against slip transmission and is

assumed to possess the following visco-plastic power-law relation

η
GBdis(αβ)
ABi = RGB(αβ)

AB

[
γ̇
(αβ)
AB

γ̇GB
0

]mGB

sgn
(

γ̇
(αβ)
AB

)
, (43)

where γ̇GB
0 is the reference slip rate at the GB, and mGB is the GB rate-sensitivity exponent. The GB

resistance RGB(αβ)
AB is expressed as

RGB(αβ)
AB = RGB(αβ)

AB0 + ∑
ϕ,ω

HGB(αβϕω)
AB

∣∣∣G(ϕω)
AB

∣∣∣
acc

, (44)

where
∣∣∣G(ϕω)

AB

∣∣∣
acc

=
∫ ∣∣∣Ġ(ϕω)

AB

∣∣∣dt is the accumulated GB defect density, RGB(αβ)
AB0 is the initial GB

resistance, and HGB(αβϕω)
AB is the dissipative GB hardening modulus. In Equation (44), the interaction

between different slip transmission processes is considered.
By substituting Equation (43) into Equation (28), the microscopic GB force balance Equation (28)

is rewritten as

γ̇
(αβ)
AB =γ̇GB

0


∣∣∣−ξ

(α)
Ai ·N

GB
Ai − D(αβ)

AB ξ
(β)
Bi ·NGB

Bi − η
GBen(αβ)
ABi

∣∣∣
RGB(αα)

AB


1

mGB

·

sgn
(
−ξ

(α)
Ai ·N

GB
Ai − D(αβ)

AB ξ
(β)
Bi ·N

GB
Bi − η

GBen(αβ)
ABi

)
,

(45)

which is the governing equation for the slip transmission process between the incoming slip system α

in grain A and the outgoing slip system β in grain B at the GB, where γ̇
(αβ)
AB is regarded as the measure

of the rate of slip transmission.
The present GB model captures the influence of important factors including the misorientation

between the incoming and outgoing slip systems, the GB orientation, GB defects and stress states at
the GB which may affect slip transmission.

3. Numerical Example: A Bicrystal Thin Film Under Plane Constrained Shear

To illustrate influences of GB effects due to slip transmission on plastic behaviors in fine-grained
polycrystals, the theory is implemented to study a plane strain benchmark problem of plane constrained
shear of a bicrystal thin film. As depicted in Figure 2, the thin film consists of two grains A and B
separated by a tilt GB parallel to the surfaces. Grain I (I = A, B) has a thickness hI in x2-direction
and is infinitely long in x1-direction. For each grain, without loss of generality, two slip systems
with each of them defined by a slip direction unit vector s(α)I =

[
cosθ

(α)
I , sinθ

(α)
I

]
and a slip plane

normal unit vector m(α)
I =

[
−sinθ

(α)
I , cosθ

(α)
I

]
(α = 1, 2) are considered, where θ

(2)
A − θ

(1)
A = θ

(2)
B − θ

(1)
B .

Following [38], the misorientation angle ∆θ = θ
(α)
A − θ

(α)
B and, following [47], the rotation angle of

the GB relative to the symmetry plane θGB = π − θ
(1)
A − θ

(2)
B are introduced to measure the geometric

mismatch between the grains. If θGB = 0, the GB is symmetric. Crystallographic parameters including
the grain misorientation, GB orientation, and grain size are varied to illustrate their influence on the
plastic behavior of the thin film. Therefore, the considered bicrystal thin film is not specified to a
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certain material. The proposed model applies to general fine-grained polycrystalline metallic materials
where the plasticity is mediated by dislocation activities.

Figure 2. Sketch of the Benchmark Problem: A Bicrystal Thin Film under Plane Constrained Shear.

The thin film suffers an externally prescribed shear rate γ̇ext with its lower surface being
constrained such that the macroscopic boundary conditions are put down as

∆u1(x1, 0) = ∆u2(x1, 0) = ∆u2(x1, h) = 0, ∆u1(x1, h) = γ̇exth∆t, (46)

where ∆u1 and ∆u2 denote the displacement increments after time increment ∆t, and h = hA + hB.
The continuity condition of the displacement at the GB reads

uA1(x1, hB) = uB1(x1, hB), uA2(x1, hB) = uB2(x1, hB). (47)

In the present plane strain problem, only edge GNDs are involved. Consider that slip transmission
occurs at the GB. The corresponding relations between incoming and outgoing slip systems can be
determined by taking advantage of slip transmission criteria [60,61], which is not elaborately pursued
here. It is assumed that the incoming slip systems 1 and 2 in grain A correspond to the outgoing slip
systems 1 and 2 in grain B respectively. Therefore, the microscopic boundary conditions at the GB are

γ̇
(1)
B = D(11)

AB γ̇
(1)
A = D(11)

AB γ̇
(11)
AB , (48)

γ̇
(11)
AB =γ̇GB

0


∣∣∣−ξ

(1)
Ai ·N

GB
Ai − D(11)

AB ξ
(1)
Bi ·NGB

Bi − η
GBen(11)
ABi

∣∣∣
RGB(11)

AB


1

mGB

·

sgn
(
−ξ

(1)
Ai ·N

GB
Ai − D(11)

AB ξ
(1)
Bi ·N

GB
Bi − η

GBen(11)
ABi

)
,

(49)

γ̇
(2)
B = D(22)

AB γ̇
(2)
A = D(22)

AB γ̇
(22)
AB , (50)
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γ̇
(22)
AB =γ̇GB

0


∣∣∣−ξ

(2)
Ai ·N

GB
Ai − D(22)

AB ξ
(2)
Bi ·NGB

Bi − η
GBen(22)
ABi

∣∣∣
RGB(22)

AB


1

mGB

·

sgn
(
−ξ

(2)
Ai ·N

GB
Ai − D(22)

AB ξ
(2)
Bi ·N

GB
Bi − η

GBen(22)
ABi

)
,

(51)

where Equations (48) and (50) are the GB kinematic relations, and Equations (49) and (51) are the
governing equations for slip transmission. In addition, in order to mimic the infinite extension of the
thin film in x1-direction, a representative part of the thin film with length L is considered, and periodic
boundary conditions are imposed for displacements and GND densities, i.e.,

u1(0, x2) = u1(L, x2), u2(0, x2) = u2(L, x2),

ρge(1)(0, x2) = ρge(1)(L, x2), ρge(2)(0, x2) = ρge(2)(L, x2). (52)

The elastic parameters and the magnitude of the Burgers vector representative of aluminum are
taken, i.e., µ = 26.3 GPa, ν = 0.33 and b(α) = 0.286 nm. Some of the plastic material parameters are
chosen as Rb(α)

0 = 20 MPa, Hb(αβ) = 200 MPa, γ̇b
0 = γ̇GB

0 = 0.001 s−1, and mb = mGB = 0.05. The initial
GND densities are assumed to be zero. The characteristic length scale is assumed to be constant,
i.e., l = 0.5µm. The magnitude of the loading shear rate γ̇ext is 0.001 s−1. Since attention is restricted
to the new GB model, unless otherwise mentioned, the surface is considered to be impenetrable
such that plastic slips vanish at the surface. For simplicity, the interaction between the two slip
transmission processes is ignored by taking λ

GB(1122)
AB = λ

GB(2211)
AB = 0 and HGB(1122)

AB = HGB(2211)
AB = 0.

To simplify the discussion, GB parameters for the two slip transmission process are assumed to be
the same, i.e., λ

GB(1111)
AB = λ

GB(2222)
AB = λGB, RGB(11)

AB0 = RGB(22)
AB0 = RGB

0 , HGB(1111)
AB = HGB(2222)

AB = HGB.
In addition, the average distance between slip planes of the incoming slip system is assumed to equal
that of the corresponding outgoing slip system such that D(11)

AB = D(22)
AB = 1. The simulations are

done by using an in-house finite element code, see Appendix A for details about the finite element
implementation.

3.1. Influence of Energetic and Dissipative GB Parameters

In this section, the influences of the energetic and dissipative GB parameters are addressed.
A symmetric tilt GB with θ

(1)
A = θ

(2)
A − 60◦ = 70◦, θ

(1)
B = θ

(2)
B − 60◦ = 50◦, ∆θ = 20◦, and θGB = 0◦ is

considered. The values of grain thickness are taken as hA = hB = 1µm. For different values of the
energetic GB hardening modulus λGB, stress-strain curves, the evolution of the rate of slip transmission,
the distribution of plastic slip at γext = 0.01, and the distribution of GND density at γext = 0.01 are
plotted in Figure 3, where RGB

0 = 5 N/m and HGB = 0. Since the results of slip systems 1 and 2 are
similar, only those of the slip system 1 are shown. In addition, the results for impenetrable GBs at
which plastic slips vanish are also given for comparison. The corresponding results for different values
of the dissipative GB hardening modulus and the initial GB slip resistance are displayed in Figure 4,
where λGB = 0.
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Figure 3. Influence of energetic GB hardening modulus: (a) stress-strain curves; (b) the rate of
slip transmission; (c) distribution of plastic slip at γext = 0.01; (d) distribution of GND density at
γext = 0.01. The critical load for the onset of slip transmission depends on the initial GB resistance
RGB

0 . For decreasing energetic GB hardening modulus λGB, the steady-state value of the rate of slip
transmission increases, the strain hardening rate after the onset of slip transmission decreases, and the
curve of distribution of plastic slip becomes smoother at the GB.

In Figures 3a and 4a, on each stress-strain curve (curves with symbols), two yielding points are
observed. The first one is the traditional bulk yielding point. The second one denotes the onset of slip
transmission after which the rate of slip transmission immediately increases from zero to a steady-state
value (see Figures 3b and 4b). From Figure 4a,b, the critical load for the onset of slip transmission is
governed by the initial GB resistance RGB

0 in a way that a larger RGB
0 gives rise to a larger critical load.

As slip transmission weakens the dislocation pile-up at the GB, the strain hardening rate decreases
after the onset of slip transmission. With the increase of the energetic and dissipative GB hardening
modulus λGB and HGB, it is more and more difficult for dislocations to penetrate the GB. Consequently,
the steady-state value of the rate of slip transmission decreases, and the strain hardening rate at the
stage with slip transmission increases. As shown in Figures 3c,d and 4c,d, for a smaller GB hardening
modulus and/or a smaller initial GB resistance, the curve of distribution of plastic slip is smoother
at the GB, and the GND density at the GB is smaller, indicating that slip transmission occurs more
easily. In addition, if the initial GB slip resistance and/or the GB hardening modulus approach infinity,
the present GB model reduces to the impenetrable GB model. The tendency of the stress-strain curves
and the dependence of the strain hardening rate on the GB hardening modulus are consistent with
those predicted by existing models [37–39,47,49].
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Figure 4. Influence of dissipative GB parameters: (a) stress-strain curves; (b) the rate of slip
transmission; (c) distribution of plastic slip at γext = 0.01; (d) distribution of GND density at γext = 0.01.
For decreasing dissipative GB hardening modulus HGB, the steady-state value of the rate of slip
transmission increases, the strain hardening rate after the onset of slip transmission decreases, and the
curve of distribution of plastic slip becomes smoother at the GB.

3.2. Influence of Grain Size

To investigate the influence of grain size, for different values of grain thickness, the stress-strain
curve, the evolution of the total average GND density ρ̄ge =

∫ h
0

[∣∣∣ρge(1)
∣∣∣+ ∣∣∣ρge(2)

∣∣∣]dx2/h, the

evolution of the rate of slip transmission, and the distribution of plastic slip at γext = 0.01 are
plotted in Figure 5a–d, where GB parameters are taken as λGB = 100 N/m, RGB

0 = 10 N/m, and

HGB = 10,000 N/m, and the orientation angles of slip systems are θ
(1)
A = θ

(2)
A − 60◦ = 70◦ and

θ
(1)
B = θ

(2)
B − 60◦ = 50◦ with ∆θ = 20◦ and θGB = 0◦. By comparing the results of thin films with

different values of grain thickness, it is seen that the plastic behavior is significantly size-dependent.
From Figure 5a,b, for a specified load γext, a smaller grain thickness results in a larger flow stress and a
larger total average GND density. The size-dependence of the total average GND density in Figure 5b
is qualitatively consistent with the corresponding result by the DDD simulation in [20]. As displayed
in Figure 5a,c, for the thin film with a smaller grain thickness, the critical load for the onset of slip
transmission is smaller, and the steady-state value of the rate of slip transmission is larger, implying
that the occurrence of slip transmission is easier. From Figure 5d, with the decrease of grain thickness,
the plastic slip decreases in the middle of grains but increases near the GB. This is due to the fact that
in the middle, the plastic slip is governed by dislocation interaction which is stronger if the grain
thickness is smaller, while, near the GB, the plastic slip is dominated by slip transmission which is
easier to occur in the film with a smaller grain thickness.
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Figure 5. Size effects: (a) stress-strain curves; (b) total average GND density; (c) the rate of slip
transmission; (d) distribution of plastic slip at γext = 0.01. The flow stress and the total average GND
density at a specified load increase with the decrease of grain size. For a film with a smaller grain size,
the critical load of onset of slip transmission is smaller, and the steady-state value of slip transmission
rate is larger, indicating that the occurrence of slip transmission is easier.

3.3. Influence of Grain Misorientation and GB Orientation

Firstly, the influence of grain misorientation is examined. To this end, four different values of
∆θ, i.e., 2◦, 5◦, 10◦, and 20◦ are considered. The corresponding orientation angles of the slip systems
are θ

(1)
A = 60◦ + ∆θ/2, θ

(1)
B = 60◦ − ∆θ/2, θ

(1)
A = 120◦ + ∆θ/2, and θ

(2)
B = 120◦ − ∆θ/2 with θGB = 0◦.

The GB parameters are taken as λGB = 20,000 N/m, RGB
0 = 15 N/m, and HGB = 10,000 N/m.

In Figure 6, for different ∆θ, the evolution of the rate of slip transmission is plotted. It is seen that the
steady-state value of the rate of slip transmission increases with the decrease of grain misorientation
angle ∆θ. This indicates that slip transmission is more likely to occur if the grain misorientation angle
is smaller, which is in accordance with experimental observations [62].
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Figure 6. Influence of grain misorientation on the rate of slip transmission. For a smaller grain
misorientation angle, the steady-state value of slip transmission is larger, implying that the occurrence
of slip transmission is easier.

Figure 7 plots the grain size-dependence of the stress-strain curves for those four grain
misorientation angles. Comparing the different cases, one can conclude that the influence of grain
misorientation on the size-dependence of strain hardening rate after the onset of slip transmission
is vital. In the case with a smaller grain misorientation angle (∆θ = 2◦ or ∆θ = 5◦), as slip
transmission easily occurs, the dislocation pile-up at the GB is significantly relieved. Consequently,
the strain hardening rate obviously decreases compared to the previous stage without slip transmission.
Conversely, in the case with a larger grain misorientation angle (∆θ = 10◦ or ∆θ = 20◦), as slip
transmission is difficult to proceed due to the strong GB resistance, the change of the strain hardening
rate is trivial. In addition, for a given grain size, the larger the grain misorientation, the larger the
flow stress at a specified load. These results are qualitatively consistent with the corresponding DDD
simulation results in [18].

Then, the influence of the GB orientation is illustrated. To this end, a symmetric GB (θGB = 0◦)
and an asymmetric GB (θGB = 10◦) are considered. The corresponding orientation angles of the
slip systems are θ

(1)
A = 62.5◦ − θGB, θ

(1)
B = 57.5◦ − θGB, θ

(2)
A = 122.5◦ − θGB, and θ

(2)
B = 117.5◦ − θGB

with ∆θ = 5◦. In Figure 8a,b, the evolution of the rate of slip transmission and the distribution of
plastic slip at γext = 0.01 for the two cases are plotted. The GB orientation significantly affects slip
transmission. For the case with a symmetric GB (θGB = 0◦), the critical loads for the onset of the two
slip transmission processes are almost the same, and the difference in the steady-state value of the
rate of slip transmission is small. For the case with an asymmetric GB (θGB = 10◦), the distribution
of plastic slip and the evolution of the rate of slip transmission for the slip transmission process 1
obviously differ from those for the slip transmission process 2. From Figure 8b, the slip transmission
process 2 occurs first. After the onset of the slip transmission process 1, the rate of slip transmission for
the slip transmission process 2 suffers a sudden increase.
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Figure 7. Size-dependent stress-strain curves: (a) ∆θ = 2◦; (b) ∆θ = 5◦; (c) ∆θ = 10◦; (d) ∆θ = 20◦.
For thin films with smaller grain misorientation angles, the strain hardening rate significantly decreases
after the onset of slip transmission.

Figure 8. Influence of grain boundary orientation: (a) the rate of slip transmission; (b) distribution of
plastic slip at γext = 0.01. The GB orientation significantly affects the slip transmission behavior.

3.4. Influence of Surface Constraint

In the above discussion, in order to illustrate the GB influence separately, the microhard
(impenetrable) surface which is completely constrained is considered. However, if the surface is
permitted to absorb dislocations, slip transmission processes at the GB are also affected. Thus,
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the influence of surface constraint is investigated here. A microhard surface and a microfree surface
freely penetrable by dislocations representing two extreme cases are considered. It is pointed out
that the actual surface being in-between should be modeled by the surface model in Section 2.
The orientation angles of the slip systems are θ

(1)
A = 62.5◦, θ

(1)
B = 57.5◦, θ

(2)
A = 122.5◦, and

θ
(2)
B = 117.5◦ with θGB = 0◦ and ∆θ = 5◦. The GB parameters are λGB = 20,000 N/m, RGB

0 = 15 N/m,
and HGB = 10,000 N/m. Stress-strain curves, the evolution of the total average GND density,
the evolution of the rate of slip transmission, and the distribution of plastic slip at γext = 0.01
for the two cases are shown in Figure 9. From Figure 9a,c, for the case with a microhard surface,
the critical load for the onset of slip transmission is smaller and the steady-state value of the rate
of slip transmission is larger, indicating the slip transmission is easier to occur. It is attributed to
the fact that in the case with a microhard surface, since dislocations are not absorbed by surfaces,
dislocation pile-up at the GB is stronger, giving rise to a larger driving force for slip transmission.
Due to the surface constraint, in the case with a microhard surface, the decrease of the strain hardening
rate and the increase rate of average GND densities after slip transmission is trivial compared to the
case with a microfree surface. From Figure 9d, as the governing mechanism for the development
of plastic slip near the surface and that near the GB are dislocation absorption by surfaces and slip
transmission respectively, in the case with a microhard surface, plastic slip near the surface is smaller
but that near the GB is larger. It reflects the competition between dislocation absorption by surfaces
and slip transmission.

Figure 9. Influence of surface constraint: (a) stress-strain curves; (b) total average GND density; (c) the
rate of slip transmission; (d) distribution of plastic slip at γext = 0.01. Dislocation absorption by
surfaces and slip transmission may compete with each other.
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4. Summary

In this work, a GB model with consideration of slip transmission is proposed within the framework
of finite deformation gradient polycrystal plasticity. In the GB model, for each slip transmission process,
there are a GB kinematic relation between the plastic slip of the incoming slip system and that of
the outgoing slip system at the GB and a governing equation for slip transmission, which constitute
the GB microscopic boundary conditions. Both the energetic and the dissipative GB effects are
considered by introducing an energetic and a dissipative GB microforce for each slip transmission
process. By properly constructing energetic and dissipative GB constitutive relations, the important
factors including grain misorientation, the GB orientation, GB defects and stress state at the GB
which may affect slip transmission are captured in the present GB model. The main advantage of the
present model over the existing models is the consideration of underlying physical mechanisms of
slip transmission.

The mathematical framework of the present rate-dependent model is a fully coupled, strongly
nonlinear initial boundary value problem with non-standard boundary conditions, the numerical
implementation of which is done via a dual-mixed nonlinear finite element method. The treatment
of microscopic GB conditions is emphasized. A benchmark problem of a bicrystal thin film under
plane constrained shear is studied. It is found that the GB parameter, grain size, grain misorientation,
GB orientation, and surface constraint can significantly affect the slip transmission and the plastic
behavior of thin films. Particularly, in thin films with a smaller grain size and/or a smaller
grain misorientation, slip transmission occurs more easily. These results predicted by the present
model qualitatively agree with some experimental observations and results of DDD simulations in
the literature.
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Appendix A

To realize the numerical implementation of the model, a dual-mixed finite element formulation
put forward by [63] is adopted. The balance of momentum (24) and the evolution Equations (8) and (9)
of the GND densities are treated as governing equations such that the displacement u and the

GND densities ρ
ge(α)
i and ρ

gs(α)
i act as global variables. The plastic slip γ(α) is evaluated locally

at the integration points by the evolution equation of the plastic slip in the bulk and that at the
GB/surface. The treatment for the balance of momentum is standard. Thus, attention is restricted
to the discretization and implementation of the evolution equations of the GND densities. As the
evolution equations of the edge GND density and the screw GND density are similar, only the former
is explained for the sake of brevity. To obtain its weak forms, the governing equation of the edge GND
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density is multiplied by the weight function δρ
ge(α)
i and then integrated over the volume, followed by

the application of divergence theorem, which yields

∫
Vi

[
δρ̇

ge(α)
i ρ̇

ge(α)
i − 1

b(α)
s(α) · ∇iδρ̇

ge(α)
i γ̇(α)

]
dVi

+
∫

Si

1
b(α)

s(α) ·NS
i δρ̇

ge(α)
i γ̇(α)dSi

+
∫

ΩABi

1

b(α)A

s(α)A ·N
GB
Ai δρ̇

ge(α)
Ai ∑

β

γ̇
(αβ)
AB dΩABi

+
∫

ΩABi

1

b(α)B

s(α)B ·N
GB
Bi δρ̇

ge(α)
Bi ∑

β

D(βα)
AB γ̇

(βα)
AB dΩABi = 0,

(A1)

where the GB kinematic relation (14) is considered. For the spatial discretization, the volume of the
body is divided into finite elements, in each of which, following the standard Galerkin approach, the
unknown fields of the displacement and GND densities and the weight functions are approximated
by their nodal values multiplied by the shape functions. In addition, the adjacent elements on the
two sides of the GB are decoupled by placing double nodes at a GB nodal point. To satisfy the
continuity condition of the displacement at the GB, the displacement of those node pairs are forced to
be equal. For the benchmark problem in the present work, 4-nodes bilinear quadrilateral elements
with 2× 2 full integration are chosen for the spatial discretization of both the displacement and the
GND densities. To evaluate the GB/surface integration, two additional integration points are placed
on each surface/GB edge of elements at the GB/surface.

For the time integration within a time increment [tn, tn+1], the implicit backward Euler scheme is
adopted such that

γ̇
(α)
n+1 =

∆γ(α)

∆t
, ρ̇

ge(α)
n+1 =

∆ρge(α)

∆t
,

Fp−1
n+1 = Fp−1

n ·
[

I−∑
α

∆γ(α)s(α) ⊗m(α)

]
,

(A2)

where ∆γ(α) = γ
(α)
n+1 − γ

(α)
n , ∆ρge(α) = ρ

ge(α)
n+1 − ρ

ge(α)
n , ∆t = tn+1 − tn and the subscript n identifies the

quantities at the nth time step.
For the incorporation of the GB/surface contributions, the evaluation of the increment of the

plastic slip at the GB/surface integration points is required. As discussed in [52], at the surface,
the increment of the plastic slip ∆γ(α) is determined by the governing Equation (38) for dislocation
absorption by surfaces

∆γ(α) = ∆tγ̇S
0


∣∣∣−ξ

(α)
i ·NS

i − η
Sen(α)
i

∣∣∣
RS(α)

i


1

ms

sgn
(
−ξ

(α)
i ·N

S
i − η

Sen(α)
i

)
. (A3)

The plastic slips required to evaluate the terms on the right hand side are extrapolated from the
bulk. Accordingly, ∆γ

(αβ)
AB at the GB integration points is evaluated by the governing Equation (45) for

slip transmission

∆γ
(αβ)
AB =∆tγ̇GB

0


∣∣∣−ξ

(α)
Ai ·N

GB
Ai − D(αβ)

AB ξ
(β)
Bi ·NGB

Bi − η
GBen(αβ)
ABi

∣∣∣
RGB(αβ)

AB


1

mGB

·

sgn
(
−ξ

(α)
Ai ·N

GB
Ai − D(αβ)

AB ξ
(β)
Bi ·N

GB
Bi − η

GBen(αβ)
ABi

)
,

(A4)
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where the plastic slips required to calculate the quantities on the right hand side are extrapolated from
the interior of grain A or grain B. Since quantities from both grains are involved in Equation (A4),
the adjacent elements on the two sides of the GB are coupled, by which intergranular interactions
between dislocations are considered.

By combing the spatial and temporal discretization, the weak forms of the governing equations
reduce to a highly nonlinear, strongly coupled system of equations at each time step, which is solved
numerically by a Newton-Raphson solution strategy.
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