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ignificance Statement

Concerns about the reliability and reproducibility of biomedical research have been voiced across several
arenas. In this commentary, | discuss how a poor appreciation of the role of chance in statistical inference
contributes to this problem. In particular, how poor scientific design, such as low statistical power, and
questionable research practices, such as post hoc hypothesizing and undisclosed flexibility in analyses,
yield a high proportion of false-positive results. | discuss how the current publication and funding system
perpetuates this poor practice by rewarding positive, yet often unreliable, results over rigorous methods. |
conclude by discussing how scientists can prevent being fooled by chance findings by adopting well
kestablished, but often ignored, methodological best-practice. /

~

There is increasing awareness of the problem of
unreliable findings across biomedical sciences (loannidis,
2005). Many “landmark” findings could not be replicated
(Scott et al., 2008; Begley and Ellis, 2012; Steward et al.,
2012) and many promising preclinical findings have failed
to translate into clinical application (Perel et al., 2007;
Prinz et al., 2011), leading many to question whether
science is broken (Economist,2013). Central to this prob-
lem is a poor appreciation of the role of chance in the
scientific process. As neuroscience has developed over
the past 50 years, many of the large, easily observable
effects have been found, and the field is likely pursuing
smaller and more subtle effects. The corresponding
growth in computational capabilities (Moore, 1998) means
that researchers can run numerous tests on a single
dataset in a matter of minutes. The human brain pro-
cesses randomness poorly, and the huge potential for
undisclosed analytical flexibility in modern data-
management packages leaves researchers increasingly
vulnerable to being fooled by chance.
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The role of chance in statistical inference

Researchers cannot measure an entire population of
interest, so they take samples and use statistical infer-
ence to determine the probability that the results they
observe represent some underlying biological truth. Sam-
ples vary in how closely they represent the true popula-
tion, and this variation is inversely related to sample size.
The probability of drawing correct inferences depends on
the size of the sample, the size of the effect under inves-
tigation, the significance threshold for claiming an effect
(alpha, typically 5%), and the statistical power of the test
(1— beta). These four parameters are mathematically cou-
pled so each can be calculated from the remaining three;
a mathematical principle which proves useful in studying
various forms of bias in a given literature (Button et al.,
2013).

In terms of a single statistical test, there are two main
ways scientists can be fooled by chance. They can com-
mit a type | error and falsely reject the null hypothesis
when it is in fact true (ie, a false-positive decision), or they
can commit a type Il error by failing to reject the null
hypothesis when it is in fact false (ie, a false-negative
decision). In a third way, they can overestimate/underes-
timate the magnitude of a genuine effect.

Statistical power determines the probability of correctly
rejecting the null hypothesis. Thus, power is related to the
rate of true-positives and inversely to the rate of false-
negatives. The lower the statistical power, the lower the
chances of detecting genuine effects. The significance or
alpha criterion, typically 5%, sets the probabilistic thresh-
old for rejecting the null hypothesis, and determines the
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probability of committing a type | error and making a
false-positive decision.

A common misconception is that that the risk of making
a false-positive decision is solely determined by the alpha
criterion, and that the only risk associated with insufficient
power is missing genuine effects. However, if the pre-
study odds of a hypothesis being true (the ratio R of “true
effects” over “null effects” in the scientific field) is taken
into account, then statistical power is also related to the
probability of a positive result being true-positive, this is
known as the positive predictive value of the test (PPV).
The PPV can be calculated for given values of statistical
power (1 - B), pre-study odds (R), and type | error rate («),
using the formula PPV = ([1 - Bl X R)/ ([1— B] X R + «a).
The formula shows that, for studies with a given pre-study
odds R, and a given type | error (for example, the tradi-
tional p = 0.05 threshold), the lower the power, the lower
the PPV (Button et al., 2013). Confirmatory or replication
studies testing pre-specified hypotheses have higher pre-
study odds as the weight of previous evidence or theory is
behind them. The pre-study odds are lower for explor-
atory studies that make no prior predictions, leaving the
findings more open to chance. Combining low statistical
power with low pre-study odds has dire consequences for
PPV. Suppose we are working in a highly exploratory field
where in 90% of cases the null hypothesis is true. If we
conducted 1000 studies with alpha set at 5%, 45 (ie, 5%
of the 900 studies where the null hypothesis is true) would
be expected to yield false-positive results. If average
power were 80%, 80 studies would be expected to yield
true-positive results (ie, 80% of 100 genuine associa-
tions), meaning the probability that any single positive
result was true is 64% (PPV = 0.64). However, if the
average power were only 20% then this probability would
drop to 31% (PPV = 0.31), as the proportion of true-
positive findings would drop from 80 to 20, whereas the
number of expected false-positives (ie, 45) would stay the
same (Sterne and Davey Smith, 2001).

Even if the researcher is lucky enough to make the
correct inference, they may still be fooled by sampling
variation, and underestimate/overestimate the size of the
true effect (or even in some cases find a significant effect
in the opposite direction; Gelman and Carlin, 2014). These
errors of magnitude are more likely in smaller studies
where the results are more variable. As small studies often
have insufficient power to detect the genuine effect size,
only those small studies, which yield results that by
chance grossly overestimate the true effect size, will
reach statistical significance. This is often referred to as
the winner’s curse, as the researchers are winners to have
found a positive (and thus potentially more publishable)
result. However, they are cursed as their result is a grossly
inflated estimate (Button et al., 2013)

Designing studies with sufficient statistical power (typ-
ically considered 80% or more) is therefore crucial to
reduce the chances of making false inferences. However,
there is a preponderance of small underpowered studies
in many research fields. The median statistical power in
the neurosciences is estimated at close to 20% (Button
et al., 2013). This has important consequences for the

July/August 2016, 3(4) e0030-16.2016

Commentary 2 of 4

veracity of research findings. Studies with power this low
will on average miss 80% of genuine effects, whereas the
probability of a positive result being true (PPV) is only 31%
for exploratory research (assuming pre-study odds =
0.11) rising to 80% for confirmatory studies (pre-study
odds = 1). Furthermore, effect estimates for positive re-
sults would be expected to be inflated by ~50% (Button
et al., 2013).

Fooled by randomness and a talent for
self-deception

The human brain is particularly poor at understanding
the play of chance in everyday events. Random events
which fit with current goals or beliefs are often interpreted
as important or causal (eg, a profit trading stocks and
shares is due to talent), whereas events that contradict
are quickly dismissed as being irrelevant or due to chance
(a trading loss is due to bad luck; Taleb, 2007). Far from
the objective ideal, scientists are invested in the outcome
of their experiments, hoping to find support for theories
both for the simple pleasure of having one’s expectations
confirmed, and for the positive results that lead to publi-
cations and career progression. Despite our best efforts,
the brain automatically favors processing information in
accordance with our own goals and desires, leaving us
poorly positioned to draw accurate inferences based on
probability. Put simply, statistical inference is simply not
intuitive.

To compounds matters further, insufficient or inade-
quate statistical training means that many neuroscientists,
including senior investigators, may lack basic statistical
literacy. This lack of statistical savvy with the speed and
power of modern computation leaves researchers more
vulnerable than ever to fooling themselves (Nuzzo, 2015).
Researchers can easily explore multiple analytical path-
ways, such as removing an outlier, transforming a vari-
able, collecting more data, switching outcome variables,
adding or removing covariates, until they happen upon a
significant result. Such flexibility in analysis is perfectly
acceptable as long as it is transparently reported so it can
be appropriately accounted for when drawing inferences.
However, whether deliberately, due to unconscious bias,
or due to statistical illiteracy, researchers often forget
about the unsuccessful paths reporting only those leading
to statistically significant results (Simmons et al., 2011).
There is good evidence that such undisclosed flexibility in
analysis is commonplace, both from surveys of research
practice (John et al., 2012), and by the incredible 85-90%
of neuroscience/psychology/psychiatry papers claiming
evidence for an a priori hypothesis (Fanelli, 2010b). Either
a high proportion of researchers are researching redun-
dant questions, where the answer is already known, or
they are exploring their data to find a significant result and
then hypothesizing afterward (Simmons et al., 2011).

Current incentive structures perpetuate

poor practice

Scientific practices that fail to account for chance find-
ings yield unreliable results, yet they persist for a variety of
reasons. Scientists are under increasing career competi-
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tion. Over the past 30 years, the number of faculty posi-
tions in the US has remained relatively constant, but the
number of PhDs awarded has increased dramatically
(Schillebeeckx et al., 2013). The biggest predictor of ac-
ademic success is the number of first author publications,
followed by the impact factors of the corresponding jour-
nals (van Dijk et al., 2014). Unfortunately, this “publish or
perish” culture, in the presence of the long-standing pub-
lication bias for novelty and positive results, may incen-
tivize running multiple small studies measuring multiple
outcomes. As described above, such practice combined
with flexible analytical procedures (Simmons et al., 2011),
can generate a large number of positive results, although
most will either be false-positive or inflated (Button et al.,
2013). These positive results are often incorrectly re-
ported as confirmatory (John et al., 2012), are dispropor-
tionately rewarded with publication (Rosenthal, 1979),
potentially leading to grant funding and career advance-
ment (van Dijk et al., 2014). Indeed, the degree of bias or
inflation in reported effects correlates (albeit weakly) to
the impact factor of the publishing journal, with highly
inflated results from small studies being rewarded with
publication in some of the highest impact journals (Mu-
nafd et al., 2009). Furthermore, competitive research en-
vironments increase the proportion of studies reporting
positive results (Fanelli, 2010a), providing evidence that
current incentive structures perpetuate poor practices.

Solutions

Solving these issues requires a systemic shift in both
thinking and practice. Solutions include preregistration of
study protocols (Dickersin and Rennie, 2012), transparent
reporting of methods and results (Rennie, 2001; Simera
et al., 2010), and designing studies with sufficient statis-
tical power (Button et al., 2013). Better education and
training in research methods and statistics are vital to
equip neuroscientists with the skills required to deliver
rigorous research, and to better peer-review the work of
their colleagues. However, with the complexity of data in
some fields of neuroscience and the advancement of
modern statistical techniques, it may be time for a move
toward working in multidisciplinary teams which include a
statistician.

Perhaps the most powerful way of preventing scientists
from fooling themselves or their colleagues into false
interpretations of chance findings is transparent reporting.
Transparency can be facilitated by public registration of
study protocols and analysis plans before data is col-
lected. This creates an audit trail, and the clear differen-
tiation between confirmatory tests of a priori hypotheses,
and post hoc explorations of data. Statistics should also
be reported transparently so that others can use the data
for power calculations or meta-analysis. Means and stan-
dard deviations, as well as effect sizes and confidence
intervals should be routinely reported in addition to test
statistics and p values. Reporting actual p values rather
than p </> 0.05 protects against the temptation for
rounding errors (John et al., 2012). Where ethics and
participant consent permits, data should be made open-
access.
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Blinding study personnel to experimental conditions
wherever possible is also essential for reducing the im-
pact of unconscious bias, particularly during data collec-
tion (Macleod et al., 2008). Blinded data analysis can
protect against asymmetrical data-checking (where re-
searchers check unexpected or null findings more thor-
oughly for errors than findings that fit with their
expectations), p-hacking (exploring data until a significant
result is found), and other biased decisions about data-
cleaning (Nuzzo, 2015).

Aligning career incentives with robust
science

Conducting more rigorous research has implications;
better powered studies require more resources, take lon-
ger to run, and often yield more conservative results.
However, fewer, more conservative papers could leave a
scientist at a career disadvantage in the current system.
To prevent this we need systemic change, realigning the
incentive structures for career advancement with rigorous
methods. Fields, such as clinical trials and human ge-
nome epidemiology, have arguably led the way in terms of
trial registration and transparent reporting (Rennie, 2001;
Simera et al., 2010; Dickersin and Rennie, 2012), and
large-scale collaborative consortia with extensive replica-
tion (Munafo and Flint, 2014), respectively.

However, change is happening in neuroscience.
Funders and publishers are implementing new funding
and publishing requirements and initiatives (Landis et al.,
2012; Chambers, 2013; Nature, 2013; Munafo et al.,
2014). These include checklists for minimum standards of
reporting to improve transparency (eg, https:/
bmcneurosci.biomedcentral.com/submission-guidelines).
Furthermore, based on the Organization for Economic
Co-operation and Development (OECD) assertion that
publicly-funded research data are a public good, pro-
duced in the public interest, and thus should be openly
available as far as possible, many funders and publishers
now require data and research resources to be made
publically available (eg, http://www.mrc.ac.uk/research/
research-policy-ethics/data-sharing/policy/).

Funders can support high-quality research, by funding
larger studies, which may involve collaboration across
multiple research groups. However, even in the absence
of substantial grant funding, researchers can find innova-
tive ways to maximize research resources and boost
power through collaboration (Button et al., 2016;
Schweinsberg et al., 2016). There are also numerous
researcher-led initiatives for improving transparency and
replication (Kilkenny et al., 2010; Open Science Collabo-
ration, 2015), including open source science initiatives to
share knowledge, resources, and even crowd-source re-
search projects (eg, http://www.theopensourcescien-
ceproject.com). The benefits for collaborative studies are
far reaching. Results obtained from multiple laboratories
are often more generalizable, and the need to share data
and harmonize methods necessitates transparency in re-
porting, whilst expediting the development of optimal
research procedures. Successfully adopting robust meth-
ods will inevitably change the nature of the evidence base,
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and we should be prepared for this. In the clinical trials
literature protocol preregistration and specifying primary
outcomes is often mandatory, and the number of trials
finding in favor of a new drug is around 50-60%, close to
the point expected by clinical equipoise (Djulbegovic
et al., 2013). Clinical trials are arguably the most confir-
matory type of research, resulting from years of preclinical
findings and early-phase trials. By comparison, the ma-
jority of neuroscience research will be much more explor-
atory. The current rate of 85-90% of neuroscience papers
confirming a priori hypothesis (Fanelli, 2010a) is unsus-
tainable. Successful implementation of rigorous methods
would be expected to more than half of this rate. We
should also expect unintended consequences; for exam-
ple, too great a swing toward confirmatory research might
stifle innovation and hypothesis generation. However, the
growth in meta-research (that is, science on science)
provides a powerful means of measuring these changes,
allowing us to monitor our progress toward a more reliable
evidence base.
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