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Abstract: Live-attenuated vaccines are the most effective way to establish robust, long-lasting
immunity against viruses. However, the possibility of reversion to wild type replication and
pathogenicity raises concerns over the safety of these vaccines. The use of host-derived microRNAs
(miRNAs) to attenuate viruses has been accomplished in an array of biological contexts. The broad
assortment of effective tissue- and species-specific miRNAs, and the ability to target a virus with
multiple miRNAs, allow for targeting to be tailored to the virus of interest. While escape is
always a concern, effective strategies have been developed to improve the safety and stability
of miRNA-attenuated viruses. In this review, we discuss the various approaches that have been used
to engineer miRNA-attenuated viruses, the steps that have been taken to improve their safety, and the
potential use of these viruses as vaccines.
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1. Introduction

MicroRNAs (miRNAs) are short RNAs that bind with partial complementarity to mRNAs to
inhibit translation of their target. miRNAs are transcribed by Pol II and form a secondary hairpin
structure that is initially processed in the nucleus by the RNase III enzyme Drosha. Following nuclear
export, additional processing is completed by a second RNase III enzyme, Dicer. The miRNA is then
loaded into the multi-protein RNA-induced silencing complex (RISC), which mediates mRNA decay
and translational inhibition. miRNA bind to target mRNAs through the seed sequence, nucleotides
2–8 on the 5’ end of the miRNA, resulting in translation repression of ~2 fold. However, perfect
complementarity can result in target mRNA cleavage and significant enhancement of repression.
In rare cases of binding with perfect complementarity between miRNA-mRNA sequences, mRNA
cleavage will be induced. In eukaryotes, miRNAs are essential regulators of mRNA expression during
development and fine tune translation to control other diverse cellular processes [1].

Plants and invertebrates use miRNAs for gene regulation, but also have a separate, partially
overlapping antiviral defense mechanism, RNA interference (RNAi). Similar to miRNAs, small
interfering RNA (siRNA) processing is carried out by Dicer and siRNAs are loaded into RISC, although
in many organisms, there are generally separate versions of these proteins for each pathway. In these
species, the processing of long, double-stranded viral RNA and miRNA processing are carried out by
separate Dicer proteins, but share components of other steps of the RNAi pathway [2,3]. As an antiviral
mechanism, silencing through RNAi is achieved by producing virus-derived siRNAs that bind with
perfect complementarity to the target viral sequence. While small virus-derived RNAs have been
identified in mammalian cells following infection [4], siRNAs are not the primary antiviral mechanism
in mammals [5,6]. However, while not naturally antiviral, the miRNA pathway can be experimentally
coopted to repress virus replication. Importantly, miRNA and siRNA function through the same
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mechanisms in mammalian cells, suggesting that miRNAs could be exploited to be antiviral [7]. This
has been achieved by inserting perfectly complementary target sites for the miRNA into the viral gene
of interest, effectively turning the miRNA into an siRNA. Tissue- and species-specific miRNAs have
been exploited to control virus replication in a myriad of biological contexts, including to improve
the safety of oncolytic viruses by attenuating the virus in non-tumor tissues [8–11] and to attain
tissue-specific expression of virus-derived transgenes or to limit the immune response against the
transgene for gene therapy [12–14]. These studies have demonstrated the ability of engineered miRNA
targeting to control virus replication in vitro and in vivo.

Vaccines have been highly successful at limiting viral infections and have led to the elimination of
smallpox from the human population [15]. There are four main classes of viral vaccines: killed, subunit,
mRNA, and live-attenuated. Live-attenuated vaccines have several advantages, including providing
more robust, long-lasting immunity compared to inactivated vaccines [16]. Viruses can be attenuated
through several different mechanisms, including altering the temperature of the optimal polymerase
function and deleting or mutating viral immune antagonists. However, some effective attenuation
strategies result in poor immunogenicity, limiting their use as a vaccine. Mechanisms of attenuation
may not be identical across viral species. For example, the mechanism of temperature sensitivity will
vary from virus to virus. Additionally, safety is a major concern when developing any live-attenuated
vaccine, where reversion to wild type replication could be devastating [16]. miRNAs have been used
as a platform to develop live-attenuated vaccines for DNA and both positive and negative sense RNA
viruses by exploiting host endogenous miRNAs. The broad array of cell- and species-specific miRNAs,
as well as the ability to target using multiple miRNAs, allow for customizable attenuation for different
viruses. A major advantage of this strategy is that this provides a known mechanism of attenuation,
which can be applied across a diverse range of viruses. In this review, we will discuss the approaches
for generating miRNA-targeted viruses and several strategies for improving the safety and efficacy of
miRNA-attenuated vaccines.

2. MicroRNA-Attenuated Vaccines

2.1. Mechanisms of MicroRNA Targeting of Viruses

Endogenous miRNA targeting primarily occurs at the three prime untranslated region (3’ UTR)
of host mRNA transcripts [17]. However, many viral RNAs contain short 3’ UTRs, potentially as
an evolutionary mechanism to evade miRNA regulation. There are two ways that viruses can be
engineered to be sensitive to miRNAs: through the generation of silent mutations in the open reading
frame to be complementary to the cognate miRNA or by inserting complete target sites into the
endogenous or engineered UTRs. Some locations in the viral genome may not be amenable to miRNA
machinery access due to the secondary RNA structure or binding of viral proteins, and therefore cannot
be used to attenuate virus replication [18]. West Nile virus has been engineered to encode miRNA
target sites between RNA secondary structures in the 3’ UTR to allow miRNA access and to prevent
disruption of the important RNA structures [19]. These results demonstrate that care must be taken in
choosing genomic sites for miRNA targeting. In addition to the location within a gene, engineered
miRNA-mediated repression can be affected by the choice of viral gene being silenced. Targeting
an essential gene can completely disrupt virus replication, while the targeting of a non-essential gene
can prevent pathology but allow for the expression of some viral products, which may be necessary to
produce a robust adaptive immune response. Reversion to virulence is a concern for all live-attenuated
vaccines, including miRNA-targeted vaccines. Escape from miRNA targeting, as well as strategies to
mitigate this risk, are discussed in a later section of this review.

Some DNA viruses naturally encode miRNAs to regulate the viral replication life cycle and control
host gene expression [20–22]. RNA viruses have thus far been found to be devoid of this regulatory
mechanism (with the notable exception of some retroviruses [23–26]). However, both positive and
negative sense RNA viruses can be engineered to express a functional miRNA [27–31], which can
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be further exploited to generate self-attenuating viruses. Inserting an artificial miRNA with perfect
sequence complementarity to nucleoprotein as an intron in the nonstructural gene segment created
a self-attenuating influenza virus [32]. This strategy resulted in highly attenuated replication in vivo,
even in the absence of a type I interferon response. Work from another group demonstrated that this
self-attenuating virus could be used as a protective influenza virus vaccine [33]. However, as discussed
in more detail below, the major drawback to this strategy is rapid escape from attenuation through
loss of the artificial miRNA [32].

2.2. Species-, Tissue-, and Cell-Specific MicroRNA Targeting of Viruses

In a landmark study, Landgraf et al. developed an atlas of miRNA expression in a variety of
cell types and tissues from mice and humans [34]. This study demonstrated that while the majority
of miRNAs are broadly expressed, there are several whose expression is restricted to particular cell
types, lineages, or tissues [34]. However, different tissue- or host-specific miRNAs may not repress
viral gene expression equally, and the level of attenuation is of critical importance when designing
a miRNA-attenuated vaccine. For example, three different central nervous system (CNS)-specific
miRNAs effectively attenuated a targeted flavivirus in vitro, but only two were able to prevent
pathogenesis and death in vivo [35]. This suggests that the presence of a miRNA alone cannot always
predict target efficacy. One potential explanation for this is that endogenous targets for a miRNA
can act as sponges, reducing the functional amount of a miRNA within a cell. Furthermore, it has
been suggested that 100–1000 miRNAs need to be present in the cell for at least 6 h after infection
to repress engineered miRNA sensitive virus replication [32]. Using a fluorescence-based screening
approach, Mullokandov et al. were able to determine the functional repression capacity of endogenous
miRNAs in a variety of cell types [36], and this platform can be used to screen for effective miRNAs for
attenuated vaccines. One potential area of concern is altered miRNA expression during virus infection.
Many acute RNA viruses replicate rapidly and the life cycle may be shorter than the time needed to
upregulate sufficient quantities of antiviral miRNAs [37]. However, infections with a number of viruses
have demonstrated changes in the overall pattern of miRNA expression. Therefore, infection-specific
changes in miRNA expression should be considered, particularly for viruses with the capacity for
latency. Overall, the capacity of a miRNA to repress targeted virus replication is difficult to predict
based on small RNA abundance alone. Consideration of other factors and experimental validation in
the relevant cells and systems are critical.

One strategy for the generation of a live-attenuated vaccine using miRNAs is to target the
virus only in cells or tissues that underlie pathogenesis for that infection. Targeting tick-borne
encephalitis virus or dengue virus using a CNS-specific miRNA limited neuropathogenesis in mice,
while preserving immunogenicity [38]. Importantly, neutralizing antibodies could be generated
following the inoculation of non-human primates with the targeted virus [38]. Similar results were
obtained for Japanese encephalitis virus [39] and West Nile virus [19]. Muscle-specific miRNA-targeted
Coxsackie B virus displayed reduced cardiopathology and generated a strong protective immune
response [40]. In these examples, viral infection could still occur peripherally, including in antigen
presenting cells, which potentially allows for the increased generation of adaptive immune responses.
Influenza virus has a broad tropism and is able to replicate in both epithelial and immune cells [41].
Using a hematopoietic-specific miRNA to block influenza virus replication in immune cells still resulted
in robust activation of CD8 T cells [42]. Because antigen presenting cells could not be directly infected,
these data suggest that exogenous antigen acquisition and cross-presentation are sufficient to generate
anti-influenza cell-mediated immunity. These studies suggest that blocking pathogenic replication, but
allowing replication in other cells, is sufficient to generate robust antiviral immunity.

Many viruses that cause disease in humans also replicate in or are transmitted through non-human
species. Continued replication or recombination of miRNA-attenuated vaccine strains in these species
could result in the loss of miRNA target sites and reversion to a wild type strain, which could
lead to the spread of the pathogenic virus to other hosts. It is therefore critical that vaccines that
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are attenuated in humans are also blunted in these zoonotic reservoirs. Attenuation of viruses using
multiple species-specific miRNAs can improve the safety of live-attenuated vaccines. Mosquito-specific
and tick-specific miRNAs have been used in combination with CNS-specific miRNAs to attenuate
flaviviruses in the natural vectors and prevent the escape of vaccine strains [19,35,43] (Figure 1A).
While there is a diverse array of tissue- and host-specific miRNAs, patterns of miRNA expression are
not always perfectly tailored to the desired application. To circumvent this, Waring et al. eliminated
a eukaryotic ubiquitously expressed miRNA, miR-21, from MDCK cells to allow for the growth of
a targeted influenza virus [44]. This virus was attenuated in eukaryotic hosts, including avian and
human cells and in mice [44] (Figure 1B). This approach allowed for a species universal attenuated
vaccine, which provided robust protection upon lethal challenge in mice. This study also provides
a platform for molecular biocontainment to prevent the spread of engineered influenza virus into
human or zoonotic reservoirs, while still allowing for experimental analyses in cell lines lacking the
cognate miRNA.
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Figure 1. Tissue- and species-specific microRNA-attenuated viruses. (A) Model of tissue-specific
attenuation of a flavivirus combined with attenuation in an insect vector. (B) Model depicting
generation of a miRNA-attenuated influenza A virus in miRNA knock out cells to generate
a species-universal attenuated vaccine. Created with BioRender (Toronto, ON, Canada).

As discussed above, miRNA targeting can be used to restrict a virus such that it can only replicate
in the necessary viral amplification platform. Influenza viruses, including those used for vaccines,
are grown to a high titer in embryonated chicken eggs. To generate influenza virus vaccines that
could be grown in eggs but would be attenuated in mammals, Perez et al. screened the small miRNAs
in avian and mammalian cells and found several that were absent in eggs but present in mammals.
Using one of these, miR-93, they generated a vaccine that could replicate in eggs but was attenuated in
mice [45]. Importantly, this vaccine provided robust protection upon challenge with lethal influenza
strains. Species-specific attenuation can also be used to enhance safety when working with pathogenic
viruses in the laboratory through molecular biocontainment. miR-192 is present in human lung, but
absent from ferret lung. Targeting the influenza virus with miR-192 allowed for experimentation
in ferrets without the concern for human infection [46]. Together, these studies demonstrate the
plasticity in using cell- and species-specific miRNAs to control virus replication for the generation of
live-attenuated vaccines.

2.3. Immunogenicity of MicroRNA-Attenuated Viruses

One concern with any live attenuated vaccine strategy is that replication will be reduced to a point
where the immune response to the virus is severely compromised, resulting in insufficient protection
from secondary infection. It is therefore important to characterize the innate and adaptive immune
responses to miRNA-attenuated viruses. Benitez et al. found that a miRNA-targeted influenza
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virus induced the expression of a myriad of interferon-stimulated genes in mice, suggesting that
the robust attenuation of the virus still allowed activation of the innate immune response [32]. In
another influenza study, a miRNA-attenuated vaccine generated high anti-influenza A virus antibody
titers in mice, despite the lack of detectable virus replication, and an equivalent dose of UV-killed
virus failed to induce protection [44]. Similar results have been shown for attenuated flavivirus and
enterovirus, where miRNA-mediated attenuation prevented disease, but still allowed for the generation
of a protective adaptive immune response [38–40,44]. In the event that a virus is attenuated to the
point where it is poorly immunogenic, there are strategies to improve immunogenicity. For example,
increasing the starting inoculum can raise antibody titers while still preventing pathogenesis [19].
miRNA-mediated attenuation could potentially allow for increased inoculums compared to other
live attenuated vaccine strategies as a strategy to increase immunogenicity. As has been shown for
influenza virus, targeting different genes can result in differential attenuation, and targeting multiple
genes can improve attenuation over targeting single genes [44]. If targeting an essential gene fails to
induce sufficient immunity, this strategy of customizable attenuation using miRNAs can be employed
to achieve appropriate levels of replication to generate an immune response without causing disease.
Altogether, these studies demonstrate that miRNA-attenuation can prevent pathogenesis of the virus
while still initiating an immune response that results in protection from secondary infections.

2.4. Escape from MicroRNA Targeting

Replication in the presence of the cognate miRNA applies selective pressure for the potential
mutation or complete loss of miRNA target sites. Reduced targeting is a major concern when designing
miRNA-attenuated vaccines. A single let-7 target site in poliovirus can accumulate escape mutations as
early as 24 h post infection, restoring the full replicative potential of the virus [47]. Additionally, a single
nucleotide mutation in a miRNA target site can restore the neurovirulence of a targeted flavivirus [38].
One way to mitigate escape is to engineer multiple target sites into the virus. Targeting only the 3’ UTR
of Langat virus resulted in escape after multiple replication cycles due to the deletion of miRNA target
sites, but when multiple genomic loci were targeted, miRNA target sites were retained and the virus
did not escape [35]. Another study using influenza virus demonstrated that even reducing perfect
complementarity from 20 base pairs to 16 base pairs did not result in escape when two target sites
were inserted [32], further illustrating the benefit of multiple sites. Additionally, targeting multiple
segments of influenza virus increased attenuation from segments that resulted in poor attenuation
individually [44], demonstrating the power of combinatorial targeting. In addition to using multiple
target sites for the same miRNA, enhanced viral repression can be achieved using multiple different
miRNAs, and this strategy can be more effective at attenuating than multiple sites for the same
miRNA [43]. However, studies still need to be done to determine how the order of miRNA target
sites impacts the efficiency of each individual site within a multi-targeting cassette. A self-attenuating
influenza virus engineered to express an artificial miRNA targeting its own genome also demonstrated
escape. However, this occurred through deletions in the hairpin, not in the miRNA target site [32],
indicating that endogenous target sites are not readily amenable to escape mutations, likely because
viral genomic sequences are highly conserved. This is in contrast to engineered target sites where, for
example, Dengue virus completely lost miRNA target sequences after infection in vivo [48]. While
multiple target sites can improve safety and are likely necessary for designing safe miRNA-attenuated
vaccines, additional strategies may be required to overcome viral escape through the loss of target sites.

Several alterations in the viral genome have improved the stability and efficacy of miRNA-mediated
attenuation of flaviviruses and other viruses. One way that this has been achieved is by targeting only
the artificially duplicated 5’ regulatory region of the Langat virus capsid RNA, leaving the optimized
coding region intact. This method of targeting was more effective than targeting the viral 3’ UTR.
Additionally, insertions in the duplicated 5’ region mitigated the risk of homologous recombination
between the duplicated region and the coding region, improving the stability of the miRNA target
sites [49]. This group also combined this strategy with insertion of the encephalomyocarditis virus internal
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ribosomal entry site (IRES) upstream of the capsid gene. This reduced the abundance of the capsid
protein and caused general attenuation of the virus. Combining IRES-mediated attenuation with miRNA
targeting improved the stability and effectiveness of miRNA attenuation compared to miRNA targeting
alone [50]. This clever strategy also mitigated the risk of mutation in insect vectors, as RNA translation
from the encephalomyocarditis virus IRES is inhibited in insect cells and the virus was therefore unable to
replicate [51] (Figure 2A). While targeting the 3’ UTR is effective, the secondary RNA structure in this
region may block miRNA targeting. Additionally, some viral UTRs contain packaging signals that need to
remain intact to successfully incorporate viral genomes into the virion. Duplicating the 3’ UTR, which was
done to insert miRNA target sites into influenza virus genes [42,44,46], retains the necessary packaging
information and may allow for a linear single stranded targeting region, enhancing the efficiency of
repression (Figure 2B). Dengue virus completely lost miRNA target sequences after infection in vivo [48],
suggesting that genomic alterations may be necessary to produce a safe, stable miRNA-attenuated Dengue
virus vaccine. While the strategies described above have been successful, genomic changes may need to
be tailored for use in other viruses. Together, these data illustrate that increasing the number of target sites
and engineering alterations to the virus genome can improve miRNA-mediated repression and mitigate
the risk of escape.
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Figure 2. Altered viral genome structures to improve miRNA targeting. (A) Model of the wild type
Langat virus genome, highlighting the capsid gene (top), the miRNA-targeted (purple) duplicated 5’
region followed by a 2A site (orange) to allow for expression of the codon-optimized capsid protein
(middle), and the insertion of an IRES to regulate the expression of the capsid protein (bottom).
(B) The wild type influenza virus NP gene (top) and the miRNA-targeted (purple) NP gene with
a duplicated packaging signal (bottom). Created with BioRender (Toronto, ON, Canada).

2.5. Viral Suppressors of MicroRNAs

RNAi is the primary antiviral defense mechanism in many non-vertebrate species. Therefore,
viruses that infect these hosts have evolved mechanisms to evade this response. Most plant viruses
encode a protein that inhibits some component of the antiviral RNAi pathway [2]. Similarly,
many invertebrate viruses encode a suppressor of RNAi, including suppressors of Dicer and
RISC proteins [52–56]. Viruses that infect both invertebrates and mammals may possess these
immune evasion mechanisms, and because the miRNA and RNAi pathways share many of the
same components, virus proteins that target common elements would impact miRNA-mediated
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attenuation. Strikingly, arboviruses, which infect arthropods and mammals, do not appear to express
viral suppressors of RNAi, despite being susceptible to the arthropod antiviral RNAi response [57].
However, West Nile virus may evade RNAi by positive selection for point mutations that prevent
targeting [58]. Several DNA viruses are capable of suppressing miRNAs. For example, the poxvirus
protein VP55, an essential component of the viral polyA polymerase, can additionally non-specifically
polyadenylate miRNAs, resulting in their eventual destruction [59]. Adenoviruses inhibit both the
nuclear export of miRNAs, as well as Dicer function [60]. There are several reports of influenza NS1
blocking RNAi. However we, and others, have shown that miRNAs can attenuate targeted influenza,
even in the presence of increased NS1 expression [32,42,45,46,61,62]. These studies indicate that not all
viruses can be candidates for miRNA-mediated attenuation unless steps are taken to cripple miRNA
suppressive viral genes.

While mammalian viruses do not appear to express suppressors of RNAi, there may be mechanisms
that indirectly inhibit the miRNA targeting of viruses. Induction of the interferon response in the
presence of virus replication has been shown to inhibit miRNA function via poly-ADP-ribosylation of
Ago2, an essential component of RISC [63]. This could reduce miRNA-mediated attenuation during
vaccination/infection and provide a window for escape. The inhibition of RNAi by the interferon
response suggests that these are not compatible systems and that miRNAs are not an effective intrinsic
antiviral strategy in mammals. Furthermore, the absence of miRNAs from a cell did not hinder
the replication of a variety of viruses, suggesting that miRNAs are not a potent natural antiviral
defense mechanism for the host [64,65]. The lack of a mammalian antiviral RNAi system suggests that
mammalian viruses would not need to evolve suppressors of this pathway, further supporting the
ability to experimentally coopt miRNA targeting for safe and effective virus attenuation.

3. Conclusions

miRNA-mediated attenuation has been achieved for many viruses in many hosts. Several
strategies have been employed that have improved the safety, stability, and efficacy of miRNA-mediated
attenuation for the purpose of generating live-attenuated vaccines. The utility of miRNA targeting of
viruses extends beyond vaccines and can be used for gene therapy and oncolytic virotherapy, and this
strategy could be extended to non-viral pathogens by using viral vectors. Overall, miRNA targeting
is a promising platform for developing safe, effective vaccines and provides increased plasticity over
traditional live-attenuated vaccine strategies.
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