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Abstract

Background: Loss-of-function phenotypes are widely used to infer gene function using the principle that similar
phenotypes are indicative of similar functions. However, converting phenotypic to functional annotations requires
careful interpretation of phenotypic descriptions and assessment of phenotypic similarity. Understanding how
functions and phenotypes are linked will be crucial for the development of methods for the automatic conversion of
gene loss-of-function phenotypes to gene functional annotations.

Results: We explored the relation between cellular phenotypes from RNAi-based screens in human cells and gene
annotations of cellular functions as provided by the Gene Ontology (GO). Comparing different similarity measures, we
found that information content-based measures of phenotypic similarity were the best at capturing gene functional
similarity. However, phenotypic similarities did not map to the Gene Ontology organization of gene function but to
functions defined as groups of GO terms with shared gene annotations.

Conclusions: Our observations have implications for the use and interpretation of phenotypic similarities as a proxy
for gene functions both in RNAi screen data analysis and curation and in the prediction of disease genes.
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Background
A central tenet of experimental approaches to assigning
functions to genes posits that genes involved in the same
biological process show similar loss-of-function pheno-
types. This provides the rationale for performing loss-of-
function genetic screens and is used by the GeneOntology
consortium in their gene annotation process (i.e. for anno-
tations with evidence code IMP: Inferred from Mutant
Phenotype, The Gene Ontology Evidence Tree1). Sys-
tems microscopy approaches, defined as the combination
of recent developments in microscopy automation with
automated image analysis and data mining [1], now allow
for systematic exploration of the gene loss-of-function
phenotypic space and large scale RNAi screens have given
us phenotypic information for thousands of genes (e.g.

*Correspondence: ranea@uma.es
1Department of Molecular Biology and Biochemistry, University of Málaga,
Boulevard Louis Pasteur, 29071 Málaga, Spain
4CIBER de Enfermedades raras (CIBERER), Madrid, Spain
Full list of author information is available at the end of the article

[2–4]). In contrast to more traditional experiments that
have been addressing a single phenotype closely asso-
ciated with a function, systems microscopy approaches
increasingly use phenotypic profiling, the description of
phenotypes by multi-parameter measurements. While
this increases the amount of usable information, the cost
is that functional associations become less evident. The
process of converting phenotypic annotations to func-
tional annotations therefore remains a manual one, due
to the free-text nature of many phenotypic descriptions
and to the difficulty of assessing phenotypic similarity
(i.e. how similar should two phenotypes be in order to
infer the same function?) in particular across different
experiments. As a consequence, large RNAi screens per-
formed in human cells haven’t been used to annotate
genes with Gene Ontology terms from the biological
process domain and this contributes to a lower level of
experimentally-supported annotations of genes cellular
functions than the number of reported functional assays.
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In this context, automating the identification of simi-
lar cellular phenotypes and their assignment to relevant
cellular processes across experiments would increase the
level of experimentally-supported functional annotations.
The recently developed Cellular Phenotype Ontology
(CPO, [5]) and Cellular Microscopy Phenotype Ontology
(CMPO, [6]) attempt to fill a gap in the domain coverage
of existing ontologies by organizing the cellular phenotype
domain into a consistent ontological structure. Replac-
ing free-text phenotypic description in RNAi screens with
well-defined ontology terms makes automatic evaluation
of phenotypic similarity possible. However, to automati-
cally convert phenotypic annotations, in particular phe-
notypic profiles, to functional annotations, we need to
understand how phenotypes and functions are related. As
most screens report hit lists usually found enriched in
genes involved in relevant biological processes using GO
annotations, we can expect phenotypic similarity to corre-
late with or be indicative of participation in similar cellular
processes. We wondered how phenotypic profiles gen-
erated by combining annotations from multiple screens
could be exploited to automate and/or refine gene func-
tional annotations. Note that our goal is not to remine
the screens to infer gene function but rather to explore
whether and how the phenotypic annotations resulting
from these screens can be related to Gene Ontology bio-
logical process terms.

Methods
Gene phenotypes
Gene loss-of-function phenotypes were obtained from the
following large siRNA-based gene silencing experiments
performed in human cells: Mitocheck [2], EMBL secre-
tion screen [4], EMBL chromosome condensation screen
[7], Copenhagen DNA damage screen [8], CellMorph
[3]; and RNAi screens GR00290-A (regulation of centri-
ole biogenesis, [9] and GR00053-A (genome stabilization
by phosphorylation of the histone H2AX, [10] from the
GenomeRNAi database [11]. It is noteworthy that none of
these screens have been used for making biological pro-
cess annotations in GO (as evidenced by the fact that none
of the corresponding papers are cited as source of anno-
tation) despite the data having been available for several
years. The cellular functions covered by these screens are
diverse and include cell proliferation, cell death, cell motil-
ity, mitosis, protein secretion, DNA damage and centriole
formation. However, this list is not exhaustive as some
screens (e.g. CellMorph, MitoCheck) report phenotypes
not obviously associated with a declared target biological
function.
The compilation of all data from these separate

experiments, gives a set of 36 unique cellular pheno-
types (Table 1) associated with 4198 Entrez genes (see
Additional file 1: Table S1). Most genes have been tested

in more than one screen, and the screens include non-
overlapping sets of phenotypes. As our goal is to explore
how phenotypic annotations are linked to GO cellular
process terms, we used phenotypic annotations resulting
from the screens as made available in the correspond-
ing papers. Relationships between genes and phenotypes
from different assays were integrated into a binary matrix
recording the presence (value 1) or absence (value 0) of a
phenotype for each gene (Table 2). Note that 0 is also used
where genes have not been tested in a screen. To assess
whether this affected our results, we tested the effect of
sparsity by replacing a proportion (5, 10, 20 and 30%) of
randomly selected 1 s with 0 s. A visual overview of the
data matrix is presented in Additional file 2: Figure S1.

Ontologies and annotations
We used two formal ontologies to perform our study: the
Gene Ontology (GO) [12] and the Cellular Microscopy
Phenotype Ontology (CMPO)2. We selected for our
study the GO branch of cellular process (root term
GO:0009987), which is the ontological domain closer to
the cellular phenotypes captured in the screens. The terms
hierarchy was extracted from the OBO file released on
2015-09-26. Gene Ontology annotations of genes were
downloaded from the GO web site3 (see Additional file 3:
Table S2) and extracted from the file with validation date:
09/16/2015, removing electronically-inferred annotations
(IEA). To ensure that the genes with phenotype did not
form a biased set of GO annotations, we verified that the
distribution of information content of the terms used to
annotate the genes with phenotypes was the same as for
all annotated genes (Fig. 1).
CMPO gene annotations were retrieved from the

cellular phenotype database4 [13](see Additional file 4:
Table S3). Compared to a vocabulary of phenotypes, the
ontology has the advantage of formalizing the relation-
ships between the phenotypes. For example, the ontology
allows to infer that the phenotypes “chromosome segre-
gation defect” and “metaphase arrest” are both mitotic
phenotypes.

Similarity measures
Similarity measures used in this study are shown in
Table 3. Euclidean and correlation distances were com-
puted using the R core package stats, for cosine we used
lsa [14] and for Jaccard prabclus [15]. Hamming, Cohen’s
kappa and TF-IDF [16] were also coded in R. For dimen-
sionality reduction, we applied the logisticPCA() function
of the R package logisticPCA to extract 10 principal com-
ponents and correlation, cosine and Euclidean similarities
were computed in this new space. To take advantage
of the phenotype ontology, we also computed several
measures of semantic similarity using the R package
dnet [17].
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Table 1 Set of 36 phenotypes obtained from the listed siRNA experiments sorted by its CMPO identifier

Experiment Description Phenotypes IDs in CMPO

CellMorph [3] Genome-wide RNAi screen Decreased cell number cell with projections CMPO:0000052
that examines changes in elongated cell more lamellipodia cells increased CMPO:0000071
the morphology of number of actin filament round cell increased cell CMPO:0000077
individual HeLa cells within size decreased cell size bright nuclei metaphase CMPO:0000083
cell populations. arrested increased cell size in population CMPO:0000105

CMPO:0000118
CMPO:0000128
CMPO:0000129
CMPO:0000154
CMPO:0000305
CMPO:0000340

MitoCheck [2] Genome-wide RNAi screen Cell death increased nucleus size graped CMPO:0000030
for genes required for micronucleus abnormal nucleus shape mitosis CMPO:0000140
chromosome segregation in delayed binuclear cell absence of mitotic CMPO:0000156
HeLa cells. The screen also chromosome decondensation increased cell CMPO:0000157
reports genes involved in movement speed increased cell movement CMPO:0000202
other processes such as cell distance proliferating cells metaphase delayed CMPO:0000213
movement. abnormal chromosome segregation prometaphase CMPO:0000216

delayed increased variability of nuclear shape in CMPO:0000236
population mitotic metaphase plate congression CMPO:0000237

CMPO:0000241
CMPO:0000307
CMPO:0000326
CMPO:0000344
CMPO:0000345
CMPO:0000348

EMBL secretion [4] Genome-wide RNAi screen Increased rate of protein secretion mild decrease CMPO:0000246
for interference with in rate of protein secretion strong decrease in rate CMPO:0000318
ER-to-plasma membrane of protein secretion decreased rate of intracellular CMPO:0000319
transport of the secretory protein transport CMPO:0000346
cargo protein tsO45G in
HeLa cells.

GR00053 [10] Genome-wide RNAi screen Increased number of site of double-strand break CMPO:0000182
for genes involved in DNA
damage responses in HeLa
cells.

GR00290 [9] Genome-wide RNAi screen Increased centriole replication decreased CMPO:0000361
for genes regulating centriole replication CMPO:0000362
centriole formation in HeLa
cells.

Copenhagen DNA damage Ubiquitin [8] RNAi screen of >1300 Decreased number of site of double-strand break CMPO:0000181
genes involved in the
ubiquitin-proteasome
system or encoding
zinc-finger proteins looking
for modulators of cellular
responses to ionizing
radiation in HeLa and
U2OS cells.

EMBL chromosome condensation [7] RNAi screen of 100 Increased duration of mitotic prophase decreased CMPO:0000328
bioinformatically-selected duration of mitotic prophase CMPO:0000329
genes for changes in mitotic
prophase duration in HeLa
cells.

Comparison of phenotypic similarity measures
To evaluate how the similarity measures related to each
other, similarities between pairs of genes were computed
for each measure. Pearson’s correlation coefficient (PCC)
between the measures was then computed from these sets
of values. Hierarchical clustering was performed by aver-
age linkage using the hclust R package with 1-PCC as
distance measure.

To rank the similarity measures in relation to their abil-
ity to capture gene function we used protein interaction as
a proxy for functional relationships between genes. To this
end, we first ranked the similarity measures by their abil-
ity to distinguish between interacting and non interacting
gene pairs using the area under the ROC curve (AUC).
In this context, the AUC can be interpreted as the prob-
ability that the similarity measure ranks an interacting
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Table 2 Binary matrix for gene-phenotype association

Gene Decreased Cell with . . . Mitotic metaphase
cell number projections plate congression
(CMPO:0000052) (CMPO:0000071) (CMPO:0000348)

57147
(SCYL3)

1 0 . . . 0

2268
(FGR)

1 0 . . . 1

22875
(ENPP4)

0 1 . . . 0

. . . . . . . . . . . . . . .

5439
(POLR2J)

1 0 . . . 1

Presence and absence of a phenotype after inhibition of each gene is represented
by values 1 and 0, respectively

gene pair higher than a non-interacting one. As positive
interacting pairs, we used physical protein interactions
from Intact [18], MIPS [19], DIP [20] and BIOGRID [21]
that have been reported by two different experimental
methods and curated interactions fromReactome [22, 23].
As negative interactions, we used the curated negative
interactions from the MIPS Negatome [24] and Trabuco
et al. [25]. The AUCs were computed using the R package
pROC [26].
We also computed a score for each measure as the num-

ber of genes whose most phenotypically similar gene is
also an interaction partner in the iRef index protein inter-
action data (release 14.0, April 7th, 2015) [27]. For each

measure, the nearest neighbor of each gene was iden-
tified (ties were broken at random) and the measure’s
score was incremented by one if the two genes formed
a known interacting pair in the iRef index. To assess the
statistical significance of the score, the probability of hav-
ing the same or better score from a random selection
of protein interactions was computed from the hyper-
geometric distribution using the phyper() function in R
as follows: We considered 4198 genes making a total of
4198 ∗ (4198 − 1)/2 possible interactions of which 29649
were present in iRef index. For a given measure of sim-
ilarity, we tested 4198 interactions (one for each gene).
Therefore, the probability of having a score of x or bet-
ter by selecting the interactions randomly is given by 1 −
phyper(x − 1, 29649, 4198 ∗ (4198 − 1)/2 − 29649, 4198).

Annotation-driven approach
Following the approach by Glass and Girvan [28], a bipar-
tite graph was constructed, for functions and phenotypes
respectively, by setting an edge between two GO terms
(resp. CMPO terms) if they shared at least a gene and
the edge was weighted by the number of genes shared.
Because high level terms inherit genes from their child
terms, term degrees are biased. To compensate for this,
we normalized edge weights by the union of the genes
belonging to the two terms. We then grouped terms by
spectral clustering using the normalized cut objective
function [29] with an arbitrary number of clusters, set to
13 for CMPO and 140 for GO. GO terms clusters were
obtained by first partinioning the graph into 100 clusters

Fig. 1 Distribution of information content (IC) of the terms annotating genes with phenotypes (black) and all the terms in cellular process (grey). For
each level of specificity represented by the information content (IC), the curves represent the proportion of genes annotated with terms of this level
in all the annotated genes versus the subset of genes with phenotypes



Serrano-Solano et al. BMC Bioinformatics  (2017) 18:96 Page 5 of 12

Table 3 Similarity measures used in this study

Name Formula

Euclidean similarity s2 (g1, g2) = 1

1+(xg1−xg2)(xg1−xg2)
′

Correlation
similarity

s (g1, g2) = (xg1−xg1)(xg2−xg2)
′

√
(xg1−xg1)(xg1−xg1)

′ √
(xg2−xg2)(xg2−xg2)

′

where xg1 = 1
n

∑
p∈P x

p
g1 and xg2 = 1

n

∑
p∈P x

p
g2

Cosine similarity s (g1, g2) = xg1x
′
g2√

x
′
g1xg1

√
x
′
g2xg2

Hamming similarity s (g1, g2) = xpg1=xpg2
n

Jaccard similarity s (g1, g2) = 1 −
[(

xpg1 �=xpg2

)
∧

((
xpg1 �=0

)
∨

(
xpg2 �=0

))]
(
xpg1 �=0

)
∨

(
xpg2 �=0

)

Cohen’s kappa s (g1, g2) = p0−pc
1−pc

where:

- p0 is the proportion of terms common to profiles
g1 and g2, and

- pc is the proportion of terms common to profiles
g1 and g2 expected by chance.

TF-IDF
similarity

s (g1, g2) = maxp∈P
{
xpg1x

p
g2IDF(p)

}
where

IDF(p) = log nG
1+∑

g∈G x
p
g

Resnik’s semantic
similarity

s (t1, t2) = IC (tMICA) where:

- the Most Informative Common Ancestor is
tMICA = argmaxt∈S(t1,t2)IC(t),

- the information content (IC) of a term t is
IC(t) = −log(p(t)),

- the probability of a term t is p(t) = annotations(t)
totalAnnotations ,

and

- S (t1, t2) is the set of common ancestors of
t1 and t2.

Lin’s semantic
similarity

s (t1, t2) = 2·IC(tMICA)
IC(t1)+IC(t2)

Schlicker’s semantic
similarity

s (t1, t2) = 2·IC(tMICA)
IC(t1)+IC(t2)

· (1 − p (tMICA))

Jiang’s semantic
similarity

s (t1, t2) = 1 + 2 · IC (tMICA) (IC (t1) + IC (t2))

Pesquita’s semantic
similarity

s (t1, t2) =
∑

t∈S(t1 ,t2)

IC(t)

∑
t∈P(t1 ,t2)

IC(t) where:

- P (t1, t2) is the set of ancestors of either t1 or t2.

G is the full set of genes (nG = 4198) and P is the set of 36 (nP) phenotypes. xg
denotes the phenotypic profile of gene g with xpg = 1 if g shows phenotype p,
xpg = 0 otherwise

then partitioning again the two largest clusters into 33
and 9 clusters. As noted by Glass and Girvan [28], dif-
ferent numbers of clusters correspond to different levels
of specificity. We chose the number of GO terms clusters
so that most clusters would be linked to phenotypes. The
number of CMPO terms clusters was chosen to produce
a reasonable distribution of cluster sizes minimizing the

number of clusters with only one single term. Increasing
the number of clusters leads to an increase in the number
of clusters containing only one term.

Correction for multiple testing
P-values were corrected for multiple testing using the
R function p.adjust() with the Benjamini and Hochberg
method.

Results
Comparison of phenotypic similarity measures
As we wished to link phenotypic similarity to gene func-
tion, the first question we addressed is which measure
of phenotypic similarity to use for the task. Similarity
between phenotypic profiles has typically been assessed
using feature vector-based similarity measures such as
correlation [30, 31] or cosine (e.g. [32, 33]). Due to
their binary nature, profiles can also be compared using
character-based (binary) similarity measures. For exam-
ple, the main component of the PhenoBlast algorithm for
retrieving profiles similar to a query [34] is the number
of matches in the binary string. PhenoBlast also recog-
nizes that some phenotypesmay bemore informative than
others and one of its components is the probability of
observing a given combination of shared phenotypes by
chance. Combining these two components into one mea-
sure leads to Cohen’s kappa measure of similarity between
two profiles. The intuition that some phenotypes are more
informative than others can be formalized by using infor-
mation content-based similarity measures. Here, infor-
mation content refers to the specificity of a phenotype.
Typically, a phenotype is considered more specific if it
is less often observed e.g. cell death, a widely observed
phenotype, is considered less specific than mitotic delay
which is more rarely observed. This leads to TF-IDF sim-
ilarity measures in which phenotypes are weighted by the
inverse of their frequency of occurrence in the data [35].
The availability of CMPO now also allows for a seman-
tic information content-based approach to phenotypic
similarity, analoguous to what has been used with Gene
Ontology annotations (e.g. Resnik’s similarity measure).
In an ontology, the information content of a term also
takes into account the structure of the ontology such that
child terms are more specific than their parents. When
working with feature vectors of high dimension, it is
sometimes beneficial to compute vector-based similarity
measures in a reduced dimensional space. As phenotypic
profiles are high dimensional vectors, we also wondered
if a dimensionality reduction approach would be benefi-
cial and applied logistic PCA, an extension of standard
PCA to binary data, to compute vector-based phenotypic
similarities in a reduced dimensional space.
Given these different ways in which to measure phe-

notypic similarities, we wondered whether they were
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equivalent in ranking genes based on their phenotype pro-
files. To answer this question, we computed the correla-
tion coefficient between phenotypic similarities obtained
with the different measures and performed hierarchi-
cal clustering. The resulting dendrogram (Fig. 2) shows
that the similarity measures fall into two main groups
with the information content-based semantic similarity
measures (Resnik, Schlicker, Lin, Jiang and Pesquita) dis-
tinctly separated from the feature vector-based measures
(cosine, Euclidean, correlation, Jaccard and Hamming),
with Cohen’s kappa occupying an intermediate position,
confirming our intuition that these groups of measures
assess phenotypic similarity in different ways. We next
askedwhether this difference wasmeaningful with respect
to biological function. To test this, we used protein
interactions as a proxy for biological function, i.e. two
interacting proteins are taken as indication that the cor-
responding genes are involved in the same function [36].
This means that, for a relevant measure, phenotypically
similar genes are expected to be enriched in protein inter-
actions. We tested this in two ways. First, we assessed
the ability of each measure to distinguish between inter-
acting and non-interacting gene pairs by computing the
area under the ROC curve (AUC) using high-confidence
physical protein-protein interactions as positive set and
curated non-interacting protein pairs as negative set. In
this context, the AUC is the probability that the similarity
measure ranks an interacting gene pair higher than a non-
interacting one. A similarity measure with no discrimi-
nating power has an AUC of 0.5 and higher values indi-
cates increasingly better discriminative power. Using this
approach, the best similarity measures are Resnik’s and

Schlicker’s with the other semantic similarity measures
outperforming the character- and vector-based measures
(Table 4). Therefore, using semantic similarity measures,
phenotypic profiles of interacting genes are overall more
similar than for non-interacting gene pairs.
In a second approach, for each similarity measure, we

identified the nearest (i.e. most similar) neighbour of
each gene and tested whether the two genes were known
interaction partners. To compare the phenotypic simi-
larity measures, we then ranked them by the number
of interactions retrieved in this way (Table 4). With this
approach, TF-IDF and Resnik’s similarity performed best.
Other semantic similarity measures and most feature-
based measures (Euclidean, Jaccard and cosine) were not
better than a random selection of protein interactions
indicating that these phenotypic similarity measures may
not adequately capture functional relationships. Dimen-
sionality reduction as obtained by logistic PCA did not
improve performance of the vector-based measures indi-
cating that linear combinations of phenotypes are unlikely
to capture links to function. Therefore, across the two
tests, Resnik’s similarity measure appears the most con-
sistent at associating similar phenotypes with interact-
ing proteins. Other semantic similarity measures may
have been negatively influenced by the sparsity of the
CMPO ontology due to their attempts at accounting for
more of the ontology structure than Resnik’s measure.
For example, Lin’s and Jiang’s measures are particularly
sensitive to variations in the ontology structure because
they take into account the density and the level of the
terms whereas Resnik’s measure only considers the lowest
common ancestor and is thus comparatively more robust.

Fig. 2 Hierarchical clustering of phenotypic similarity measures based on Pearson correlation distance
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Table 4 Similarity measures sorted by area under the ROC curve
(AUC)

Measure AUC Protein interactions p-value

Resnik in CMPO 0.56 24 0.0102

Schlicker in CMPO 0.56 12 0.7512

Lin in CMPO 0.55 11 0.8332

Cohen’s kappa 0.54 27 0.0015

Pesquita in CMPO 0.54 14 0.5494

Jiang in CMPO 0.54 11 0.8332

TF-IDF 0.53 25 0.0055

Euclidean 0.53 16 0.3433

correlation 0.52 22 0.0311

Hamming 0.52 21 0.0513

cosine 0.49 13 0.6545

Jaccard 0.49 13 0.6545

Euclidean (logistic PCA) 0.46 25 0.0055

correlation (logistic PCA) 0.45 19 0.1242

Cosine (logistic PCA) 0.45 14 0.5494

The second column represents the number of nearest neighbour gene pairs who
are also protein interaction partners, and the third one, the p-values (computed
from the hypergeometric distribution) that the number of observed interacting
pairs is due to chance

Relationship between GO cellular process annotations and
phenotypes
Having identified a suitable measure of phenotypic sim-
ilarity, we set to explore how gene functions relate to
phenotypes more directly. If phenotypes are predictive
of biological functions, we expect that pairs of genes
with similar phenotypes will have similar functions. Since
gene functions have been standardized using the Gene
Ontology, gene functional similarity was computed using
Resnik’s semantic similarity between GO terms, a mea-
sure generally found to be the best for this purpose [37].
To assess links between gene phenotypic similarity and
gene semantic similarity in GO, we plotted GO seman-
tic similarities versus CMPO semantic similarities for the
RNAi screen data (Fig. 3a), excluding genes with no func-
tional annotation in GO. The distribution of functional
similarity values is the same for all levels of pheno-
typic similarity except the highest, which showed a trend
towards higher functional similarity. Although weak, this
effect is robust as it is still observed when removing up to
30% of the phenotypic annotations (see Additional file 5:
Figure S2) and does not appear to be due to chance
because random assignment of GO similarity values to
high-scoring CMPO gene pairs resulted in a lower aver-
age GO similarity (Additional file 6: Figure 3). While
this matched our expectation that specific phenotypes
are associated with specific functions, this represented
only a small fraction of the genes (20/4198) and for most

genes, phenoypes do not appear to be good indicators of
function.
One possible explanation for this result is that several

functions could share the same phenotype. If that were
the case, then we would predict that similar functions
would still lead to similar phenotypes. We would then
expect that two genes involved in the same cellular pro-
cess would have similar phenotypes. However, this is not
the case as genes with high functional similarity are not
more likely to have high phenotypic similarity (Fig. 3b).
This lack of correlation between function and pheno-
type was also observed for the other phenotypic similarity
measures tested, indicating that this was not an effect
of the phenotypic similarity measure used. This effect
is also observed when electronically-inferred annotations
are included (see Additional file 6: Figure S3).
So neither considering the most informative phenotypic

term nor the whole phenotypic profile gives any indi-
cation of function. This result is counter-intuitive since
the premise of most screens is that genes with the same
biological function would give the same loss-of-function
phenotype or phenotypic profile. We hypothesized that
perhaps even in screens which relied on profiling, each
phenotype is individually indicative of a function. To test
whether this also holds across screens, we averaged the
semantic similarity in GO for all pairs of genes showing
a particular phenotype. Then, we compared this aver-
age to that obtained from 100 datasets generated by
randomly shuffling the associations between genes and
phenotypes while keeping the number of links per phe-
notype unchanged. A total of 8 out of 36 (25%) pheno-
types gave a statistically significant signal (FDR-corrected
p-value�0.01) for having their actual functional similar-
ity between genes above that obtained by randomization
(Fig. 4). Half of these significant phenotypes correspond
to CMPO terms with high information content indicating
that only specific phenotypes tend to associate with highly
similar GO functional annotations. While these results
conform to our intuition, the only practical rule that can
be derived for automatically converting phenotypic anno-
tations to functional annotations is that only phenotypes
with CMPO semantic similarity over some threshold are
indicative of similar cellular function.

Gene annotation-driven phenotypic and functional
similarity
The above results suggested that the Gene Ontology
structure does not adequately capture the functional rela-
tionships that underlie phenotypic similarity. An alter-
native way of organizing GO terms has recently been
proposed by Glass and Girvan [28]. In this scheme, a
term graph is generated by linking terms based on the
genes annotated with them. Thus, two terms are more
similar the more genes they share (i.e. the more genes
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Fig. 3 Distributions of functional and phenotypic similarities. The box represents the upper and lower quartiles and the median is represented by the
black line inside the box. a Phenotypic similarity in CMPO versus functional similarity in GO. b Functional similarity in GO versus phenotypic similarity
in CMPO

are annotated with both terms). Biological functions can
then be defined as groups of similar terms by apply-
ing a clustering algorithm to the term graph (Fig. 5).
In this scheme, a function can be seen as being repre-
sented by a signature of co-occurring terms.Wewondered
if this approach would allow us to recover a broader
relationships between functions and phenotypes. To test
this, we grouped the cellular process GO terms into
140 clusters. To assess whether this new definition of

function captured phenotypic similarity we computed
Resnik’s similarity between CMPO terms associated with
genes within each cluster (Fig. 6a). Excluding functional
clusters not linked to phenotypes, 77%(45/58) of func-
tional clusters had high phenotypic similarity that could
not be explained by chance assignment of GO terms to
clusters (FDR-corrected p-value� 0.01, Fig. 6a). There-
fore cellular functions derived from shared gene annota-
tions were associated with phenotypic similarity. To test

Fig. 4 Average semantic similarity in GO between genes sharing a particular phenotype (black). Randomization of the relationships between
phenotypes and genes represents the null model (grey). Phenotypes with genes having high functional similarity (FDR-corrected p-values�0.01) are
marked with *. Phenotypes are sorted on the X axis by ascending information content in CMPO. CMPO descriptions for the identifiers are in Table 1
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a

b

Fig. 5 Annotation-driven cellular function definition. a Genes (circles)
are annotated with cellular process ontology terms (rectangles). After
bipartite graph projection, links between terms are weighted
according to the number of genes shared (line width). Then, terms are
grouped using spectral clustering. b Clusters of functional terms
(coloured circles) are linked to phenotypes (triangles) by shared genes

whether similar phenotypes reflected similar functions,
we defined a phenotypic terms graph in the same way
and grouped the phenotypes into 13 clusters. Each of
these phenotypic cluster can be viewed as a phenotype
characterized by a signature of co-occurring phenotypic
descriptors. As above, for each phenotypic cluster, we
computed Resnik’s similarity between GO terms within
clusters. Again, except for clusters with no GO annota-
tions, we observed that functional similarity was higher in
phenotypic clusters than can be explained by random phe-
notype assignments to clusters (Fig. 6b). This indicated

that this definition of phenotype was able to recover func-
tional similarity in GO. Therefore, functions defined by
groups of GO terms sharing associated genes tend to map
to CMPO terms better than functions defined by indi-
vidual GO terms and conversely, phenotypes defined by
groups of CMPO terms sharing associated genes map
better to GO terms than phenotypes defined by individ-
ual CMPO terms. While the details of how phenotypes
and functions are defined is subject to changes in both
CMPO and GO, the strong association between pheno-
types and functions is robust as it only depends on the
annotated genes.

Discussion
The large amount of cellular phenotypic annotations com-
ing from high-throughput genetic screens represents a
largely untapped source of information on gene func-
tion. Our aim was to understand how these phenotypes
are related to gene function in the hope that principles
could be derived for use in automatically converting pub-
lished phenotypic annotations to functional annotations.
Here, we used published cellular phenotypes from large
scale RNAi screens in human cells that have been anno-
tated with CMPO terms to explore how cellular pheno-
types related to GO cellular functions. The first question
we addressed was how to adequately measure pheno-
typic similarity such that phenotypic similarity would be
correlated with functional similarity. We found that, in
contrast to feature-based similarity measures, informa-
tion content-based phenotypic similarity measures like
Resnik’s semantic similarity were best at associating high
phenotypic similarity with protein interactions, suggest-
ing that these phenotypic similarity measures were the
most likely to capture functional relationships. The poor
performance of character- or vector-based measures of
phenotypic similarity lies at least in part in the fact
that they can be misled by genes involved in the same
function but having been assigned different phenotypic
descriptions as for example positive and negative reg-
ulators having opposite effects on a particular cellular
feature. These measures are also affected by differences
in phenotypic annotations of any given genes across
screens as, for example, they treat ‘metaphase delayed’
and ‘mitosis delayed’ as unrelated phenotypes of the
same gene. Ontology-based semantic similarity measures
on the other hand do not have this problem. Measures
accounting for chance occurrence of a phenotype such
as TF-IDF also perform better than the character-based
methods and this could be attributed to the relationship
between frequency of a phenotype and its specificity,
i.e. more specific phenotypes tend to be less repre-
sented in the data. However, despite semantic similar-
ity measures looking promising, only phenotypes with
high semantic similarity in CMPO were associated with
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Fig. 6 Average semantic similarity between terms in clusters. Randomization of the assignments of terms in clusters are represented in grey. Clusters
are sorted by size (i.e. number of terms). a Average phenotypic similarity in clusters of GO terms. b Average functional similarity in clusters of CMPO
terms

high functional similarity of GO cellular function annota-
tions. To use this observation for automatically converting
phenotypes into GO functional annotations, one would
need to define a threshold of CMPO semantic similar-
ity above which function assignment becomes reliable
but how to select this threshold is unclear because it is
liable to change when the ontology is expanded. Another
downside is that only a small fraction of genes with phe-
notypes could be annotated with cellular functions in
this way.
We therefore wondered if another approach could make

better use of the information. Defining cellular func-
tions as groups of co-occurring GO terms allowed us
to recover a stronger link between phenotypic similar-
ity and function. Conversely, defining phenotypes as sets
of co-occurring CMPO terms allowed us to link these
phenotypes to similar functions in GO. Therefore, with
these definitions, similar cellular functions do lead to sim-
ilar phenotypes and similar phenotypes are indicative of
similar functions. Our results extend the observation by
Glass and Girvan [28] that cancer signatures can asso-
ciate with GO term communities but not branches of the
Gene Ontology. We note that, by requiring as input a list
of functionally-related genes, some network-based gene
prioritization algorithms such as FUN-L [38] and Gene-
MANIA [39] implicitly rely on this definition of biological
function and in light of our findings, this may contribute
to their success in enriching candidate genes in the desired
phenotypes.
Our observations have several practical implications.

First, they suggest that clustering of phenotypic profiles
using naive profile vector-based metrics (as commonly
done in the field of RNAi screening) is sub-optimal for
predicting the function of genes because these types
of measures have low correlation with functional sim-
ilarity but correlation can be improved by taking into
account information content of the phenotypes. Instead

of clustering the genes, we propose that a more meaning-
ful approach would be to cluster the phenotypes based on
the genes annotated with them and look for enrichment
in functional terms in these clusters. Genes associated
with a cluster of CMPO terms can then be annotated with
the corresponding functional GO terms. This is relevant
to any gene annotation task whether through curation of
existing data or analysis of an RNAi screen with multiple
phenotypes.
A second implication concerns the integration of phe-

notypic information with other biological data. Several
candidate gene selection methods rely on the combi-
nation of multiple sources of information to increase
accuracy and coverage of functional association between
human genes. So far phenotypic data from RNAi screens
have not been used in these data integration schemes.
While supervised machine learning methods could learn
to make functional annotations from phenotypic ones,
the outcome critically depends on the quality of the
training set which in turn depends on how one links
functional annotations to phenotypes. This is impor-
tant for example to design a relevant kernel for kernel-
based methods such as support vector machines. In this
context, the design of meaningful kernels for pheno-
typic similarity would be an advantage. In our experi-
ence, and consistent with results presented here, using
standard metrics to compute similarity between phe-
notypic profiles leads to poor performance in retriev-
ing functionally related genes. Our results suggests that
better phenotype kernels could be derived by replac-
ing individual phenotypes by clusters of CMPO terms
derived from the annotation-based graph. In the same
way, considering diseases as phenotypes, we suggest that
functional similarity derived from the annotation-based
clusters of GO terms could be more useful for predicting
disease genes than semantic similarity-based functional
similarity.
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Finally, as not every single gene knock-down can reveal
a phenotype, studies have turned to phenotyping genetic
interactions using RNAi (e.g. [30, 40, 41]). Whether and
how these can be integrated in the way we propose here is
an area of future work.

Conclusions
In this work we explored how gene phenotypic annota-
tions from RNAi screens in human cells are related to
functional annotations in GO. After selecting a relevant
measure to compare phenotypic profiles, we compared
gene pairs similarities using GO and CMPO and found
that phenotypic similarity generally did not correlate with
functional similarity in GO. However, redefining func-
tions as groups of co-occurring GO terms allowed us to
recover a stronger link between phenotypes and func-
tions. Our observations are particularly relevant in situ-
ations where phenotypic similarities are used as a proxy
for inferring gene functions such as in RNAi screen data
analysis and curation, in integrating phenotypic data with
other data and in the prediction of disease genes.

Endnotes
1 http://www.geneontology.org/GO.evidence.tree.

shtml.
2 http://www.ebi.ac.uk/cmpo.
3 http://geneontology.org/page/download-annotations.
4 http://www.ebi.ac.uk/fg/sym.
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