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Abstract: Neurofilaments (NFs) are quickly becoming the biomarkers of choice in the field of
neurology, suggesting their use as an unspecific screening marker, much like the use of elevated
plasma C-reactive protein (CRP) in other fields. With sensitive techniques being readily available,
evidence is growing regarding the diagnostic and prognostic value of NFs in many neurological
disorders. Here, we review the latest literature on the structure and function of NFs and report the
strengths and pitfalls of NFs as markers of neurodegeneration in the context of neurological diseases
of the central and peripheral nervous systems.
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1. Introduction

The interest in neurofilaments (NFs) and their role as disease biomarkers has grown immensely
in recent years. NFs were first tested as possible biomarkers by Rosengren et al., who detected an
increase in cerebrospinal fluid (CSF) NF-light chain (NF-L) in patients with Alzheimer’s disease (AD)
and amyotrophic lateral sclerosis (ALS) compared to controls [1]. This study sparked the interest in
NFs as biomarkers, especially the NF-L subunit, not only in neurodegenerative diseases but also in
inflammatory, vascular, and traumatic diseases of the central nervous system (CNS) and recently in
the peripheral neuropathies (Table 1). Since NFs are solely located in the neuronal cytoskeleton and
are released to the interstitial fluid in high quantities upon axonal injury and/or neurodegeneration,
they are highly specific for neuronal damage and death [2]. From the interstitial fluid, NFs move to
the CSF and subsequently to the blood, where their levels can be measured in serum and plasma
and correlated to the extent of axonal damage or neurodegeneration (Figure 1 and Table 1). In recent
years, CSF has been the main source for NF analysis, but this is obtained infrequently and only in
clinically relevant pathologies due to the invasive nature of lumbar punctures. This has meant that
most studies using NF as a marker were restricted to a small spectrum of CNS diseases and disregarded
the axonal pathologies of the peripheral nervous system (PNS), not only because of limitations in
obtaining relevant biological material like CSF but also because of the quantification methods available.
Techniques like ELISA and electrochemiluminescence (ECL) assays can detect NF in peripheral blood,
but their sensitivity does not allow very reliable measurements or identification of small variations
in concentrations. Single molecule array technology (Simoa™) was introduced in 2010 [3], however,
and its higher sensitivity has greatly helped in establishing NF-L as a biomarker in CSF, serum, and
plasma [4,5]. Here, we review fundamental developments in the assessment of NFs as biomarkers in
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human studies and the contribution of NFs to disease monitoring and effectiveness of current and
developing therapies.
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Figure 1. Neurofilament after neuroaxonal damage. (a) Immunohistochemical staining of 
neurofilament-positive neurons in post-mortem human ischemic cerebellum tissue. Scale bar: 100 
μm. (b) High magnification of squared area in (a) showing neurofilament-positive neurons. Scale bar: 
40 μm. Neurofilament immunohistochemical staining was performed on parallel tissue sections from 
post-mortem ischemic brain tissue used in previous studies [6–9]. Staining was performed using 
similar protocols and the following antibody: monoclonal mouse anti-neurofilament 
(phosphorylated and non-phosphorylated NF-H chain) antibody (clone N52, 1:1000, Sigma-Aldrich, 
St. Louis, MO, USA). The use of human brains was approved by the Danish Biomedical Research 
Ethical Committee for the Region of Southern Denmark (permission number S-20080042). (c) 
Schematic presentation of neuroaxonal damage leading to neurofilament release. When a neuron 
and its axon are damaged, neurofilament is released into the extracellular space (A) and 
subsequently into the cerebrospinal fluid (CSF) and blood (B), where it can be detected in increased 
levels following neuroaxonal damage. Abbreviations: BBB, blood–brain barrier; NF, neurofilament.

Figure 1. Neurofilament after neuroaxonal damage. (a) Immunohistochemical staining of neurofilament-
positive neurons in post-mortem human ischemic cerebellum tissue. Scale bar: 100 µm. (b) High
magnification of squared area in (a) showing neurofilament-positive neurons. Scale bar: 40 µm.
Neurofilament immunohistochemical staining was performed on parallel tissue sections from
post-mortem ischemic brain tissue used in previous studies [6–9]. Staining was performed using
similar protocols and the following antibody: monoclonal mouse anti-neurofilament (phosphorylated
and non-phosphorylated NF-H chain) antibody (clone N52, 1:1000, Sigma-Aldrich, St. Louis, MO,
USA). The use of human brains was approved by the Danish Biomedical Research Ethical Committee
for the Region of Southern Denmark (permission number S-20080042). (c) Schematic presentation of
neuroaxonal damage leading to neurofilament release. When a neuron and its axon are damaged,
neurofilament is released into the extracellular space (A) and subsequently into the cerebrospinal
fluid (CSF) and blood (B), where it can be detected in increased levels following neuroaxonal damage.
Abbreviations: BBB, blood–brain barrier; NF, neurofilament.
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Table 1. Overview of neurofilaments as biomarkers of neurological disease. Abbreviations used in table: AD, Alzheimer’s disease; ADAD, autosomal dominant
Alzheimer’s disease; AIS, acute ischemic stroke; ALS, amyotrophic lateral sclerosis; aMCI, amnestic mild cognitive impairment; aSAH, aneurysmal subarachnoid
hemorrhage; CA, cardiac arrest; CADASIL, cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy; CBS, corticobasal
syndrome; CeAD, cervical artery dissection; CIDP, chronic inflammatory demyelinating polyneuropathy; CMT, Charcot–Marie–Tooth; CSF, cerebrospinal fluid; ECL,
electrochemiluminescence; FTD, frontotemporal dementia; GBS, Guillain–Barré syndrome; GCS, Glasgow Coma Scale; HD, Huntington’s disease; HHT, huntingtin;
HS, hemorrhagic stroke; MCI, mild cognitive impairment; MMN, multifocal motor neuropathy; MND, motor neuron disease; MS, multiple sclerosis; MSA, multiple
system atrophy; NF-M, neurofilament medium chain; ON, optic neuritis; PD, Parkinson’s disease; pNF-L, plasma neurofilament light chain; p-pNF-H, plasma
phosphorylated neurofilament heavy chain; PSP, progressive supranuclear palsy; ROSC, return of spontaneous circulation; RSSI, recent small subcortical infarcts;
SAH, subarachnoid hemorrhage; SCI, spinal cord injury; s-pNF-H, serum-phosphorylated neurofilament heavy chain; Simoa, single molecule array; sNF-L, serum
neurofilament light chain; SVD, small vessel disease; TIA, transient ischemic attack; WMH, white matter hyperintensities; WML, white matter lesions.

Disease and Sample Size Protein Method Time Profile, Association with Disease Activity,
and Diagnostic and/or Prognostic Relevance Reference

Neuropathies

• 20 GBS patients and 67 controls CSF NF-L and sNF-L ECL Elevated sNF-L and CSF NF-L in GBS patients
compared to controls [2]

• GBS (5), MMN (3), CIDP (12); AntiMAG (3), CIDP +
antiMAG (1) vasculitic neuropathy (1) and 25 controls CSF NF-L; pNF-L Simoa Elevated pNF-L and CSF NF-L in GBS, CIDP and

antiMAG vs. controls [10]

• 30 vasculitic neuropathy patients and 30 controls sNF-L Simoa Elevated sNF-L during active disease vs. controls [11]

• 18 GBS and 18 controls CSF NF-L ELISA Elevated CSF NF-L in GBS vs. controls, correlation
with severity and outcome [12]

• 75 CMT and 67 controls pNF-L Simoa Elevated pNF-L vs. control correlated with
severity [13]

Amyotrophic Lateral Sclerosis

• 67 controls and 20 ALS patients CSF NF-L, sNF-L ECL Elevated sNF-L and CSF NF-L in ALS vs. controls [2]

• 103 patients and 42 controls CSF NF-L, sNF-L,
pNF-L ECL Blood-derived NF-L level is an easily accessible

biomarker with prognostic value in ALS [14]
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Table 1. Cont.

Disease and Sample Size Protein Method Time Profile, Association with Disease Activity,
and Diagnostic and/or Prognostic Relevance Reference

• 124 ALS, 44 ALS mimics, 65 other neurodegenerative
disorders, and 50 healthy controls sNF-L Simoa Serum NF-L is elevated in ALS and can distinguish

between ALS mimics and correlate with prognosis [15]

• 12 asymptomatic carriers, 64 symptomatic carriers,
and 19 healthy family controls CSF NF-L, sNF-L Simoa

Symptomatic carriers have higher levels of NFs in
serum and CSF compared to controls, blood NF-L
increases 12 months before symptom onset

[16]

• 715 MND, 87 FTD, and 107 controls CSF NF-L Simoa High levels of NF-L associated with shorter
survival [17]

Multiple Sclerosis

• 56 ON patients and 27 controls enrolled within 28 days
of onset (median 16 days) CSF NF-L ELISA No correlation between NF-L and MS-risk

parameters [18]

• 47 ON patients enrolled within 28 days of onset
(median 16 days) CSF NF-L ELISA CSF NF-L predicted visual outcome after ON [19]

• 68 ON patients CSF NF-L ELISA CSF NF-L predicted long-term physical and
cognitive disability [20]

• 589 patients and 33 controls pNF-L Simoa pNF-L levels associated with disease activity and
have prognostic value [21]

• 74 patients sNF-L Simoa sNF-L correlated with MRI activity [22]

• 122 patients sNF-L Simoa sNF-L predicted 10 year lesion load and atrophy [23]

• 189 RRMS and 70 PMS sNF-L Simoa
sNF-L correlated with concurrent and future
clinical and MRI measures of disease activity and
severity

[24]
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Table 1. Cont.

Disease and Sample Size Protein Method Time Profile, Association with Disease Activity,
and Diagnostic and/or Prognostic Relevance Reference

Alzheimer’s Disease

• 67 controls and 20 AD patients CSF NF-L, sNF-L ECL Elevated sNF-L and CSF NF-L in AD patients
compared to controls [2]

• 42 ADAD patients (22 symptomatic and 20
asymptomatic mutation carriers) and 18 controls CSF NF-L, sNF-L Simoa

sNF-L correlated with clinical and cognitive
measures in ADAD and with CSF NF-L. Elevated
sNF-L in symptomatic vs. asymptomatic carriers
and controls

[25]

• 243 ADAD mutation carriers and 162 controls CSF NF-L, sNF-L Simoa

Elevated sNF-L and CSF NF-L levels in ADAD
compared to controls. sNF-L predicted disease
progression and neurodegeneration at the early
pre-symptomatic stages

[26]

• 198 aMCI and 187 AD patients, and 193 controls pNF-L Simoa

Elevated pNF-L in aMCI and AD patients
compared to controls and elevated in AD
compared to aMCI. pNF-L associated with
cognition

[27]

• 99 MCI and 33 early AD patients, and 41 controls pNF-L Simoa Elevated pNF-L in MCI and early AD patients
compared to controls [28]

• Down syndrome-associated AD (194 asymptomatic, 39
prodromal, and 49 symptomatic), and 67 controls CSF NF-L, pNF-L ELISA

Elevated NF-L in prodromal and symptomatic AD
compared to controls. pNF-L and CSF NF-L
differentiated between asymptomatic, prodromal,
and symptomatic AD. CSF NF-L and pNF-L
correlated.

[29]

• 197 MCI and 180 AD patients, and 193 controls pNF-L Simoa

Elevated pNF-L in MCI and AD patients
compared to controls. CSF NF-L and pNF-L
correlated. pNF-L associated with poor cognition,
AD-related atrophy, and brain hypometabolism

[30]

• 56 MCI and 119 AD patients, and 59 controls pNF-L Simoa Elevated pNF-L in AD compared to controls.
pNF-L associated with cognition [31]
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Table 1. Cont.

Disease and Sample Size Protein Method Time Profile, Association with Disease Activity,
and Diagnostic and/or Prognostic Relevance Reference

Huntington’s Disease

• 11 premanifest and 12 manifest HD patients CSF NF-L ELISA
CSF NF-L correlated with 5 year probability of
disease onset, functional capacity, and total motor
score

[32]

• 20 premanifest, 40 manifest HD patients, and
20 controls

CSF NF-L and
pNF-L ELISA

CSF and pNF-L were increased in premanifest and
manifest HD patients vs. controls. Manifest HD
displayed higher levels vs. premanifest HD
patients

[33]

• 29 early, 29 premanifest, and 30 moderate HD patients,
and 29 controls pNF-H ELISA No correlation between pNF-H and disease stage [34]

• 201 individuals carrying HHT mutations and
97 controls pNF-L Simoa pNF-L correlated with clinical and MRI findings [35]

• 35 HD patients and 35 controls CSF NF-L ELISA Elevated CSF NF-L in HD patients vs. controls.
CSF NF-L correlated to functional capacity [36]

• 32 premanifest, 48 manifest HD patients, and
24 controls CSF NF-L ELISA

Elevated CSF NF-L in premanifest and manifest
HD compared to controls, and increased levels in
manifest compared to premanifest HD patients

[37]

Parkinson’s Disease and Parkinsonian Disorders

• Cohort 1: 171 PD, 30 MSA, 19 PSP, five CBS, and 53
healthy controls.

• Cohort 2: 20 PD, 30 MSA, 29 PSP, 12 CBS, and 26
healthy controls

sNF-L and pNF-L Simoa
Elevated sNF-L and pNF-L in MSA, PSP, and CBS
vs. PD and healthy controls. sNF-L and pNF-L
discerned between PD and MSA, PSP, and CBS

[38]



Brain Sci. 2020, 10, 56 7 of 29

Table 1. Cont.

Disease and Sample Size Protein Method Time Profile, Association with Disease Activity,
and Diagnostic and/or Prognostic Relevance Reference

• 26 non-demented PD and 23 demented PD patients,
and 59 controls pNF-L Simoa Elevated pNF-L in demented vs. non-demented

and controls. pNF-L associated with cognition [31]

• 64 non-demented PD patients and 21 controls CSF NF-L ELISA CSF NF-L levels increased in PD patients over 2
years, but not in controls [39]

• 68 PD, 34 MSA, 34 PSP, and 15 CBS CSF NF-L ELISA CSF NF-L associated with increased mortality [40]

Stroke—AIS, TIA and HS

• 595 AIS enrolled within 14 days after symptom onset
and 600 controls sNF-L Simoa

sNF-L levels highest 3 months post-stroke. sNF-L
associated with stroke severity and poor outcomes.
sNF-L levels higher compared to controls.

[41]

• 101 AIS and 35 TIA patients enrolled within 1–12 days
(63.8 ± 50.1 h) sNF-L Simoa Elevated sNF-L in AIS compared to TIA. sNF-L

correlated with final infarct volume. [42]

• 44 controls and 54 AIS on day 1, week 1, and 3–6
weeks post-stroke s-pNF-H ELISA

Elevated s-pNF-H in AIS vs. controls. s-pNF-H at
week 3 correlated to stroke severity, size, and
outcome

[43]

• 30 controls and 196 AIS patients on admission, days 2,
3, and 7, as well as 3 and 6 weeks post-stroke sNF-L Simoa

Elevated sNF-L at admission until 6 months in AIS
compared to controls. sNF-L correlated with
infarct volume at day 7

[44]

• 504 AIS and 111 TIA patients within 24 h of
symptom onset sNF-L ECL

Elevated sNF-L in AIS vs. TIA. sNF-L associated
with NIHSS and TIA diagnosis but not infarct size
or functional outcome at 3 months

[45]

• 20 controls and 20 AIS enrolled within 5–10 days CSF NF-L ELISA Elevated NF-L in AIS compared to controls. NF-L
correlated with the degree of WML [46]
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Table 1. Cont.

Disease and Sample Size Protein Method Time Profile, Association with Disease Activity,
and Diagnostic and/or Prognostic Relevance Reference

• 49 CeAD patients (10 TIA, 31 AIS, eight local
symptoms) within 30 days of symptom onset sNF-L ECL

Elevated sNF-L in CeAD stroke vs. CeAD TIA.
SNF-L associated with NIHSS. Elevated sNF-H
levels within 24 h post-stroke

[47]

• 22 AIS patients enrolled within 6–24 h after
symptom onset sNF-H ELISA

Elevated sNF-L levels in RSSI at baseline and 3
months vs. controls. sNF-L associated with RSSI
size and baseline WMH severity

[48]

• 79 RSSI at baseline, 3 and 15 months post-stroke and 53
community-dwelling healthy controls with
comparable WMH

sNF-L Simoa NF-M levels higher in HS vs. AIS and controls [49]

• 10 controls, 11 AIS, and 30 HS within 1 day (TIA) and 5
days (HS) CSF NF-M ELISA NF-H correlated with functional outcome at

discharge [50]

• 20 controls and 33 AIS patients within 3 days of
symptom onset

CSF NF-H and
sNF-L ELISA No difference between AIS and controls [51]

Stroke—Small Vessel Disease

• 53 SVD patients CSF NF-L ELISA CSF NF-L associated with volume of WMLs [52]

• 93 controls, 53 CADASIL, and 439 SVD patients sNF-L Simoa
Elevated sNF-L in CADASIL and SVD patients
compared to controls. sNF-L levels associated with
imaging and clinical features of SVD

[53]

Stroke-SAH

• 35 aSAH patients serially for up to 15 days CSF NF-L ELISA Elevated CSF NF-L levels. No effect on secondary
adverse events or long-term outcome [54]
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Table 1. Cont.

Disease and Sample Size Protein Method Time Profile, Association with Disease Activity,
and Diagnostic and/or Prognostic Relevance Reference

• 40 patients with Fisher grade 3 hemorrhage within 6
hrs each day for up to 8–12 days

CSF pNF-H,
s-pNF-H ELISA pNF-H levels differentiated between patients with

poor and favorable outcomes [55]

Traumatic Axonal Injury

Severe Traumatic Brain Injury

• 172 neurocritical TBI at bout and at 12 months sNF-L Simoa sNF-L increased over 2 weeks, predicted 12
months outcome [56]

• 182 TBI, outcome 6–12 months CSF NF-L, sNF-L ELISA Higher NF-L CSF and serum levels correlated to
GCS and predicted a poor clinical outcome [57]

• 72 TBI and 35 controls sNF-L Simoa High initial NF-L levels predicted poor clinical
outcome at 1 year [58]

Mild Traumatic Injury

• 107 mild traumatic brain injury pNF-L Simoa Early levels of NF-L predicted outcome 6–12
months [59]

• 118 elderly mild traumatic injury +/- neurological
disorders + 40 age-matched controls sNF-L Simoa

Older age and neurological diseases are associated
with elevated serum NF-L levels in TBI and
controls

[60]

Sport—Related Concussion

• 142 American football + hockey players with
concussion: preseason, day 6 and 14 sNF-L Simoa No difference in sNF-L with uncomplicated

concussion [61]

• 45 boxers and 25 controls sNF-L, CSF NF-L ELISA
Higher NF-L CSF and serum levels correlated to
GCS and predicted a poor clinical outcome.
Elevated CSF NF-L after bout and after 14 days

[62]
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Table 1. Cont.

Disease and Sample Size Protein Method Time Profile, Association with Disease Activity,
and Diagnostic and/or Prognostic Relevance Reference

• Experimental soccer headings vs. sham vs. control pNF-L ELISA Elevated p NF-L at 1 h and 1 month [61]

• 19 American football players, 19 swimmers, eight
samples over 6 months sNF-L Simoa Increased sNF-L over time in football players [63]

• 18 football players,
accelerometer-embedded mouthguard pNF-L Simoa The frequency and magnitude of head impacts

associated with increased NF-L levels [64]

• 14 boxers, 35 hockey players, 26 controls, bout
+3 months sNF-L Simoa

High NF-L levels after bout, returned to normal
after 3 mths + higher NF-L levels predicted longer
post-concussion symptoms

[58]

Spinal Cord Injury

• 23 SCI (six cervical fracture, 17 whiplash) and
24 controls CSF NF-L ELISA NF-L increased in proportion to neurological

deficits [65]

• 27 SCI and 67 controls sNF-L Simoa
Serum NF-L concentrations in SCI patients closely
correlated with acute severity and long-term
outcome

[66]

Cardiac Arrest

• 22 CA patients 2 or 3 weeks post-CA CSF NF-L ELISA CSF NF-L levels were a reliable measure of brain
damage and predictive of poor outcome [67]

• 21 CA patients 2 weeks post-CA and 21 controls CSF NF-L ELISA
CSF NF-L levels increased in CA patients vs.
controls. CSF NF-L levels highest in CA patients
with poor outcome

[68]

• 14 CA patients within 17 days post-CA sNF-L Simoa

sNF-L levels associated with time to return of
spontaneous circulation and brain damage. sNF-L
levels were higher among CA patients who had
died vs. CA patients alive at 1 months post-CA

[69]
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Table 1. Cont.

Disease and Sample Size Protein Method Time Profile, Association with Disease Activity,
and Diagnostic and/or Prognostic Relevance Reference

• 26 ROSC CA and 26 non-ROSC CA patients
on admission s-pNF-H ELISA No difference in pNF-H levels between ROSC and

non-ROSC CA patients [70]

• 90 CA patients treated with hypothermia sampled
over a period of 72 h after CA p-pNF-H ELISA

p-pNF-H levels were higher at 2 and 36 h after CA
in patients with poor outcome vs. those with good
outcome. p-pNF-H levels correlated to
neurological prognosis

[71]

• 717 CA patients sampled three times within the first 72
h after CA sNF-L Simoa sNF-L levels were higher in patients with poor

neurological outcome vs. those with good outcome [72]
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2. The Structure and Function of Neurofilament

NFs are present in the neuronal cytoskeleton, especially the axon, and are type IV intermediate
filaments with a diameter of approximately 10 nm. These proteins are mostly found in adult myelinated
neurons of the CNS and large-caliber myelinated axons of the PNS. NFs have several functions but are
mainly responsible for increasing and maintaining axonal caliber and therefore improving relay of
electrical impulses along the axons. Human NF is composed of four subunits: NF-L, neurofilament
medium chain (NF-M), and neurofilament heavy chain (NF-H) with molecular weights of approximately
68, 160, and 205 kDa, respectively; the fourth subunit will depend on the location of the protein,
therefore α-internexin (66 kDa), mostly present in spinal cord and optic nerve, is found in the CNS
while peripherin (58 kDa), present in root ganglia neurons, is located in the PNS. NF chains are
comprised of a non-helical amino terminal ‘head’ domain, a central α-helical ‘rod’ domain, and a
variable length carboxyl terminal ‘tail’ domain [73–76]. Interference in NF assembly, metabolism,
and release due to axonal injury is related to several neurodegenerative diseases, which is further
elaborated on in this review.

3. Neurofilament in Neurological Disease

3.1. Peripheral Neuropathy

Peripheral neuropathy is a broad group of diseases that share the common feature of damage to
peripheral nerves. Depending on the nerves affected, symptoms may include autonomic dysfunction,
impaired sensation, or impaired movement. Onset of peripheral neuropathy can be acute, subacute,
or chronic. Most peripheral neuropathies are acquired due to a large variety of underlying causes
ranging from diabetes and alcohol abuse to inflammation and infection. A minority of peripheral
neuropathies are hereditary.

NFs have mostly been associated with the hereditary neuropathies like Charcot–Marie–Tooth
(CMT), in which several subtypes have been shown to include genetic mutations in the NEFL gene,
leading to disruption of NF assembly and transport, and abnormal NF accumulation [77–81]. It is
therefore not surprising that plasma NF-L is increased in CMT and correlates with disease severity in
several subtypes [13].

The acquired neuropathies have also been the focus of NF studies. Serum NF-L is elevated
in polyneuropathies as diverse as chronic inflammatory demyelinating polyneuropathy, anti-MAG
neuropathy, and vasculitic neuropathy [10,11]. Serum levels were not only elevated compared to
healthy controls but also seemed to decline with remission [11] and to correlate with disease severity
and outcome [10].

In the case of Guillain–Barré syndrome (GBS), a rapidly evolving immune-mediated demyelinating
polyradiculoneuropathy, axonal involvement is a well-known indicator of poor prognosis [82]. In line
with this, CSF NF-L was not only elevated in the acute phase and correlated with disability [2] but was
also a strong predictor of persistent disability [12]. These results were recently confirmed by plasma
analyses [2,10].

Taken together, these studies suggest that NF-L might be a promising biomarker of disease and
outcome in neuropathies. Studies of CMT often include large cohorts and sensitive detection methods.
Although NF-L might have a role as a prognostic biomarker, its diagnostic sensitivity and specificity
are most likely inferior to genetic testing.

In the acquired neuropathies, special care must be taken when interpreting results as studies are
still limited by sample size and differences in detection technologies (Table 1). Further studies using
reliable reproducible detection methods, like the Simoa technology, on larger cohorts are needed before
final conclusions can be made.
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3.2. Motor Neuron Disease

Motor neuron diseases (MNDs) are a group of neurodegenerative disorders characterized by
degeneration of motor neurons. They comprise a spectrum of clinically defined diseases with
involvement of upper and/or lower motor neurons and include progressive bulbar palsy, progressive
muscular atrophy, primary lateral sclerosis, and some rare variants. The most common form of MND
is ALS, a relentlessly progressive and ultimately lethal condition caused by degradation of lower
and upper motor neurons in the motor cortex and spinal cord. Although most cases are sporadic,
5%–10% show a clear familial accumulation with a Mendelian pattern [83]. The diagnosis is made by
classic clinical findings of progressive muscular paralysis, atrophy, fasciculations, and hyperreflexia,
supported by electrophysiological findings. To better understand and predict the prognosis and to assist
in the development of treatments, biomarkers in the blood and CSF have been intensely investigated.

Both NF-L and phosphorylated NF-H have been studied as possible biomarkers for ALS [14,16,84,
85]. Serum and plasma NF-L levels, tested using an ECL immunoassay, showed higher levels in ALS
subjects compared to healthy controls as well as increased NF-L concentrations in ALS patients with
a fast progressing phenotype, stabilizing over time [14]. Even in the early stages, where symptoms
are still minor, NF-L in blood and CSF can distinguish ALS patients from healthy controls, but more
importantly can also distinguish ALS from other MNDs with similar features but with much better
prognosis [14,15,86,87].

Furthermore, high NF-L levels in both CSF and blood and NF-H in CSF were found in symptomatic
ALS patients compared to asymptomatic genetic mutation carriers, whose levels were similar to healthy
controls [16]. Interestingly, an increase in blood NF-L was observed in asymptomatic individuals
as early as 12 months before symptom development, suggesting that neurodegeneration precedes
symptom development [16].

As a prognostic marker, CSF NF-L levels are lower in patients with slower disease progression [88],
and both serum and CSF NF-L as well as NF-H levels are associated with the number of muscular
regions involved [89]. Similarly, serum and CSF NF-L levels are high in patients with rapid progression
and shorter overall survival [17,85].

Apart from symptomatic treatment, disease-modifying therapies in MNDs are very limited,
with riluzole being the only approved pharmacological therapy for ALS. A single study showed no
difference in serum NF-H of patients on riluzole [84], but experiences from other diseases suggest that
NFs might also be attractive candidates as endpoints in clinical trials in MNDs.

The studies on MNDs are generally solid, with large number of patients compared to appropriate
controls (Table 1), and they suggest a role for NF-L as a diagnostic and prognostic marker, especially
regarding measurements in the CSF. While measurements of NF-L in plasma or serum might be
attractive, they must be evaluated with care and especially if less sensitive detection methods are
applied. Considering the severity of these diseases, it is important to stress that NF-L elevations are a
general feature of neurodegeneration and not specific to MND, thus results must be interpreted in the
clinical context.

3.3. Multiple Sclerosis

Multiple sclerosis (MS) is a pathology characterized by continuous inflammation of the CNS
that leads to demyelination of axons and consequent neurodegeneration. MS is often considered as
either a relapsing-remitting disease or as a progressive disease with continuous disability progression,
reflecting an ongoing underlying neurodegeneration. Diagnosis is made based on classical symptoms
with dissemination in time and space, use of clinical biomarkers such as oligoclonal bands in CSF,
magnetic resonance imaging (MRI), and exclusion of other plausible diseases [90–92]. In the past
decade, however, the emergence of other biomarkers in CSF, like NF-L, has provided further insight
into MS diagnosis and disease progression [93–96]. Several studies have shown that NF-L is elevated
in the blood and CSF of newly diagnosed MS patients and that this is correlated with disease severity
and prognosis [21,97–99]. NF-L is also elevated during disease activity such as a clinical relapse of
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new lesions on MRI [100,101]. This makes NF-L an attractive diagnostic biomarker in MS although its
specificity does not allow differentiation from MS mimics like neuromyelitis optica spectrum disorders
or other neuroinflammatory disorders [102,103].

Repeated NF-L measures in the blood might be an attractive marker of treatment response since
treatment with disease-modifying drugs such as dimethyl fumerate, interferon-beta, natalizumab,
fingolimod, cladribine, and alemtuzumab resulted in significant reductions in NF-L in the CSF and
blood [21,97,104–107].

Brain atrophy is also a well-known hallmark of the neurodegeneration seen in MS. It is therefore
interesting that even early measures of blood NF-L in newly diagnosed MS patients can predict brain
atrophy [22] and lesion load on MRI [23], probably reflecting high disease activity since this can be
modified by initiation of effective treatment [108]. However, NF-L levels have shown poor correlation
to disability scores such as the Extended Disability Status Scale (EDSS) [22–24,93,109,110]. This is most
likely due to the emphasis on gait performance in the EDSS that may overestimate the influence of
spinal cord lesions over cerebral lesions, which can be extensive even at low EDSS scores. Whether
NF-L levels also correlate with cognitive measures and fatigue in MS remains to be confirmed although
recent studies seem to suggest a negative correlation [23,111–113].

The study of NF-L is a rapidly growing field in MS, and studies are moving from CSF measurements
to serum/plasma measurements using sensitive techniques. As a diagnostic marker, NF-L might not
provide much additional value to the already applied diagnostics as its specificity does not allow
differentiation from MS mimics. However, as a marker of disease activity and treatment response,
repeated NF-L measurements in blood are moving towards an established biomarker with solid
studies on large cohorts under various medications using sensitive techniques (Table 1). The focus
has so far been on the relapsing-remitting phenotype where treatment options are many. However,
NF-L might also be an attractive marker of disease activity in the progressive forms of MS, where
neurodegeneration outweighs neuroinflammation, and it might provide assistance in clinical trials of
new medications.

3.4. Alzheimer’s Disease

The neurodegenerative disorder of Alzheimer’s disease (AD) is the most frequent cause of
dementia, accounting for 60%–80% of all cases [114]. The condition has many clinical features, the
most essential being loss of memory. AD pathology is characterized by amyloid plaques originating
from the amyloid precursor protein (APP) metabolism. Amyloid plaques in AD are abnormally
folded Aβ40 or Aβ42 and are deposited extracellularly. Neurofibrillary tangles, which are also
prominent in AD pathology, are made up of paired helical filaments composed of hyperphosphorylated
tau, a microtubule-stabilizing protein. AD’s pathological processes lead to neurodegeneration and
inflammation, causing neuronal and synaptic loss and progressive macroscopic atrophy [115,116].
33r5453we32e233222w23443eSF and blood levels of tau, phospho-tau, and Aβ1-42 are used to solidify
the diagnosis and to differentiate between AD and other forms of dementia [117–120]. With the
complications associated with using CSF, several recent studies have turned to other proteins found in
blood, like NF-L, to investigate their role in disease progression and neurodegeneration [27,28,30]. Most
studies have revealed increased NF-L concentrations in patients with AD and other forms of dementia
compared to healthy controls (Table 1). A particular study also noted that high NF-L levels in plasma
of AD patients correlated with poor cognition and brain atrophy [30]. NF-L has also been used as a
biomarker for cognition impairment, revealing that high NF-L plasma levels correlate with impaired
cognition in AD, giving potential for this protein to be a biomarker for mental decline [31]. Down
syndrome (DS) individuals have an increased risk of developing early-onset AD, with approximately
two-thirds of all individuals being affected by this form of dementia [121]. NF-L plasma levels were
indeed found to be higher in DS and seemed to increase with age and to predict dementia status [122].
A cross-sectional study on DS concluded that NF-L was useful in diagnosing AD in DS individuals
and outperformed other fluid biomarkers [29]. All these studies mentioned used Simoa technology
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and concluded that NF-L is a potential non-invasive biomarker for AD, helping to solidify a diagnosis
and monitor disease progression.

Given that cognitive impairment and particularly frontotemporal dementia (FTD) can be found in
up to 10%–15% of patients with ALS [123], it is interesting that in this particular form of dementia,
blood and CSF NF-L levels are associated with functional outcome, brain atrophy, and severity, and can
be used to discern FTD from other types of dementia and healthy controls but not be used to distinguish
between FTD subtypes [124–126]. However, the use of varied biomarker panels comprised of NF-L,
total and phosphorylated tau, and Aβ1-42 improved discrimination between AD dementia, FTD,
and some other types of dementia [118,127,128] and increased sensitivity in AD stage differentiation
using NF-L and fatty acid binding protein 3 [129]. A panel of biomarkers that includes proteins
involved in the pathogenic mechanisms of dementia helps improve diagnosis and clinical staging of
the disease.

Taken together, the evidence so far supports NF-L in the CSF and blood as a diagnostic marker
of dementia, with AD being most frequently investigated (Table 1). As the hallmark of dementia
is ongoing neurodegeneration, it is not surprising that NFs are elevated. The specificity of NF-L is
therefore also limited and is strongest as part of a varied biomarker panel. Especially in the aged
population, data must be interpreted in the clinical context due to age-dependent variations in NF-L
levels, which calls for special attention to the age-matched healthy controls provided in many of the
studies listed in Table 1.

3.5. Huntington’s Disease

Huntington’s disease (HD) is a genetic neurodegenerative pathology where a CGA triplet repeat
expansion on the huntingtin gene (HTT) originates as an expanded polyglutamine segment in the
huntingtin protein. The expanded protein forms intranuclear aggregates toxic to neuronal cells,
causing neuronal dysfunction and cell death. In HD, biomarkers have the potential role of assessing
therapeutic efficacy, and most recently NF has been tested in both CSF and plasma [35,36,130,131]
(Table 1). A recent study investigated the correlation between mutant huntingtin (mHTT) and CSF
and plasma NF-L levels in HD patients, revealing NF-L to be a clinically stronger marker than mHTT,
even within the study’s limitations [33]. ELISA showed that NF-L levels in CSF of HD patients were
significantly higher than those in matched controls [36], while plasma levels of NF-H, using ELISA,
excluded this NF subunit as a potential biomarker [130]. Most recently, a cohort analysis using highly
sensitive Simoa showed great potential of plasma NF-L as a prognostic marker and as a timepoint
reflection for motor and cognitive impairment [35]. The latest generation of quantitative methods
could enable the use of NF-L as a stronger observational and therapeutic biomarker for HD. Genetic
therapies combined with NF-L observation could be important tools in the treatment and monitoring
of this pathology.

Studies on HD are limited and have small samples sizes, however, most likely due to the low
prevalence of the disease. Further studies using sensitive techniques are therefore needed before
conclusions can be made, especially considering measurements on peripheral blood. However, while
the diagnostic value of NF-L is probably minor compared to genetic testing, NF-L might be a promising
prognostic marker and may assist in the development of therapies by acting as a marker in clinical trials.

3.6. Parkinson’s Disease and Parkinsonian Disorders

Atypical parkinsonian disorders (APDs) such as multiple system atrophy (MSA), progressive
supranuclear palsy (PSP), and corticobasal degeneration (CBG) often present with similar and
overlapping symptomatology as Parkinson’s disease (PD), especially in early disease stages. CSF NF-L
is a promising marker to separate PD from APD, as NF-L is increased in APD compared to PD [132,133]
and can be used to discriminate between APD and PD with a high degree of accuracy [134–136]
(Table 1). Blood NF-L has also recently been demonstrated to be a promising diagnostic marker to
separate PD from APD, with significantly higher blood NF-L levels in APD patients compared to
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PD patients and healthy controls [38,137]. As NF-L levels in PD patients are comparable to healthy
controls, NF-L appears to be a better prognostic marker for APD than for PD. Given that NF-L is a
marker of large myelinated axons, it is possible that axonal degeneration is less severe in PD than in
APD so that blood NF-L does not increase in PD compared to healthy controls. This is in line with MRI
diffusion studies demonstrating extensive white matter injury in APD but not in PD [138–140] and
studies demonstrating that NF-L levels correlate with disease severity in APD [38,136,141].

As PD and APD are still largely clinical diagnoses, supportive biomarkers are highly sought.
Evidence suggests that at least in the CSF, NF-L might be a strong candidate as a discriminating
diagnostic biomarker. Sensitivity is diminished, however, when testing in the peripheral blood,
stressing the need for reliable and sensitive detection methods and preferably Simoa technology
(Table 1). The parkinsonian disorders show great variation in their clinical presentation, with various
degrees of clinical symptoms including dementia. As an ongoing progressive disease, this calls for
special attention in the matching of study populations with healthy controls and is often the weak
point in studies of less common diseases with multiple subtypes. Further studies on larger cohorts are
therefore required.

3.7. Stroke

Stroke is a leading cause of death and disability worldwide, making this condition a major health
concern [142,143]. Neuronal death caused by deprivation of glucose and oxygen to the affected area
leads to the release of axonal proteins, like NF. This protein has a potential for being a biomarker for
stroke severity and post-stroke outcome. Studies have shown how the CSF NF-H levels, measured
using ELISA, increased in aneurysmal hemorrhagic and acute ischemic stroke and related to patient
outcome [55] (Table 1). One study assessed CSF NF-L levels along with a panel of other neuronal
biomarkers that were measured in acute ischemic stroke patients, and found higher levels of this NF-L
compared to controls as well as a correlation with the degree of white matter hyperintensities [46].
However, the emergence of more sensitive detection techniques has allowed the detection of NF-L in
the peripheral blood. Serum NF-L levels, analyzed using Simoa, of patients with MRI-confirmed small
subcortical infarcts were higher than in healthy controls [49] (Table 1). This trend continued at three
months follow up, but NF-L levels seemed to normalize fifteen months post-stroke [49], indicating
that NF-L could be a tool for monitoring infarct extent after a stroke. NF-L serum levels are higher in
ischemic stroke cases than in healthy controls, while also differentiating between ischemic stroke and
transient ischemic attack (Table 1). Higher NF-L levels were associated with more severe disability
scores [44,45]. In a large prospective study, Pedersen et al. used Simoa to study the association between
functional outcome and serum NF-L levels sampled within the first 1–14 days, 3 months, and 7 years
after ischemic stroke [41]. The authors showed that serum NF-L levels increased with time between
stroke and blood sampling and observed the highest concentrations at 3 months post-stroke. Serum
NF-L levels correlated with functional outcome at all timepoints investigated although the strongest
correlation was between functional outcome and NF-L levels sampled 3 months after stroke onset.
Importantly, for all main etiological stroke subtypes, both acute serum NF-L and 3 month levels
were significantly higher in stroke patients than in controls. The release of NF-L after acute neuronal
damage could be due to continuous breakdown of the blood–brain barrier, but persistent post-ischemic
inflammatory and immunological processes could also explain lengthened NF-L release [4]. Further
studies on this research topic could help us understand the role of inflammation in stroke and
axonal injury.

As stroke is a common disease, study populations are often large with well-matched control
populations, providing strong evidence for NF-L as a diagnostic and prognostic marker. In contrast
to the chronic diseases, stroke represents an acute neurodegeneration followed by a recovery phase
with little or no ongoing neuronal pathology. NF-L levels are therefore likely to be time-dependent,
with decreasing levels over time. This makes comparison between studies enrolling from 1 to 14 days
post-stroke difficult, even when using the same sensitive and reliable detection method (Table 1).
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Since very little is known about the dynamics of NF-L release after an acute pathology, this must be
investigated further. An appropriate consensus time for measurement must be established before NF-L
can be considered a reliable prognostic and diagnostic biomarker of stroke.

3.8. Traumatic Axonal Injury

Traumatic brain injury (TBI) is the principal cause of death and morbidity in individuals under
45 years old and is a topic of high concern [144]. TBI can be classified as mild, moderate, or severe,
typically using the Glasgow Coma Scale (GCS) [145–147], with mild traumatic brain injury (GCS score
14–15) being the most common. There is a need for biomarkers that can assess severity and outcome in
TBI as well as the risk of developing chronic traumatic encephalopathy due to repeated exposure to
head trauma [59,60].

Being an unspecific marker of neurodegeneration and axonal damage, NF-L is a promising marker
of injury in TBI (Table 1). In severe TBI, both CSF and serum NF-L sharply increase over the first 2
weeks compared to healthy controls and appear to be reliable predictors of poor outcome [56–58].
Similar predictions may be possible from serum NF-L in mild traumatic injury although care must be
taken when patients are over 60 years old or have preexisting neurological disorders [59,60].

Most studies in mild TBI or concussion have focused on athletes in contact sports like boxing,
hockey, or American football (Table 1). Uncomplicated concussion in soccer [148] or even American
football and hockey [61] does not seem to affect NF-L in serum or CSF. Elevated levels of CSF and
serum NF-L have been documented in boxers, however, especially if the trauma incurred during a
fight resulted in measurable impact on the GCS [62] or was due to several blows to the head [149].
Furthermore, NF-L stayed elevated for a prolonged time [150] and was still elevated after 3 months,
a clear predictor of post-concussion symptoms [58].

Regardless of the type of contact sport, there seems to be a relationship between NF-L levels
and the frequency and magnitude of the head impact [58,61–64,151,152]. It is not yet clear, however,
whether NF-L may serve as a biomarker for prediction of when it is safe to return to contact sports
without the risk of permanent disability and chronic traumatic encephalopathy [153]. A potential
clinical use for this biomarker would be to help clinicians decide whether a patient with TBI should
undergo a head CT or MRI in the acute setting. Since the fluid dynamics of plasma and serum NF-L
are not completely clear at this time, it is most likely to be used as part of a multipanel array [154].

Similar to TBI, a few studies of traumatic spinal cord injury have demonstrated increased NF-L
values in both CSF [65] and serum [66], where early elevations correlated with motor outcome
3–12 months after trauma. However, this area is still largely unexplored.

As TBI is an area of keen interest, studies of NF-L as a prognostic marker are many and often
include large patient cohorts (Table 1). The evidence strongly supports NF-L as a prognostic marker in
severe TBI although very little is known about the dynamics of NF-L in the recovery period, and the
optimal timepoint for measurement is yet to be established. Studies in mild TBI are often limited
by smaller study populations and varying types of head trauma. Nevertheless, the focus on head
injury in contact sports provides good opportunities for further studies on large cohorts of healthy
young adults with similar trauma. With the growing use of Simoa technology, longitudinal studies of
NF-L in peripheral blood may soon provide the necessary evidence to support the use of NF-L as a
prognostic marker.

3.9. Cardiac Arrest

Cardiac arrest often leads to global cerebral ischemia, and irreversible brain damage is likely to
occur by nine minutes after the cessation of blood flow to the brain. The prognosis of out-of-hospital
cardiac arrest is poor, with less than 10% survival [155]. Prognostication of brain damage in patients
surviving cardiac arrest currently relies mainly on clinical observations, electroencephalography,
somatosensory evoked potential, and neuroimaging. However, CSF biomarkers such as NFs have
proved valuable as predictors of brain damage and outcome after cardiac arrest [67,68] (Table 1).
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CSF NF-L levels are increased in cardiac arrest patients 2–3 weeks after the arrest compared to healthy
controls, and NF-L levels are significantly higher in patients with poor outcome compared to those
with good outcome according to the Glasgow Outcome Scale, activities of daily living, and mini-mental
state examination [68]. Plasma [71] and serum [69,72] NF levels have also been measured in cardiac
arrest patients (Table 1). In a recent pilot study, Disanto and colleagues [69] used Simoa to detect serum
NF-L within 17 days of cardiac arrest and found a positive association between serum NF-L levels and
time to return of spontaneous circulation, severity of brain damage estimated by electroencephalogram,
and clinical outcome (death status at 1 month). In a large prospective study, Moseby-Knappe et al. [72]
used ELISA to establish the potential of serum NF-L as a prognostic marker of outcome after cardiac
arrest. Blood samples were collected at 24, 48, and 72 h after return of spontaneous circulation in
717 patients, of whom 360 had a poor neurologic outcome at 6 months. Serum NF-L levels were
significantly increased in patients with poor outcome compared to those with good outcome at all
timepoints and performed better than the biochemical biomarkers tau, neuron-specific enolase, and
S100. The authors concluded that serum NF-L can be used as a predictive marker of long-term poor
neurological outcome at 24 h after cardiac arrest.

These findings suggest that NFs can be used as reliable measures of brain damage following
cardiac arrest and that blood NF levels are highly predictive of outcome. As this area is relatively
unexplored, studies are still scarce and flawed by low patient numbers and variations in the timing
of measurement. Future studies will help determine the potential of NFs as future biomarkers after
cardiac arrest.

3.10. Delirium

Delirium is a common and serious neuropsychiatric syndrome that manifests a new-onset dementia
with features of inattention and global cognitive dysfunction. The etiological causes of delirium are
many and multifactorial and often reflect ongoing acute medical illness or medical complication.
Currently, the diagnosis of delirium is clinically based and depends on the absence or presence of certain
features. As delirium appears to be associated with permanent encephalopathy with neuronal damage
and/or dysfunction, several studies have investigated NFs as potential new biomarkers of neuroaxonal
damage in delirium patients [156–161]. In a recent prospective, pilot observational study, Ehler and
colleagues [161] demonstrated, using ELISA, that plasma NF-L levels increased in sepsis patients over
time and remained stable in patients without sepsis. Furthermore, NF-L levels were higher in patients
with sepsis-associated encephalopathy and correlated with functional outcome and death. Elderly
hospitalized patients are at high risk of developing delirium and postoperative delirium appears to
be associated with increased plasma NF-L levels [159]. The use of NFs as biomarkers in delirium is,
however, still controversial as the literature in this field is still scarse. One study demonstrated that
serum NF-L, measured using Simoa, increased significantly in patients that developed delirium after
cardiac surgery [157], whereas in another study [158] serum NF-H, measured using ELISA, could not
be used to predict patients at risk of delirium following cardiac surgery. Whether these results reflect
differences in the sensitivity of the assay, ELISA vs. Simoa, differences in the NF investigated, NF-L vs.
NF-H, or differences in the underlying disease mechanisms, remain to be elucidated. More studies are
warranted to uncover the potential of NFs as biomarkers in delirium.

4. Discussion

NFs are often considered the C-reactive protein (CRP) test of neurology, suggesting its use as an
unspecific screening marker of neurodegeneration in the PNS or CNS. However, like the CRP, care must
be taken when interpreting results obtained in different studies. First, very little is known about NF
levels and dynamics in the normal healthy population. Ideally, large populations of healthy individuals
are required to generate normative data for reference use. While most studies compare diseased patients
with normal healthy controls, many samples are collected from patients referred to hospital due to a
complaint that is later resolved or not caused by neurological disease [97]. Such symptomatic controls
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may not represent the true levels of NF in the general population. Second, many studies also show
an age-dependent correlation with NFs [59,60,98]. This is most likely caused by the well-described
physiological age-related brain atrophy [162,163]. Similarly, it has been claimed that the subjects’ sex
may affect NF levels [164,165] although this remains to be verified. Third, variations in the source of
the tested substance need to be considered. In neurological diseases, NF-L is often tested in CSF, serum,
or plasma. While CSF has some obvious advantages in CNS disease, its use is often limited by the
invasive nature of the procedure that precludes its use as a frequent longitudinal marker. In general,
there are strong correlations between NF-L levels in CSF, serum, and plasma [97,101,166,167], but while
specificity and sensitivity are high in CSF due to the higher levels of NF-L, sensitivity is often lower in
plasma [101,164,166,168] and even lower in serum [97]. Finally, the test methods also affect the results.
NF-L is typically measured using one of three assays. The commercially available ELISA [169] has the
advantage of being cheap and is readily available in most laboratories, but the manufacturer does not
recommended it for blood analyses because of its low sensitivity. ECL-based assays are sensitive and
require only a small sample volume to produce a large range of results [2]. These methods have largely
been replaced by the Simoa technology, however, as digital immunoassays can significantly improve
sensitivity and deliver reliable and robust data on both CSF, serum, and plasma NF-L, even between
different laboratories [97,141].

5. Conclusions

The development of extremely sensitive immunoassays has increased the potential role of NF-L
as a biomarker through avoiding the collection of CSF and enabling frequent measurement in blood
and not just the CSF. These ultrasensitive methods have allowed NF-L monitoring to expand to
conditions where CSF collection might not be possible and allow repeated measures in longitudinal
studies. Together with other clinical and paraclinical measures, NF-L may be able to contribute
to diagnosis, improving accuracy, and differentiating between manifestations and stages of certain
diseases. However, just as the CRP is an unspecific test of inflammation and disease activity, NF-L
must be interpreted in the clinical context, and no single test or value can be used to rule in or out a
specific diagnosis. Without normative data for the general population and with various techniques
still being applied, care must be taken when interpreting NF levels as predictors of or biomarkers
for neurological diseases. Future studies using sensitive and reproducible techniques are needed to
further solidify this protein before fully applying it to clinical practice.
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Abbreviations

AD Alzheimer’s disease
ALS amyotrophic lateral sclerosis
APD atypical parkinsonian disorder
APP amyloid precursor protein
CBG corticobasal degeneration
CSF cerebrospinal fluid
CMT Charcot–Marie–Tooth
CNS central nervous system
CRP C-reactive protein
DS Down syndrome
ECL electrochemilumninescence
EDSS Extended Disability Status Scale
FTD frontotemporal dementia
GBS Guillain–Barré syndrome
GCS Glasgow Coma Scale
HD Huntington’s disease
HTT huntingtin gene
mHTT mutant huntingtin gene
MND motor neuron disease
MRI magnetic resonance imaging
MS multiple sclerosis
MSA multiple system atrophy
NF neurofilament
NF-H neurofilament heavy chain
NF-L neurofilament light chain
NF-M neurofilament medium chain
PD Parkinson’s disease
PNS peripheral nervous system
PSP progressive supranuclear palsy
Simoa single molecule array technology
TBI traumatic brain injury
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