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Abstract: Objectives: The reprogramming of lipid metabolism is a new trait of cancers. However,
the role of lipid metabolism in the tumor immune microenvironment (TIME) and the prognosis
of gastric cancer remains unclear. Methods: Consensus clustering was applied to identify novel
subgroups. ESTIMATE, TIMER, and MCPcounter algorithms were used to determine the TIME of the
subgroups. The underlying mechanisms were elucidated using functional analysis. The prognostic
model was established using the LASSO algorithm and multivariate Cox regression analysis. Results:
Three molecular subgroups with significantly different survival were identified. The subgroup
with relatively low lipid metabolic expression had a lower immune score and immune cells. The
differentially expressed genes (DEGs) were concentrated in immune biological processes and cell
migration via GO and KEGG analyses. GSEA analysis showed that the subgroups were mainly
enriched in arachidonic acid metabolism. Gastric cancer survival can be predicted using risk models
based on lipid metabolism genes. Conclusions: The TIME of gastric cancer patients is related to the
expression of lipid metabolism genes and could be used to predict cancer prognosis accurately.

Keywords: gastric cancer; immune microenvironment; lipid metabolism; targeted therapy;
gastrointestinal cancers

1. Introduction

Gastric cancer is one of the most common cancers in the world. Although the incidence
has declined with technological advances, the prognosis remains poor [1]. Gastric cancer
occurs at different rates in different world regions and ethnic groups. Despite advances in
identification and treatment, stomach cancer has just a 20% 5-year survival rate. Based on
histologic features, genotypes, and molecular phenotypes, the new gastric cancer classifica-
tion system helps researchers understand the differences between subtypes and improves
early identification, prevention, and treatment [2–4].

Growing evidence indicates that reprogramming of lipid metabolism plays a crucial
role in cancer [5,6]. The specific mechanisms of lipid metabolism in gastric cancer are still
unknown, and the therapeutic targets are still in the preclinical stage. Studies show that
the typical characteristics of lipid metabolism in gastric cancer are increased lipid synthesis
and up-regulated β-oxidation and oxidative decomposition of fatty acid [7]. In the immune
microenvironment of gastric cancer, the phosphoinositide 3-kinase (PI3K)-protein kinase B
(AKT)-mammalian target of rapamycin (mTOR) pathway is abnormally activated, which
stimulates the abnormal proliferation of malignant tumors. This pathway is an important
factor in the growth, metabolism, metastasis, and drug resistance of gastric cancer [8]. The
PI3K-AKT-mTOR pathway mainly regulates the abnormal uptake of newly synthesized
fat and exogenous lipids in gastric cancer by controlling sterol regulatory element-binding
proteins (SREBPs) [9]. The interaction between altered lipid metabolism and the TIME can
affect cancer by promoting inflammation through lipid stimulation of tumors, accelerating
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angiogenesis [10], and affecting stromal cells, allowing the immune system to escape [11].
Rapidly proliferating cancer cells require a lot of energy. When energy supply is insufficient,
ATP produced by fatty acid oxidation is an important energy source for cancer cells. This
forces tumor cells to adjust their metabolic profiles, directly leading to the malignant trans-
formation of tumor cells and abnormal lipid accumulation in the TIME [12]. Adipocytes
and free fatty acids in the hypoxic TIME benefit cancer proliferation, progression, invasion,
and metastasis. However, the exact role of lipid metabolism reprogramming in tumor
immune responses remains unclear. A comprehensive understanding of lipid metabolism
functions in the TIME and its dual effects on immune responses are critical for mapping
the details of tumor immunology and developing specific treatments for cancer patients.

The TIME was critical for tumor commencement and progression [13]. The microenvi-
ronment of tumor cells is transformed methodically by the secretion of various biological
chemicals, empowering neighboring cells with the power to influence the progression of
cancers [14].Tumor-infiltrating immune cells are the predominant non-tumor components
in the TIME, and these have been proven to make a significant contribution to prognostica-
tion. As a result, TIME is crucial to the formation and progression of tumors, and evidence
suggests that TIME is involved in the pathogenesis of gastric carcinoma [15]. Assessing the
TIME of gastric cancer will assist in understanding the immunological status of tumor cells.

Immunotherapy has shown to be effective in various solid tumors in recent studies [16].
Immunotherapy is an alternate treatment option for cancer patients that employs a different
strategy than targeting the tumor directly as per conventional cancer treatment. Because
immunotherapy relies on immune responses to identify and eliminate tumor cells, there
has been a surge in interest in learning more about the tumor immune response. Novel
biomarkers related to the tumor immune response have been developed due to expanded
research. These biomarkers may allow for novel techniques in improving healing effects
and increasing immunotherapy’s potential impact [17]. Consequently, it is necessary to
establish a risk classification strategy and identify critical genes for gastric cancer patients
to receive individualized, targeted treatment. Furthermore, earlier research has shown
that lipid metabolism genes have a substantial predictive value in ovarian carcinomas [18],
renal cell carcinoma (RCC) [19], lung adenocarcinoma (LAUD) [20], pancreatic cancer [21],
and hepatocellular carcinoma (HCC) [22]. Targeting lipid metabolism as a novel cancer
therapy strategy has been proposed [23]. Nevertheless, the effect of lipid metabolism genes
in gastric cancer has remained poorly understood.

Survival analysis methods have been commonly used to identify the importance of
prognostic factors in studying gastric cancer. Survival research has established multi-
variate prediction models using clinical characteristics and related them via molecular
pathways [24]. Identifying differential expression genes is crucial for the correct diagnosis
of tumor characteristics, developing new therapies, and delineating tumor behavior for
more precise results and prognosis prediction [25]. As an efficient method for assessing
prognosis, risk models have been developed to explore the predictive value of genes
associated with the TIME and energy metabolism in gastric cancer [26].

This research focuses on the influence of lipid metabolism genes on the TIME of gastric
cancer patients. We obtained novel subtypes by consensus clustering and analyzed their
immune status by ESTIMATE, TIMER, and MCPcounter algorithms. Then, we try to eluci-
date possible pathways through functional analysis. Then, a novel five lipid metabolism
genes signature (AKR1B1, MTF1, PLA2R1, GGPS1, and ETNPPL) was constructed to predict
clinical outcomes in gastric cancer, which are listed in Table 1. Furthermore, we developed
a risk score model to assess the predictive significance of lipid metabolism genes in gastric
cancer. Our findings could lead to fresh insights into the underlying molecular pathways
of gastric cancer and offer new insights on gastric cancer targeting therapy.
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Table 1. The genes used for constructing the risk model.

Gene Name Full Name Category Function

AKR1B1 Aldo-Keto Reductase Family1
Member B Protein Coding

KR1B1 is an NADPH-dependent
PGF2α synthase involved in
arachidonic acid metabolism.

MTF1 Metal-regulated Transcription
Factor 1 Protein Coding

Metabolism and regulation of
cholesterol biosynthesis by

SREBP (SREBF)

PLA2R1 Phospholipase A2
Receptor 1 Protein Coding

Metabolism and acyl chain
remodeling of phosphatidyl

ethanolamine (PE).

GGPS1 Geranylgeranyl Diphosphate
Synthase 1 Protein Coding Metabolism and cholesterol

biosynthesis I

ETNPP Ethanolamine-Phosphate
Phospho-Lyase Protein Coding

Metabolism and glycerophospholipid
biosynthesis, and enhancement

enables ethanolamine-phosphate
phospho-lyase activity

2. Materials and Methods
2.1. Data Sources and Pre-Processing

RNA data and related clinical information of gastric carcinoma patients were collected
from UCSC databases. RNA data from 407 patients with gastric cancer were included,
and RNA data were normalized by log2(x + 1). The RNA expression data of 407 patients
with gastric cancer were randomly allocated to a 3/4 training set and 1/4 validation set.
After excluding the samples without patient survival time or survival status in clinical
information, 167 gastric carcinoma patients were obtained from the training set, and
80 gastric carcinoma patients were obtained from the verification set. Datasets of 745 lipid
metabolism genes were obtained from the Molecular Signatures Database.

2.2. Identification of Molecular Subtypes

A total of 3972 genes (p < 0.05) were associated with gastric carcinoma prognosis
through the simple batch survival analysis. A total of 62 genes were obtained by the inter-
section of 3972 genes (dataset1) related to gastric cancer survival and 745 genes (dataset2)
related to lipid metabolism (Figure 1A). ConsensusClusterPlus [27] was employed to con-
duct cluster analysis based on the expression matrix of 62 genes associated with survival
and lipid metabolism.

2.3. Immune Microenvironment Evaluation and Immune Cells Analyses

IOBR [28] is an immune tumor biology computing tool. Here, we select ESTIMATE [29],
TIMER [30], and MCPcounter [31] algorithms, using the R package IOBR based on our
expression spectrum. Expression data were used to obtain a stromal score, immune score,
and ESTIMATE score. The TIMER algorithm calculated the abundance of six types of
immune cells (B cell, macrophage cell, dendritic cell (DC), neutrophil cell, CD4 T cell,
and CD8 T cell). Using the MCPcounter algorithm, we determined the abundance of ten
immune cells and lineages.

2.4. Functional Analyses

Limma (Linear Models for Microarray Data) [32] is a differential expression screening
method based on generalized linear models. For differential analysis, we used the R
package limma to extract the differential genes. To enrich related pathways, we used Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and Gene
Set Enrichment Analysis (GSEA) to determine the difference between clusters.
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Figure 1. (A) Venn diagram of the intersection of survival genes and genes related to lipid metabo-
lism. (B) Data analysis flow chart. 
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2.5. Development and Verification of Risk Model

This study integrated survival time, status, and gene expression data using the
“glmnet” R software package. The lasso-Cox method was used for regression analy-
sis. In addition, a ten-fold cross-validation was conducted to determine the optimal
model. We selected a lambda minimum of 0.0466 and finally obtained 21 genes. Mul-
tivariate Cox regression analysis is applied to identify the genes used to establish the
risk model. The risk score per each patient in the training and validation cohorts was
calculated as: risk score = (0.284 * expression value of AKR1B1) + (0.235 * expression
value of ETNPPL) + (0.437 * expression value of GGPS1) − (0.459 * expression value of
MTF1) + (0.141 * expression value of PLA2R1). The patients were classified into a high-
risk group and a low-risk group via the medium value. AUC was determined using the
R software package pROC (Version 1.17.0.1) for receiver operating characteristic (ROC)
analysis. Specifically, survival time and status of patients and gene expression values
of AKR1B1, MTF1, PLA2R1, GGPS1, and ETNPPL were obtained. ROC analyses were
performed at 365-day, 730-day, and 1095-day time points using pROC’s ROC function.
The area under the curve (AUC) and confidence intervals were evaluated using pROC’s
CI function to obtain the final AUC results. Then, we integrated survival time, survival
status, and clinical data using the “rms” R software package to establish a nomogram
by the Cox method and evaluate the prognostic significance of these dates.

2.6. Differential Expression and Immune Microenvironment of Five Genes in
Gastrointestinal Cancers

We used the UCSC database to download a standardized universal cancer dataset.
We also retrieved five gene expression data in various samples from TCGA Pan-cancer.
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In addition, we screened the sample sources as follows: primary blood-derived cancer
and solid normal tissue. We also eliminated samples with a zero expression level and
transformed each expression value using the log2(x + 0.001) transformation. We filtered
cancers with less than three samples and obtained 26 cancers.

Finally, we chose four cancers: Cholangiocarcinoma (CHOL), Esophageal carcinoma
(ESCA), Stomach adenocarcinoma (STAD), and Stomach and Esophageal carcinoma (STES).

We quantified the expression differences between normal and cancer samples in each
tumor and then determined the significance of the expression differences. According to
gene expression, the R package ESTIMATE was used to compute each patient’s stromal,
immune, and ESTIMATE scores in each tumor. Moreover, the six types of immune cell
infiltration scores of each patient in the tumor were re-evaluated using the Timer method.
We used corr. test function of R software package “Psych” to calculate Pearson’s correlation
coefficient between genes and immune infiltration score in each tumor to determine the
immune infiltration score with significant correlation.

2.7. Statistical Analyses

The Kaplan–Meier approach was used to conduct the survival study. Using the
“survivalROC” R package, we test the prediction performance of the risk model using time-
dependent ROC analysis. Discontinuous data were displayed as numbers and percentages,
whereas continuous data were provided in the form of mean ± standard deviation (SD).
The student’s t-test was utilized for statistical analysis between two groups, and one-way
ANOVA was chosen flexibly when three or more groups were determined. The p < 0.05
and FDR < 0.05 were indicated statistically significant differences. Statistical analyses were
conducted via R. The whole process of data analysis is depicted in Figure 1B.

3. Results
3.1. Identification of Three Molecular Subgroups Using Lipid Metabolism Genes

Using the RNA expression data of 62 genes, we divided patients with gastric cancer into
subgroups via the consensus clustering method. Using the empirical cumulative distribution
function plot, we found the optimal clustering stability when K = 3 (Figures 2A–C and S1A,B).
The C1, C2, and C3 clusters each contained 55, 58, and 54 patients. A heatmap showed the
level of lipid metabolism gene expression in the three subtypes, the expressions of lipid
metabolism genes in clusters C2 and C3 were significantly higher than those in cluster C1
(Figure 2D). In addition, the survival analysis of the three clusters showed a significant
difference between C1 and C2 (p = 0.01) and C1 and C3 (p = 0.01; Figure 2E). These findings
indicated that the lipid metabolism genes divide individuals with gastric cancer into three
distinct molecular subgroups with diverse survival rates, and the lower expression of the
lipid metabolism cluster had higher survival.

3.2. Three Molecular Subgroups Displayed Distinct Immune Microenvironments

Then, we used the immune method to identify the immune differences between the
three molecular subgroups. Cluster C1 patients with gastric cancer had significantly
lower stromal score (p = 1.0 × 1030), immune score (p = 7.7 × 109), and ESTIMATE
score (p = 1.5 × 1021) via ESTIMATE analysis (Figure 3A). In cluster C1, TIMER anal-
ysis showed that gastric cancer patients had significantly lower B cell (p = 8.7 × 104),
CD4 T cell (p = 3.2 × 107), CD8 T cell (p = 4.1 × 103), neutrophil cell (p = 2.6 × 107),
macrophage (p = 1.0 × 1020), and dendritic cell (p = 3.2 × 109) compared with cluster
C2 and cluster C3 (Figure 3B). In addition, MCPcounter algorithm indicated that the T
cell (p = 9.9 × 103), CD8 T cell (p = 0.02), B lineage (p = 3.4 × 105), monocytic_lineage
(p = 2.9 × 1010), myeloid_dendritic_cells (p = 3.2 × 106), neutrophils (p = 1.7 × 103), en-
dothelial (p = 1.0 × 1011), and fibroblasts (p = 8.7 × 1025) in cluster C1 were significantly
lower than cluster C2 and cluster C3. While there were lower cytotoxic lymphocytes in
cluster C2, there were more in cluster C3 (p = 7.3 × 103), and no statistical significance was
detected concerning NK cells (p = 0.21; Figure 3C). In addition, we investigated several
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immune checkpoint genes. Compared with cluster C2 and C3, FOXP3 (p = 0.01), HAVCR2
(p = 2.1 × 106), and PDCD1LG2 (PD-L2; p = 1.5 × 1012) were lowly expressed in cluster C1
(Figure 3D). These findings indicate that the immune microenvironment varied significantly
between the three molecular subgroups.
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3.3. DEG and Functional Analyses

We found DEGs between the three clusters and conducted functional enrichment
studies to investigate the underlying signaling pathways. The significance threshold was
FDR < 0.05, and the difference between the two groups was twofold. Compared clusters C1
and C2 amount to a total of 1274 differential genes were identified, 1096 genes were down-
regulated, and 178 genes were up-regulated (Figure 4A). Compared clusters C1 and C3
amount to a total of 416 differential genes were identified, 366 genes were down-regulated,
and 50 genes were up-regulated (Figure 4B). The expression level of lipid metabolism
genes between cluster C1 and cluster C2, cluster C1, and cluster C3 was visualized through
the heatmap (Figure S2A,B). GO enrichment analysis revealed that the DEGs between
clusters C1 and C2 were enriched in cell migration, locomotion, and biological adhesion
(Figure 4C). DEGs between clusters C1 and C3 were enriched in immune-related biologi-
cal processes, including humoral immune response, B cell-mediated immunity, adaptive
immune response, complement activation, and phagocytosis (Figure 4D). Additionally, sev-
eral essential molecular functions and cellular components were enriched (Figure S3A–D).
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KEGG analysis found several critical pathways linked with focal adhesion, comple-
ment, and coagulation cascades between cluster C1 and cluster C2 (Figure 4E) and several
essential pathways linked with fat and protein digestion and absorption, retinol metabolism,
and cholesterol metabolism between cluster C1 and cluster C3 (Figure 4F).

GSEA analyses were used to find the differential expression of the pathways in the
three clusters further to reveal the relationship with the prognosis of gastric cancer. Com-
pared to cluster C2, GSEA analysis revealed that vascular smooth muscle contraction and
calcium signaling pathway are lowly expressed in cluster C1 (Figure 4G). Compared to
cluster C3, GSEA analysis revealed arachidonic acid metabolism, complement and coag-
ulation cascades, and retinol metabolism lowly in cluster C1 (Figure 4H). These results
suggest a correlation between lipid metabolism gene expression, cell migration, and over-
expression of immune response, which may contribute to the poor prognosis of patients
with gastric cancer.

3.4. Development of a Risk Model Using Lipid Metabolism Genes in the Training Cohort

The predictive efficacy of lipid metabolism genes in gastric cancer was assessed using a
risk model. Twenty-one candidate genes for constructing a risk model were screened using
LASSO analysis with a minimum lambda value (Figures 5A and S4). The risk model was
constructed using AKR1B1, MTF1, PLA2R1, GGPS1, and ETNPPL identified by LASSO and
multivariate Cox analyses. These five genes are risk genes. AKR1B1, PLA2R1, GGPS1, and
ETNPPL have hazard ratios exceeding one, while MTF1 has a 0.34 hazard ratio (Figure 5B).
Kaplan–Meier analysis revealed that the five genes were independent prognostic indica-
tors for patients with gastric cancer (Figure S5A–E). The built-risk model divided gastric
cancer patients successfully into high-risk and low-risk groups. The expression of AKR1B1,
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PLA2R1, GGPS1, and ETNPPL genes tended to be higher in the high-risk group, while
the expression of MTF1 tended to be higher in the low-risk group (Figure 5C). Regarding
overall survival, patients in the low-risk group performed better than those in the high-risk
group (p = 1.0 × 1014; Figure 5D).
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between the two groups. (G,H) Plots visualize the results enriched by GSEA between the two groups.
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the survival status of stomach cancer patients in the high-risk and low-risk groups and the expression
of the five genes. (D) Survival curve of gastric cancer patients. (E) ROC curve depends on time for
the risk model. (F) The ESTIMATE algorithm evaluated the immune scores of the two groups of
gastric cancer patients.

According to a time-dependent ROC analysis, the established risk model displayed ex-
act prediction capability over three years. The AUC of the ROC curve for 365-day, 730-day,
and 1095-day was 0.81, 0.85, and 0.95, respectively (Figure 5E). We ranked the risk scores
from highest to lowest and divided them into two groups on average. The immune microen-
vironment of the two groups was evaluated using the ESTIMATE method. Compared to the
high-risk group, the stromal score (p = 8.8 × 106), immune score (p = 2.4 × 103), and ESTI-
MATE score (p = 3.1 × 105) were considerably lower in the low-risk group (Figure 5F). The
higher the risk score, the higher the immune score. A positive correlation between risk score
and the immune score has been reported in the literature in some tumors [33]. It has been
reported that immune score is a strong prognostic factor for overall survival [34]. These
results indicate that the developed risk model was fully capable of predicting the prognosis
of patients with gastric cancer, and it was strongly related to TIME in gastric carcinoma.

3.5. Validation of Risk Model Independence

We also looked at the relationship between the risk score and clinical characteristics
and used subgroup analysis and regression analyses to assess the developed risk model’s
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independence. There were no noteworthy differences among patients of different genders
(p = 0.08), ages (p = 0.96), and histological types (p = 0.64). In terms of risk scores, there
was no association between risk scores and sex, age, and histological types (Figure 6A–C).
In addition, when the patients were regrouped by gender (Figure 6D,E), age (Figure 6F,G),
and histological type (Figure 6H,I), the risk model continued to demonstrate strong
prediction accuracy.
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3.6. Risk Model Was Associated with TIME and Prognosis of Gastric Carcinoma in the
Validation Cohort

The constructed prognostic risk model is further verified in the validation cohort. The
gastric cancer patients in the validation cohort were stratified into a high-risk group and a
low-risk group using the previous method. The expression of the five genes was shown
through a heatmap (Figure 7A). The analysis of survival revealed that high-risk patients
had a worse prognosis (p = 2.3 × 103; Figure 7B). ROC analysis revealed that the risk model
provided the most accurate prediction of 730-day survival (Figure 7C). The ROC curve of
the risk model in the global set leads to the same conclusion (Figure S6).
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risk and low-risk groups. (C) ROC curve of the risk model in the verification cohort. (D) The
ESTIMATE algorithm evaluated the immune scores of the two groups of gastric cancer patients in the
verification cohort.

In addition, we investigated the relationship between the risk model and the im-
mune microenvironment. The low-risk group had a substantially lower stromal score
(p = 3.7 × 105), immune score (p = 1.8 × 105), and ESTIMATE score (p = 6.0 × 106) than the
high-risk group (Figure 7D). Immune scores in the validation set are comparable to those
in the training set. In the validation cohort, these results revealed that the developed risk
model was connected with the immune microenvironment and prognosis for gastric cancer.
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3.7. Development and Adjustment of an Integrated Monogram

To better forecast the prognosis of gastric cancer patients, a nomogram was de-
veloped. A specific score was assigned via the created nomogram demonstrating the
influence of risk score and clinical factors on the prognosis of gastric cancer patients
(Figure 8A). Then, the nomogram was verified in the training and validation cohort.
Regarding the model diagnostic of the nomogram, the calibration curve (Figure 8B,C)
suggested sufficient precision. The C-index for the training cohort’s nomogram achieved
0.7439 (95%CI: 0.6887–0.7790). These findings demonstrated that the integrated nomo-
gram could reliably predict the prognosis of gastric carcinoma patients. These results
indicated that lipid metabolism dysregulation might cause cell migration and disorders of
the immune system, culminating in a dismal prognosis. The built risk model using lipid
metabolism genes correctly predicted the prognosis of patients with gastric cancer.
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3.8. Differential Expression of Five Genes and Expression of Immune Infiltrates and Immune Cells
in Gastrointestinal Cancer

AKR1B1 was significantly up-regulated in ESCA (p = 8.4 × 104), STES (p = 6.2 × 106),
STAD (p = 2.6 × 103), and CHOL (p = 1.2 × 105). ETNPPL was significantly down-regulated
in ESCA (p = 3.8 × 103), STES (p = 3.3 × 104), STAD (p = 0.02), and CHOL (p = 1.2 × 105).
GGPS1 was significantly upregulated in ESCA (p = 2.6 × 103), STES (p = 3.2 × 1011), STAD
(p = 3.0 × 109), and CHOL (p = 2.3 × 109). MTF1 was significantly upregulated in STES
(p = 0.01), STAD (p = 0.05), and CHOL (p = 5.3 × 106), but not statistically significant
in ESCA (p = 0.39). PLA2R1 was significantly upregulated in ESCA (p = 0.02), STES
(p = 5.4 × 103), and CHOL (p = 8.2 × 105) in three tumors, but not statistically significant in
STAD (p = 0.11; Figure S7A–E).

We finally observed a significant positive correlation between AKR1B1 expression
and immune infiltration in two cancer species: STES (N = 569, R = 0.24, p = 5.5 × 109),
STAD (N = 388, R = 0.45, p = 1.2 × 1020). In the ESCA (N = 181, R = 0.12, p = 0.12), CHOL
(N = 36, R = 0.28, p = 0.10) had no statistical significance. We observed that there was
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no statistical significance in ETNPPL expression and immune infiltration in four cancer
species: STES (N = 349, R = 0.04, p = 0.45), STAD (N = 247, R = 0.07, p = 0.31), ESCA
(N = 102, R = 0.09, p = 0.36), and CHOL (N = 25, R = 0.17, p = 0.41). We observed a
significant negative correlation between GGPS1 expression and immune infiltration in
three cancer species: STES (N = 569, R = 0.21, p = 6.4 × 107), STAD (N = 388, R = 0.16,
p = 1.2 × 103), and ESCA (N = 181, R = 0.21, p = 4.1 × 103), but in CHOL (N = 36, R = 0.23,
p = 0.18) there was no statistical significance. MTF1 expression was significantly negatively
correlated with immune infiltration: STES (N = 569, R = 0.12, p = 5.1 × 103) and ESCA
(N = 181, R = 0.23, p = 1.5 × 103), but in STAD (N = 388, R = 0.11, p = 0.02) there was a
significant positive correlation, CHOL (N = 36, R = 0.07, p = 0.69) showed no statistical
significance. PLA2R1 expression was significantly positively correlated with immune
infiltration in STAD (N = 388, R = 0.12, p = 0.02), but STES (N = 569, R = −0.06, p = 0.14),
ESCA (N = 181, R = −0.04, p = 0.55), and CHOL (N = 36, R = 0.26, p = 0.13) had no statistical
significance (Figure 9A–E).

Through the TIMER algorithm, the expression of six types of immune cell infiltration
scores of five genes in digestive tract cancer can be obtained. The AKR1B1 gene in six kinds
of immune cell infiltration results was extremely significant in gastric cancer. There was
no statistical significance in six kinds of immune cell infiltration results of the ETNPPL
gene in gastric cancer. Only the B cell score of the GGPS1 gene was significant in gastric
cancer. In the MTF1 gene, except for the B cell score, there was no statistical significance
in gastric cancer, and the scores of other the five immune cells were extremely significant.
The B cells, CD8 T cell, and dendritic cell infiltration scores of the PLA2R1 gene had no
statistical significance in gastric cancer, while the infiltration scores of CD4 T cells and
neutrophils were significant in gastric cancer, and macrophages were extremely significant
(Figure 9F–J). These results showed that the differential expression of five genes in gastric
cancer was consistent with the previous results, and the expression in other gastrointestinal
cancers was further explored. Besides ETNPPL, the other four genes were also found to be
closely related to the immune infiltration of gastric cancer, and the immune infiltration of
five genes in other gastrointestinal cancers has a certain reference value for future studies.
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4. Discussion

Gastric cancer is a classic heterogeneous cancer with molecular complexity and het-
erogeneity as one of the most aggressive tumors [35]. Gastric cancer heterogeneity has
been highly complex with the advancement of technology in terms of genomic instabil-
ity, differentially expressed genes, epigenetic heterogeneity, genetic variants, and protein
heterogeneity. Nonetheless, novel biomarkers have helped create the molecular network
of gastric cancer, improving our grasp of heterogeneity, and identifying more significant
genetic subgroups associated with individual features [36].

We identified three molecular subtypes by intersecting genes related to survival and
lipid metabolism. The immune assessment showed that the subgroup with high expression
of lipid metabolism had a relatively higher immune status. Functional studies indicated
lipid metabolism disorders associated with immune regulation and cell migration. In
addition, we developed a predictive risk model based on lipid metabolism genes that
accurately predicted the prognosis of patients with gastric cancer. Our findings may aid
in developing gastric cancer-targeted therapy and assist doctors in making more sensible
treatment decisions.

According to the gene expression matrix, consensus clustering proved a reliable
method of classifying data into various subgroups. We identified three molecular groupings
with significantly different overall survival using consensus clustering. The significance
of lipid metabolism in gastric cancer was explored using immunological and functional
analyses. The immune microenvironment is essential for patient prognosis because tumor
growth is intimately linked to immune cells, and the abnormal metabolic condition of
tumor cells might lead to variations in the immune microenvironment’s metabolism. The
ESTIMATE was a novel algorithm for calculating the proportion of immune and stromal
cells in tumors. According to our findings, the cluster with high expression of lipid
metabolism had a relatively higher immune score. In addition, we utilized the TIMER
and MCPcounter algorithm to evaluate the immunological state of the three molecular
subtypes. In agreement with the ESTIMATE finding, the TIMER analysis showed that the
quantity of six immune cells was considerably lower in cluster C1, indicating that immune
processes are downregulated in cluster C1. The MCPcounter result revealed that patients in
cluster C1 had a comparatively poor immunological state, confirming the ESTIMATE and
TIMER findings. Since the relationship between lipid metabolism and immune responses
in the tumor environment is unclear, we speculate that immune cells need a large number
of fatty acids for energy when they compete with cancer cells, thus exhibiting high immune
scores in high lipid metabolic clusters. Different immune-infiltrating cells can enhance
or suppress antitumor immunity in TIM [37]. The phenotype of macrophages is closely
related to the reprogramming of lipid metabolism in cancer cells. Macrophages in the
clusters C2 and C3 are highly expressed, and M2 macrophages can enhance fatty acid
oxidative phosphorylation to supply energy and promote the occurrence and development
of tumors [38]. Cluster C1 with low expression of lipid metabolism had a low immune
score. The effect of lipid accumulation caused by abnormal lipid metabolism on DCs in the
TIME may also be partly responsible for the poor prognosis. Abnormal lipid accumulation
inhibits the ability of DCs to promote antitumor T cells [39]. This is why downregulated
lipid metabolism leads to lower immune scores and immune status. Moreover, since the
metastatic potential of tumor cells is positively correlated with intracellular lipid storage,
the accumulated lipids may contribute to poor prognosis by promoting metastasis. Immune
checkpoint genes are highly expressed in clusters C2 and C3, promoting immune escape
and poor prognosis.

Then, to understand the underlying biological mechanisms, functional studies were
undertaken comparing the three clusters. Based on discovered DEGs, GO, and KEGG analy-
ses revealed that immunological modulation and cell migration might modulate the role of
lipid metabolism in gastric cancer development and progression. However, the precise asso-
ciation between lipid metabolism, immunological modulation, and cell migration remained
unknown. As a result, we used GSEA analysis to acquire more about the underlying mech-
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anisms. Compared to clusters C2 and C3, GSEA results revealed the comparatively low
expression of vascular smooth muscle contraction, calcium signaling pathway, and lipid
metabolism in cluster C1. These findings suggest that the immunological state, vascular
smooth muscle contraction, and cell migration were linked to lipid metabolism.

By combining the initial findings, we can conclude that disturbance of lipid metabolism
impacted the immune microenvironment and cell migration, resulting in a poor prognosis
for gastric cancer. As previously reported, lipid metabolism reprogramming has been
identified as a new characteristic of tumor aggressiveness. Lipid metabolic anomalies
in tumors have received a lot of attention in recent years. Antitumor treatment that
targets abnormal lipid metabolic pathways is a potential technique [40]. It is reported that
some pathways, such as the PI3K pathway, participate in the progression of cancer via
enhancing cell proliferation and angiogenesis, promoting cell migration and infiltration,
and suppressing apoptosis [41]. The functional analysis in this paper further verifies
this conclusion.

We built a predictive risk model using lipid metabolism genes and validated it in
the verification cohort. This can confirm the impact of lipid metabolism disturbance on
the immune microenvironment in patients with gastric cancer and assess the prognostic
significance of lipid metabolism in patients with gastric cancer.

The five genes utilized to create the risk model are closely linked to tumor formation
and development. PGF2α is the primary metabolite catalyzed by AKR1B1. PGF2α regu-
lates the signaling pathway of tumor endothelial cells through the PGF2α receptor, thus
regulating cell adhesion, invasion, and migration [42]. Pathways associated with MTF1
include Metabolism and Regulation of cholesterol biosynthesis by SREBP (SREBF). SREBPs
(SREBFs) respond to low cholesterol concentrations by transiting the nucleus and activat-
ing cholesterol and lipid biosynthesis genes. Pathways associated with PLA2R1 include
metabolism and acyl chain remodeling of PE [43]. The related pathways of GGPS1 are
metabolism and cholesterol biosynthesis I [44]. ETNPPL has associated pathways, including
metabolism and glycerophospholipid biosynthesis, and it enables ethanolamine-phosphate
phospho-lyase activity [45].

According to survival analyses, the constructed risk model had a powerful prediction
performance for the survival of gastric cancer patients in both the training and verification
cohorts. Furthermore, independence and subgroup analyses revealed that the risk model
is able to estimate prognostic in gastric cancer patients independently of their gender,
age, and histological type. A nomogram incorporating the risk score and clinical vari-
ables was developed and validated, demonstrating the significant predictive ability for
survival. These findings supported the importance of lipid metabolism genes in prognosti-
cating gastric cancer and the association between abnormal lipid metabolism and immune
microenvironment disorder.

Despite numerous breakthroughs in surgical surgery and chemotherapy, the overall
survival rate has remained unchanged. Patients with stomach cancer have a bad progno-
sis [46]. It is critical to create efficient strategies for classifying patients based on their risk
scores and providing appropriate, tailored treatment. However, there have been several
studies examining risk models of gastric cancer [47]. As compared to earlier research, ours
had specific merits:

1. We looked at the lipid metabolism genes and used consensus clustering to identify
three molecular groupings with significantly different prognoses and immunologi-
cal states.

2. We delved into biological pathways based on clustering results and partially revealed
the underlying mechanism.

3. We investigated whether lipid metabolism affects the immune microenvironment
and prognosis.

4. We explored the differential expression and immune microenvironment of five essen-
tial genes in digestive cancer, which confirmed the rationale for using essential genes
to build a predictive model.
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Our findings provide valuable theoretical guidance for future gastric cancer research.
We found three molecular subtypes in our study: cluster C1, cluster C2, and cluster C3.

Patients in cluster C1 with low expression of lipid metabolism had lower immunological
scores. Lipid metabolism dysregulation was linked to a high immune status and cell
migration. The prognosis of gastric cancer could be accurately predicted using a risk model.
These findings suggested that the lipid metabolism landscape was linked to the immune
microenvironment. When deciding on a treatment strategy for gastric cancer patients who
could benefit from tailored treatment, it was worth paying close attention. In addition,
after constructing the gastric cancer risk prognosis model, this study further explored the
expression of critical genes in digestive tract cancer and immune infiltration, which verified
the importance of critical genes and played some role in the study of biomarkers in the
digestive tract cancer.

There are some imperfections in our study. For starters, we were unable to demonstrate
the function of lipid metabolism genes in the progression of gastric carcinoma due to a lack
of information regarding the patients’ advancement, such as tumor stages. Second, the
outcomes of our bioinformatics study were not further confirmed through experimentation.
Finally, instead of using our cohort, the data were obtained from several open databases.
Because all of the patients in this study were chosen retrospectively, there is a risk of
bias due to unbalanced clinicopathological characteristics and treatment heterogeneity. To
confirm the predictive value of lipid metabolism genes in gastric cancer, more prospective
studies are needed.

5. Conclusions

Finally, three molecular subtypes of gastric cancer were identified using consensus
clustering. According to immunological and functional assessments, lipid metabolism
disorders affect the immune system and cell migration, resulting in a poor prognosis. The
connection between the immune microenvironment and lipid metabolism was investigated
in this work along with the construction of a gastric cancer risk prognosis model. Pre-
liminarily exploring the differential expression of five genes and the immune situation
in gastrointestinal cancers further confirms the importance of these five lipid metabolism
genes. Some contributions have been made in the discovery of biomarkers for gastrointesti-
nal tumors. Our findings can help develop new targeted medications and risk stratifications
for gastric cancer patients.
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