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Abstract

Nemaline myopathies are a heterogenous group of congenital myopathies caused by de novo, dominantly or recessively
inherited mutations in at least twelve genes. The genes encoding skeletal a-actin (ACTA 1) and nebulin (NVEB) are the com-
monest genetic cause. Most patients have congenital onset characterized by muscle weakness and hypotonia, but the spectrum
of clinical phenotypes is broad, ranging from severe neonatal presentations to onset of a milder disorder in childhood. Most
patients with adult onset have an autoimmune-related myopathy with a progressive course. The wide application of mas-
sively parallel sequencing methods is increasing the number of known causative genes and broadening the range of clinical
phenotypes. Nemaline myopathies are identified by the presence of structures that are rod-like or ovoid in shape with electron
microscopy, and with light microscopy stain red with the modified Gomori trichrome technique. These rods or nemaline
bodies are derived from Z lines (also known as Z discs or Z disks) and have a similar lattice structure and protein content.
Their shape in patients with mutations in KLHL40 and LMOD?3 is distinctive and can be useful for diagnosis. The number and
distribution of nemaline bodies varies between fibres and different muscles but does not correlate with severity or prognosis.
Additional pathological features such as caps, cores and fibre type disproportion are associated with the same genes as those
known to cause the presence of rods. Animal models are advancing the understanding of the effects of various mutations in
different genes and paving the way for the development of therapies, which at present only manage symptoms and are aimed
at maintaining muscle strength, joint mobility, ambulation, respiration and independence in the activities of daily living.
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Introduction

Nemaline myopathies are a group of congenital myopathies
defined by structures known as nemaline rods or nemaline
bodies that stain red with the modified Goméri trichrome
technique (Dubowitz et al. 2013, 2019 in press). The spec-
trum of clinical phenotypes is wide and mutations in many
genes (at least 12) are known to be associated with their
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presence in muscle biopsies. Additional pathological fea-
tures such as cores, caps and fibre type disproportion (FTD)
as well as the presence of only a few fibres with rods overlap
with other congenital myopathies and challenge the clas-
sification of all congenital myopathies. Although structural
features such as rods can be identified in a muscle biopsy,
it is the combination of clinical, histological and genetic
features that define a disease entity.

Histopathological features have a major role in directing
molecular analysis (Dubowitz et al. 2013), but the increas-
ing use of gene panels and exome sequencing is identifying
novel genes and expanding clinical phenotypes associated
with known genetic defects that result in the formation of
rods. Nemaline rods are not specific for nemaline myopa-
thies and may also occur at normal myotendinous junctions,
in normal extra-ocular (eye) muscles, in ageing muscle and
occasionally in a variety of other inherited or acquired neu-
romuscular and other disorders (see Vandebrouck et al.
2010). In vitro studies of cultured cells have shown that rods
can result from metabolic stress by depletion of adenosine
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triphosphate (Vandebrouck et al. 2010). The diagnosis of
nemaline myopathies relies on a multidisciplinary approach
with careful clinical, pathological and genetic correlations.
Muscle magnetic resonance imaging (MRI) has also become
an important contributor to diagnosis and highlights specific
patterns of muscle involvement associated with particular
mutated genes (Jungbluth 2017).

The term ‘nemaline myopathy’ is usually applied to
the group of muscle disorders presenting at birth or early
childhood with hypotonia and muscle weakness, but cases
of adult onset have also been reported, including those
referred to as sporadic late-onset nemaline myopathy, many
of which are of autoimmune origin, or associated with HIV
(see Schnitzler et al. 2017). In addition, some patients may
not present until adulthood, but careful enquiry and clinical
examination often identifies problems in childhood, albeit
mild. This article focuses on the congenital and childhood
onset forms.

What is a nemaline rod?

Nemaline rods were identified in the 1950s and 1960s in
muscle biopsies from children with hypotonia (Conen et al.
1963; Shy et al. 1963; Schnell et al. 2000). Conen et al.
(1963) described the appearance of rod-like structures in
the biopsy of a child with hypotonia as ‘myogranules’ which
would now be described as rod bodies. The term ‘nemaline
myopathy’ was suggested by Shy and co-workers after the
Greek word for thread, nema, as it was not clear whether the
structures were separate rod-like structures or an undulating
thread-like structure.

Rods stain red with the modified Gomori trichrome tech-
nique but electron microscopy may be needed to distinguish
them from mitochondria, which also stain red, especially in
very small muscle fibres in neonates. Rods are considered to
be derived from Z lines as they can show continuity with Z
lines; they have a similar lattice structure and express similar
proteins, including a-actinin, actin, tropomyosin, myotilin,
y-filamin, cofilin-2, telethonin and nebulin. Desmin is not
present in the rods themselves but may be observed at their
periphery. In some fibres in human muscle biopsies and in
some animal models, the rod-like structures may appear as
an integral part of the sarcomere, and as thickened Z lines
compared with the normal width, which is usually fixed,
according to the muscle fibre type (Luther 2009).

It is not yet clear how rods form, but myofibrillar rear-
rangement is considered to result in several abnormalities
of the Z lines (Yu et al. 2004). Rods can be a secondary
response to metabolic stress. Numerous rods were observed
in a few patients with Complex I deficiency (Lamont et al.
2004) and in both muscle and non-muscle cells in vitro, they
can be induced by a variety of substances that cause energy
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shortage, including ATP depletion and heat shock proteins
(Vandebrouck et al. 2010). This in vitro study suggested
that rods formed under different conditions vary with regard
to their cofilin and a-actinin content. In addition, specific
ACTAI mutations affected the localization of rods (nuclear
versus cytoplasmic).

Genetics

Nemaline myopathy may be caused by mutations in at least
12 genes (Table 1) and some cases are still molecularly
unresolved. A recently identified gene is TNNT3, the gene
encoding fast skeletal troponin 3 (Sandaradura et al. 2018).
In addition, a homozygous mutation in MYO18B, encoding
an unconventional myosin, has been reported as a possible
cause of nemaline myopathy in an atypical case (Malfatti
et al. 2015). Nemaline rods were also observed in associa-
tion with a mutation in MYOI8B but the patient also had
Klippel-Feil anomaly, dysmorphic features, microcephaly
and short stature (Alazami et al. 2015). Furthermore, in
experimental models, myofibre assembly failed in a way not
characteristic of nemaline myopathy biopsies (Berger et al.
2017; Gurung et al. 2017) but animal models often do not
recapitulate human diseases precisely.

Other genes are also associated with the presence of
nemaline rods or cap-like areas, but additional structural and
clinical features are present in these patients and thus, they
do not fulfil the criteria of nemaline myopathy as outlined
at a European Neuromuscular Centre workshop (Wallgren-
Pettersson et al. 1998), although publications may refer to
them as such. For example RYRI and TTN, encoding the
ryanodine receptor 1 and titin, respectively, (Sewry and
Wallgren-Pettersson 2017; Oates et al. 2018), EXOSC3 that
encodes a component of the human RNA exosome complex
(Pinto et al. 2019), PPA2 that encodes the mitochondrial
pyrophosphatase (Guimier et al. 2016), and RYR3 encoding
the ryanodine receptor 3 (Nilipour et al. 2018).

The commonest forms of nemaline myopathy are caused
by mutations in the genes encoding skeletal muscle a-actin
(ACTA]I) and nebulin (NEB). Several of the other causative
genes have only been shown to be mutated in a few families
each, although the wide application of novel gene sequenc-
ing methods is increasing the number of patients with veri-
fied genetic diagnoses (Wallgren-Pettersson et al. 2011;
Malfatti and Romero 2016). Most of the ACTAI mutations
are heterozygous dominantly inherited mutations, often aris-
ing de novo. NEB mutations are usually recessively inher-
ited, but recently, the first dominantly inherited mutation
was identified in NEB, causing a distal form of nemaline
myopathy (Kiiski et al. 2019). A great number of different
mutations have been identified in these two genes (Sparrow
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Table 1 Genetic causes of nemaline myopathies

Gene Inheritance

Associated features in addition to cytoplasmic nemaline rods

ACTAI de novo AD, AR, AD
NEB AR, (AD)

TPM?2 AD, de novo AD, (AR)
TPM3 AD, de novo AD, AR
KBTBDI13 AD

CFL-2 AR

KLHLA40 AR

KLHIA41 AR

LMOD3 AR

MYPN AR

TNNTI1 AR, (AD)

TNNT3 AR

MYOISB* AR

Actin accumulation, nuclear rods, cores, cores +rods, zebra bodies, FTD
Distal myopathy, cores +rods, FTD

FTD, caps, distal arthrogryposis, Escobar syndrome
FTD, caps

Slow movement, cores + rods

Ophthalmoplegia, cores, actin accumulation
Ophthalmoplegia, rectangular rods with fringes

No cores, typical pathology

Rectangular rods with fringes

Cardiomyopathy, nuclear rods, caps

Excess connective tissue, contractures
Arthrogryposis, excess connective tissue

Cardiomyopathy, dysmorphism, Klippel-Feil anomaly

AR autosomal recessive, AD autosomal dominant, FTD fibre type disproportion

“MYODIS8B is not yet clearly identified as a ‘nemaline myopathy’ as it was associated with complex phenotypes, not typical of nemaline myopa-

thy

et al. 2003; Feng and Marston 2009; Nowak et al. 2013;
Lehtokari et al. 2014; Moreno et al. 2017).

Nine of the genes for nemaline myopathy encode proteins
of the sarcomere, in addition, MYOI8B is also a sarcom-
eric protein localized to the Z lines (Ajima et al. 2008) and
may yet prove to be a causative gene of nemaline myopathy,
although the phenotype of affected patients is different from
others reported. The other three genes encode Kelch-like
proteins, a large family of proteins possibly associated with
thin filament regulation (Wallgren-Pettersson et al. 2011;
Gupta and Beggs 2014; Malfatti and Romero 2016).

Nemaline myopathies occur all over the world. Some
mutations have arisen as founder mutations, such as the dele-
tion of the entire exon 55 of NEB in persons of Ashkenazi
Jewish ancestry, with a world-wide distribution (Anderson
et al. 2004; Lehtokari et al. 2009), and the TNNTI muta-
tion (E180X in exon 11 causing a stop codon) in the Amish
population (Johnston et al. 2000). Probable founder muta-
tions have also been identified in TPM3 (deletion of the
first nucleotide of the last exon, ¢.913delA) in the Turkish
population (Lehtokari et al. 2008), KLHLA0 (c.1582G>A)
in the Japanese, Kurdish and Turkish populations (Raven-
scroft et al. 2013), ACTAI (p.Asp181fsX10) in the Pakistani
population (Nowak et al. 2007), KBTBD13 (c.1222C>T) in
the Low Countries of The Netherlands and Belgium (Sam-
buughin et al. 2010), three mutations in NEB (p.Ser6366lle
in ex122, p.Thr7382Pro in ex151, and p.Thr6350Profs*4 in
ex122) in the Finnish population (Lehtokari et al. 2014) and
in LMOD3 (c.1648c>T) in German and Austrian popula-
tions (Schatz et al. 2018).

Currently, many mutations are identified by screening pan-
els of genes known to be associated with nemaline myopathy.

There is often difficulty, however, with mutation detection,
especially in NEB. It is an extremely large gene (183 exons),
giving rise to many isoforms in both skeletal muscle and brain
(Laitila et al. 2012). The gene has multiple splice sites and a
triplicate repeat region, where the most common large variants
of the gene are found (Kiiski et al. 2016). Identifying both
mutations in NEB in a patient may also be difficult because
most patients have two private mutations anywhere along the
length of the gene, and some of them are easily missed using
massive parallel sequencing methods (Kiiski et al. 2016).
Determining the pathogenicity of especially missense vari-
ants, which are numerous in NEB, constitutes a further diag-
nostic challenge. Recent advances include a targeted array
which, in many patients, has helped to identify the second
mutation (Kiiski et al. 2016; Zenagui et al. 2018), and also the
development of functional assays for testing the effects on the
protein of missense variants. For example, a nebulin in super
repeat panel reveals stronger actin binding toward the ends of
the super repeat region (Laitila et al. 2019), and how disease-
causing mutations in NEB alter interactions with actin and
tropomyosin (Marttila et al. 2014).

Although mutations in ACTAI are often dominant (and de
novo, although sometimes inherited), a few rare instances of
recessive transmission have also been reported (Nowak et al.
2013). Some of these recessive mutations are null mutations
that result in no production of skeletal actin protein whilst in
others it is present (Nowak et al. 2007; O’Grady et al. 2015).
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Clinical features

The spectrum of clinical phenotypes of nemaline myopathies
is wide, even in individuals with mutations in the same gene,
or in the same family. It ranges from neonates with severe
disease and onset in utero, sometimes with fetal akinesia, to
mild childhood-onset forms (Colombo et al. 2015; Jungbluth
et al. 2018).

Classification of nemaline myopathies

A clinical classification, mainly designed for gene discov-
ery, was defined at an ENMC workshop in 1999 (Table 2;
Wallgren-Pettersson and Laing 2000). Since then, altogether
twelve genes and numerous mutations have been identified,
and it has turned out that genotype—phenotype correla-
tions are weak, or few and far between. Thus, we propose a
revised, simplified classification, based on current knowl-
edge of the spectrum of identified patients with nemaline
myopathy (Table 3).

Among the categories in Table 2, the intermediate form
was designated because there was a difference between
typical (mainstream) nemaline myopathy and this group of
patients, in that their course of the disease was more severe.
This was exemplified by the use of a wheelchair from an
earlier age than may occur in the typical form, where a
wheelchair, if needed at all, is often only used from the pre-
pubertal growth spurt. In other words, it was only possible
to distinguish this category of patient in late childhood. It
has turned out that no specific “intermediate” genes have
been identified; the most common genes, NEB and ACTAI,
may both cause this form. To our knowledge, there are few
if any definite adult-onset cases with a proven genetic cause.

Table 2 Current classification of nemaline myopathies

The rapidly progressive adult-onset form (SLONM) is often
immune-mediated and responsive to treatment (see Schnit-
zler et al. 2017).

Since the current classification was established, addi-
tional novel clinical forms have been described, not fitting
into the current classification. Examples of this are the
“Amish” form caused by mutations in TNNT] with contrac-
tures, tremor and a progressive course (Johnston et al. 2000;
Fox et al. 2018), and the form with slowness of movements
and core-rod histology (Gommans et al. 2002; Sambuughin
et al. 2010; de Winter and Ottenheijm 2017). There have
also been publications describing patients with an unusual
distribution of weakness, such as scapuloperoneal or distal
weakness, or distal arthrogryposis, and it can be argued that
these should be classified as separate entities. However, most
forms of nemaline myopathy have individual variation in the
distribution of weakness, and a number of patients may have
distal contractures early or late in the course of the disease,
so that lines of division are difficult to draw between such
“novel” entities and the forms already described. Thus, we
argue that it is time for a new and simplified classification
of nemaline myopathy, which would be useful for yielding
at least an estimate of prognosis in an individual patient
(Table 3).

The prognosis in the severe form is often grave, but there
have been exceptions, where patients have shown improve-
ment over time (Roig et al. 1987). The typical form often
follows a static or only slowly progressive course, and some
patients have shown improvement, e.g. related to active
physical training. Onset in childhood or at juvenile age often
implies a mild course, while recessively inherited TNNT1
(Amish) nemaline myopathy follows a relentlessly progres-
sive course, with thoracic immobility, restrictive lung dis-
ease and often death in childhood (Johnston et al. 2000; Fox

Severe nemaline myopathy

Intermediate nemaline myopathy

Typical (mainstream, classical) congenital nemaline myopathy
Mild (childhood or juvenile) onset form

Adult-onset forms

”Other” (unusual) forms

Table 3 New proposed classification of nemaline myopathies

Severe nemaline myopathy (with contractures or fractures at birth, or with no respiratory effort or no movements at birth) (ACTAI, NEB,

LMOD-3, KLHLA0, KLHL41, TNNT3, TPM2, TPM3)

Congenital nemaline myopathy (with perinatal onset and milestones delayed but reached) (NEB, ACTAI, CFL-2, TPM2)
Mild (childhood or juvenile onset) nemaline myopathy (ACTA1, NEB, TPM2, TPM3, KBTBD13, MYPN, dominant mutations inTNNT1)

Recessive TNNT1 (Amish) nemaline myopathy

Childhood-onset nemaline myopathy with slowness of movements and core-rod histology (KBTBD13)
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et al. 2018). The dominantly inherited form with slowness
appears to follow a milder course.

Although most patients present with muscle hypotonia,
there are rare patients with muscle hypertonia and a stiff
gait (Marttila et al. 2014; Davidson et al. 2013), thought
to stem from higher than normal calcium sensitivity (Jain
et al. 2012; Donkervoort et al. 2015; Marston 2018). Mus-
cle weakness is usually generalised, with involvement of
the neck flexors, the face and proximal muscles, often with
a later, additional distal involvement. Distal weakness is a
particular presentation in some patients with mutations in
NEB, but rods may not always be a present in their muscle
biopsies (Wallgren-Pettersson et al. 2007). Weakness of res-
piratory muscles is common and an important clinical fea-
ture to monitor regularly and manage according to interna-
tional guidelines (Wallgren-Pettersson et al. 2011). Insidious
onset of hypoventilation is the greatest risk for this group
of patients and the most common cause of death. Thus, in
the absence of expert monitoring of respiratory function,
respiratory insufficiency may ensue suddenly and without
any preceding symptoms (Wallgren-Pettersson et al. 2004).
Extraocular muscles are usually spared, except in patients
with mutations in KLHL40 and LMOD3, who may have oph-
thalmoplegia (Ravenscroft et al. 2013; Yuen et al. 2014).
Cardiac involvement is rare in patients with nemaline myo-
pathy, but has been identified in a few patients with defects
in ACTAI, MYPN or MYOI18B (D’Amico et al. 2006; Kim
et al. 2011; Finsterer and Stollberger 2015; Malfatti et al.
2015; Miyatake et al. 2017). Mutations in TNNT1 encod-
ing troponin T were first identified in homozygous form in
the Amish population, but a few patients of Dutch descent,
and others of non-Amish origin have also been described
(van der Pol et al. 2014; Abdulhagq et al. 2016). Characteris-
tics are tremor and severe progressive contractures, muscle
weakness and atrophy with stiffness and thoracic rigidity. A
dominantly inherited TNNTI mutation causing a different
clinical picture has been reported, with similarities to the
childhood onset form caused by mutations in other genes
(Konersman et al. 2017). A severe clinical picture has been
described in the patient with a homozygous TNNT3 muta-
tion, with contractures, hip dislocation (unusual in nemaline
myopathy) and ventilator dependence until death at the age
of 8 months (Sandaradura et al. 2018). Patients with muta-
tion of KBTDBI3 often have an unusual slowness of muscle
movements due to slow relaxation kinetics, and cores as well
as rods (Gommans et al. 2003; Sambuughin et al. 2010; de
Winter and Ottenheijm 2017). In all forms of nemaline myo-
pathies, creatine kinase levels are usually normal or only
slightly elevated.

Histopathology

The characteristic cytoplasmic nemaline rods that stain red
with the Gomori trichrome technique in nemaline myopa-
thies are usually numerous but the number and distribution
per fibre can be variable (Fig. 1). The number also var-
ies between muscles and there is no apparent correlation
between clinical severity and the number of rods. Rods may
be present in peripheral clusters, often near nuclei, or may
be diffusely distributed, or in lines within fibres (Fig. 1).
They are usually not observed in intrafusal fibres of spindles.
Rods need to be distinguished from other structures that
also stain red with the Gomori trichrome technique, such as
mitochondria and cytoplasmic bodies. In biopsies with very
small fibres, rods may only be apparent with very high power
optics. Examination of resin sections stained with toluidine
blue or with electron microscopy is then helpful. An occa-
sional cytoplasmic body may be observed in a few fibres but
in three severely affected patients with the same missense
ACTAI mutation (p.Asn94Lys), only dense accumulation of
material reported as ‘suggestive of cytoplasmic bodies’ were
seen, but no rods (Donkervoort et al. 2017). In addition to
these patients, rods have not been observed in other patients,
although mutations in genes that cause nemaline myopathy
may be present. Repeat biopsies from a series of patients
with NEB mutations and a distal myopathy did not reveal
rods (Wallgren-Pettersson et al. 2007). Moreover, a family
with progressive scapuloperoneal and distal weakness with
an ACTA I mutation had no rods visible with light or electron
microscopy (Zukosky et al. 2015). Mutations in ACTAI have
also been found in cases with no rods but only cores (Kaindl
et al. 2004). Sampling and variable distribution may also
influence the detection of rods, for example rods may only
be observed in the sample taken for electron microscopy.
Abnormal variation in fibre size is often present and type
1 atrophy or hypotrophy (fibres that have never attained nor-
mal dimensions) is common. Atrophy can be distinguished
from hypotrophy by the presence of redundant basal lamina
associated with atrophic fibres, using electron microscopy.
There may also be hypertrophy of type 2 (fast myosin) fibres.
This size variation may appear as FTD in which type 1 fibres
are 12-25% smaller than type 2 and there are no additional
pathological abnormalities such as rods or cores or central
nuclei. FTD without structural defects can be associated
with defects in several genes that cause a congenital myo-
pathy, including several that are responsible for a nemaline
myopathy (see Table 1) (Clarke 2011). Type 1 predomi-
nance, a common feature in congenital myopathies, is often
present, but is not universal (Malfatti et al. 2014). Antibodies
to myosin isoforms may show co-expression of slow and fast
isoforms in some fibres, and there is often a variable num-
ber of fibres with foetal myosin. In addition, recent studies
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Fig.1 Muscle biopsies from patients with a a mutation in ACTAI
(GOmori trichrome), b heterozygous mutations in NEB (Gomori tri-
chrome), ¢ heterozygous mutations in TNNT! (haematoxylin and
eosin), d, e heterozygous mutations in NEB (slow and fast myosin
respectively), f control with no molecular defects causing a neuro-
muscular disorder (antibody to exon 143 of NEB). Note the variable

of a few cases caused by NEB mutations have revealed a
predominance of fibres with fast myosin and uneven distri-
bution of fibre types in others (Fig. 1). Involvement of type
2/fast fibres is also seen in patients with mutations in the
TNNT3 gene encoding the troponin T isoform of fast fibres
(Sandaradura et al. 2018).

Immunohistochemistry of nebulin does not show a total
absence of protein, although an absence has been reported in
rare patients which was dependent on the mutation and the
antibody used (Sewry et al. 2001; Wallgren-Pettersson et al.
2002). Recent studies with antibodies specific to exons 143
and 144 of nebulin, that are differentially spliced, suggest
that there is developmental regulation of these two exons,
and that exon 143 appears later in myogenesis (Lam et al.
2018). In addition, there is a clear fibre typing pattern with
the antibody to exon 143 that is highly expressed in fibres
with fast myosin (Fig. 1).

Rods are restricted to type 1 fibres in patients with TPM3
mutations, as the protein is only expressed in these fibres,
and in patients expressing no TNNT3 they were reported to
be restricted to type 2 fibres (Sandaradura et al. 2018), but
in most biopsies they are seen in both fibre types. Rods in
most biopsies of nemaline myopathy patients are present in
the cytoplasm but in some cases electron microscopy reveals
both nuclear and cytoplasmic rods, or very occasionally only

@ Springer

number and distribution of nemaline rods in a and b, the pronounced
connective tissue in ¢, the uneven distribution of fibre types in d and
e with several fibres co-expressing both isoforms (*) and the three
intensities of labelling of exon 143 of nebulin in f (most of the darker
fibres express fast myosin)

nuclear rods (Hutchinson et al. 2006; Koy et al. 2007; Miya-
take et al. 2017).

Areas with rods are often devoid of mitochondria, thus
they may appear as core-like areas devoid of oxidative
enzyme staining. Caution in interpretation is then needed.
Sometimes cores and rods, however, may be in separate
fibres or the core-like area lacking oxidative enzymes
may be more extensive than the area with rods (Dubowitz
et al. 2013; Scoto et al. 2013). Muscle biopsies from some
nemaline myopathy patients show both rods and cores with
disrupted myofibrils (Jungbluth et al. 2001; Agrawal et al.
2007; Romero et al. 2009; Dubowitz et al. 2013). Some of
these patients have been classified as having a ‘core-rod
myopathy’ (Hernandez-Lain et al. 2011), but they empha-
sise the overlapping pathological and clinical spectra of
the nemaline myopathies and other congenital myopathies.
Similarly, cap-like structures are regarded as being part of
the histopathological spectrum of nemaline myopathies and
not forming a distinct clinical entity. Although focal periph-
eral cap areas with myofibrillar disruption and thickened Z
lines are associated with defects in the TPM2 and TPM3
genes (Marttila et al. 2014), they have also been described
in association with defects in other genes associated with
nemaline rods, ACTAI, NEB and MYPN. Both cap-like areas
and rods can be present in the same sample and are part of
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the spectrum of Z-line abnormalities in nemaline myopa-
thies (Malfatti et al. 2013).

Muscle fibre necrosis and regeneration are not usually
features of nemaline myopathy. Similarly, fibrosis is rarely
seen but can occasionally be extensive, for example in
patients with mutations in the TNNT1 gene (Fig. 1).

It is rarely possible to identify the defective gene from
histopathological features and few of them are specific.
Areas of accumulation of actin filaments suggest ACTAI as
the cause, although such accumulation has also been seen
in the rare patients with CFL-2 mutations and in an animal
model for this gene defect (Agrawal et al. 2007; Gurniak
et al. 2014). Nuclear rods can occur in nemaline patients
with ACTAI mutations but they have also been observed
in the rare cases of MYPN mutation and in patients with
a myofibrillar myopathy, although the clinical phenotype
of these is not that of a congenital myopathy (Dominguez
Rubio et al. 2016; Miyatake et al. 2017).

All fibres expressing cardiac actin without skeletal actin
is a phenomenon seen in rare patients homozygous for
ACTA1 null mutations (Nowak et al. 2007) but other patients
with recessively inherited ACTAI mutations retain skeletal
actin (O’Grady et al. 2015). Zebra bodies are also part of the
ACTAI pathological spectrum and observed in ACTAI null
patients (Nowak et al. 2007). They defined the original case
of ‘zebra body myopathy’ in whom an ACTAI mutation has
been identified (Sewry et al. 2015). They are not specific to
ACTAI nemaline myopathy, as occasional zebra bodies have
been observed in a variety of disorders. Electron microscopy
of biopsies from patients with KLHL40 mutations shows

Fig. 2 Electron micrographs of
muscle biopsies from patients
with nemaline myopathy caused
by a a mutation in ACTAI, b
homozygous mutation in CFL2,
¢ heterozygous mutations in
KLHIL40 and d LMOD?3. Note
in a the variable size of the
nemaline rods and irregularities
of the Z line, in b the very small
rods and accumulation of thin
actin filaments (*) and in ¢ and
d the similar rectangular shape
of the rods and the fringe-like
filaments attached to many of
them

not only typical rods but also fibres with numerous small,
rectangular rods in fibres with very few myofibrils (Fig. 2).
However, patients with LMOD3 mutations can also show
similar rods (Fig. 2; Malfatti and Romero 2016). LMOD3
biopsies have been reported to show rods with a fringe of
myofibrils attached (Yuen et al. 2014), but we have observed
similar rods associated with other nemaline myopathy gene
mutations, in particular KLHL40 (Fig. 2). Pairs of rods con-
nected by thin filaments were also present in a patient with a
homozygous LMOD3 mutation (Michael et al. 2019).

Animal and in vitro models of nemaline
myopathy

To increase the understanding of the pathogenetic mecha-
nisms leading to nemaline myopathy, several avenues of
research have been opened. Animal and in vitro models
of nemaline myopathy, in particular mouse and zebra fish
models are being explored (Table 4). Moreover, functional
studies are being performed in relation to specific gene
mutations and their proteins, in vitro contraction studies of
muscle fibres in relation to altered actin and tropomyosin
molecules has identified differences in calcium sensitivity
as a mechanism by which disruption of sarcomeric proteins
leads to muscle weakness (Marston et al. 2013; Chan et al.
2016; de Winter and Ottenheijm 2017). Efforts are con-
centrating on the most commonly mutated genes causing
nemaline myopathy, ACTAI and NEB, and descriptions have
been published of a variety of knock-in and knock-out mouse

@ Springer
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Table 4 (continued)

Additional features

In vitro force

Nemaline rods/Z-line features

Fibre type changes

Severity

NM mouse model (publica-

tion)

>50% reduction in hind limb  Complete disorganiza-

Rods, thickened Z lines,

(NR)

Severe/lethal

KLHILA40-KO (Garg et al.

2014)

tion in subset of fibres.

strength

Z-line streaming

Almost complete absence
of LMOD3, nebulin 50%

reduced. Increased expres-
sion of sarcomere genes.

K1h140 + (heterozygous) mice
also had reduced LMOD3,

without growth defects or

early lethality

Aggregation and down-regu-

(NR)

Rods, Z-line streaming

(NR)

Severe/lethal (Het normal)

KLHIA41-KO (Ramirez-Mar-

tinez et al. 2017)

lation of nebulin and only a
slight decrease in LMOD3

protein but not RNA, decrease

in ssTNT and 8-TPM

NR not reported, ktr rate of tension redevelopment

models of causative mutations in these genes (Nowak et al.
2013; de Winter and Ottenheijm 2017). In addition, there
are also mouse models of the more rarely affected genes
CFL-2,TPM2, TPM3, TNNTI1, KLHILA0, KLHL41, LMOD3
(see below).

Many of the mouse models have shown early lethality,
precluding their use as testbeds for experimental therapies,
while others are less severely affected. An ideal model for
the most common (mainstream or typical) form of nema-
line myopathy caused by two different mutations in NEB is
being developed (Laitila et al. submitted for publication).
Mice devoid of nebulin, and showing early lethality, mir-
ror the human disease only to a limited extent and do not
consistently show rods (Bang et al. 2006; Witt et al. 2006).
As no human patients with mutations causing total absence
of nebulin have been reported, and since it has been thought
that nebulin works as a ruler for thin filament length and
maintaining Z-line structure (Ottenheijm et al. 2012), it is
remarkable that the knock-out mice do form sarcomeres
despite the absence of nebulin.

In a mouse model of TPM3 nemaline myopathy (Gineste
et al. 2014), the onset of muscle weakness, caused at least
partially by hypotrophy of type 1 fibers, appeared to be
delayed by compensatory hypertrophy of type 2 fibers, as
in human patients.

In Tnntl mice, depicting the “Amish” form of nemaline
myopathy, there was severe weakness of the diaphragm (Wei
et al. 2014), as in human patients, and an increase in fast
2B fibre types, but this myosin isoform is not expressed in
human limb muscle.

A mouse model of CFL-2 nemaline myopathy showed
severe weakness, small body size and early lethality. Histo-
logically, there was actin accumulation (as seen in humans
with CFL-2 mutations) whereas nemaline bodies were small
and only seen on EM in severely disrupted fibres (Agrawal
et al. 2012; Gurniak et al. 2014).

Mouse models of LMOD3 nemaline myopathy showed
atrophy of fibres with fast myosin, a 50% reduction of grip
strength (Tian et al. 2015), small body size and normal lifes-
pan (Cenik et al. 2015).

Mouse models of KLHI40 and KLHL41 nemaline myopa-
thy showed early lethality (within days to weeks from birth).
KLHL40-deficent mice had a secondary reduction in nebu-
lin and LMOD3 whereas the KLHL41 knock-out mice only
showed reduction of nebulin (Garg et al. 2014; Ramirez-
Martinez et al. 2017). The rectangluar rods seen in human
patients with nemaline myopathy caused by mutations in
these two genes were not reported in the K/h/40 model but
they were apparent in the K/hi41 knock-out mouse.
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Development of therapies for nemaline
myopathies

There is currently no curative treatment for patients with
nemaline myopathy, but much can be achieved by a multi-
disciplinary approach, addressing the management of symp-
toms and maintaining muscle strength, mobility, joint move-
ments, and independence in the activities of daily living
through exercise and physiotherapy. Particularly important
is regular monitoring of respiratory function and addressing
orthopaedic problems, especially any scoliosis (Wallgren-
Pettersson et al. 2004; Wang et al. 2012).

Tyrosine as a treatment for nemaline myopathy has been
advocated, but an apparently beneficial effect in a limited
clinical trial of dietary tyrosine supplementation (Ryan
et al. 2008) was not supported up by studies of the nemaline
myopathy TgACTA 1286 mouse model, nor the zebrafish
model based on the same mutation (Messineo et al. 2018;
Sztal et al. 2018a). Other amino acid supplements tested in
zebrafish also showed no clear positive effect (Sztal et al.
2018a). The improvement in skeletal Actal knock-out mice
through upregulation of cardiac actin (Nowak et al. 2009)
raises hopes for therapeutic implications for patients, but
requires very early diagnosis. Another therapeutic option
to explore is increasing the proportion of normal skeletal
actin in heterozygous patients (Ravenscroft et al. 201 1a, b).
Interestingly, a zebrafish morpholino knock-down model
of ACTAI nemaline myopathy showed a milder phenotype
because of a transcriptional upregulation of an actin paral-
ogue, i.e. through genetic compensation (Sztal et al. 2018b).

Experimental trials with myostatin in two mouse models
of Actal nemaline myopathy did not yield stronger mice, but
in the TeACTA 1°2%%C mouse model the body size increased
(Tinklenberg et al. 2018) and a similar trial in the Acta ™Y
mouse model led to both larger size and longer life-span
(Tinklenberg et al. 2016). The use of a myosin transgene
to improve muscle function in an Actal mouse model for
nemaline myopathy (Lindqvist et al. 2016) and the use of
calcium sensitizers to improve diaphragm function (Ochala
2010; Doorduin et al. 2012) raise interesting perspectives
for the future.

Conclusions

Our increasing understanding of the pathogenetic mecha-
nisms, and the lines of therapeutic options explored hitherto
make it timely to plan a natural history study of nemaline
myopathy and an international patient registry. In doing so,
the international collaborative effort will pave the way for
therapeutic trials, once non-hazardous and potentially effec-
tive treatment modalities become available.

@ Springer
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