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Abstract
Nemaline myopathies are a heterogenous group of congenital myopathies caused by de novo, dominantly or recessively 
inherited mutations in at least twelve genes. The genes encoding skeletal α-actin (ACTA1) and nebulin (NEB) are the com-
monest genetic cause. Most patients have congenital onset characterized by muscle weakness and hypotonia, but the spectrum 
of clinical phenotypes is broad, ranging from severe neonatal presentations to onset of a milder disorder in childhood. Most 
patients with adult onset have an autoimmune-related myopathy with a progressive course. The wide application of mas-
sively parallel sequencing methods is increasing the number of known causative genes and broadening the range of clinical 
phenotypes. Nemaline myopathies are identified by the presence of structures that are rod-like or ovoid in shape with electron 
microscopy, and with light microscopy stain red with the modified Gömöri trichrome technique. These rods or nemaline 
bodies are derived from Z lines (also known as Z discs or Z disks) and have a similar lattice structure and protein content. 
Their shape in patients with mutations in KLHL40 and LMOD3 is distinctive and can be useful for diagnosis. The number and 
distribution of nemaline bodies varies between fibres and different muscles but does not correlate with severity or prognosis. 
Additional pathological features such as caps, cores and fibre type disproportion are associated with the same genes as those 
known to cause the presence of rods. Animal models are advancing the understanding of the effects of various mutations in 
different genes and paving the way for the development of therapies, which at present only manage symptoms and are aimed 
at maintaining muscle strength, joint mobility, ambulation, respiration and independence in the activities of daily living.
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Introduction

Nemaline myopathies are a group of congenital myopathies 
defined by structures known as nemaline rods or nemaline 
bodies that stain red with the modified Gömöri trichrome 
technique (Dubowitz et al. 2013, 2019 in press). The spec-
trum of clinical phenotypes is wide and mutations in many 
genes (at least 12) are known to be associated with their 

presence in muscle biopsies. Additional pathological fea-
tures such as cores, caps and fibre type disproportion (FTD) 
as well as the presence of only a few fibres with rods overlap 
with other congenital myopathies and challenge the clas-
sification of all congenital myopathies. Although structural 
features such as rods can be identified in a muscle biopsy, 
it is the combination of clinical, histological and genetic 
features that define a disease entity.

Histopathological features have a major role in directing 
molecular analysis (Dubowitz et al. 2013), but the increas-
ing use of gene panels and exome sequencing is identifying 
novel genes and expanding clinical phenotypes associated 
with known genetic defects that result in the formation of 
rods. Nemaline rods are not specific for nemaline myopa-
thies and may also occur at normal myotendinous junctions, 
in normal extra-ocular (eye) muscles, in ageing muscle and 
occasionally in a variety of other inherited or acquired neu-
romuscular and other disorders (see Vandebrouck et al. 
2010). In vitro studies of cultured cells have shown that rods 
can result from metabolic stress by depletion of adenosine 
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triphosphate (Vandebrouck et al. 2010). The diagnosis of 
nemaline myopathies relies on a multidisciplinary approach 
with careful clinical, pathological and genetic correlations. 
Muscle magnetic resonance imaging (MRI) has also become 
an important contributor to diagnosis and highlights specific 
patterns of muscle involvement associated with particular 
mutated genes (Jungbluth 2017).

The term ‘nemaline myopathy’ is usually applied to 
the group of muscle disorders presenting at birth or early 
childhood with hypotonia and muscle weakness, but cases 
of adult onset have also been reported, including those 
referred to as sporadic late-onset nemaline myopathy, many 
of which are of autoimmune origin, or associated with HIV 
(see Schnitzler et al. 2017). In addition, some patients may 
not present until adulthood, but careful enquiry and clinical 
examination often identifies problems in childhood, albeit 
mild. This article focuses on the congenital and childhood 
onset forms.

What is a nemaline rod?

Nemaline rods were identified in the 1950s and 1960s in 
muscle biopsies from children with hypotonia (Conen et al. 
1963; Shy et al. 1963; Schnell et al. 2000). Conen et al. 
(1963) described the appearance of rod-like structures in 
the biopsy of a child with hypotonia as ‘myogranules’ which 
would now be described as rod bodies. The term ‘nemaline 
myopathy’ was suggested by Shy and co-workers after the 
Greek word for thread, nema, as it was not clear whether the 
structures were separate rod-like structures or an undulating 
thread-like structure.

Rods stain red with the modified Gömöri trichrome tech-
nique but electron microscopy may be needed to distinguish 
them from mitochondria, which also stain red, especially in 
very small muscle fibres in neonates. Rods are considered to 
be derived from Z lines as they can show continuity with Z 
lines; they have a similar lattice structure and express similar 
proteins, including α-actinin, actin, tropomyosin, myotilin, 
γ-filamin, cofilin-2, telethonin and nebulin. Desmin is not 
present in the rods themselves but may be observed at their 
periphery. In some fibres in human muscle biopsies and in 
some animal models, the rod-like structures may appear as 
an integral part of the sarcomere, and as thickened Z lines 
compared with the normal width, which is usually fixed, 
according to the muscle fibre type (Luther 2009).

It is not yet clear how rods form, but myofibrillar rear-
rangement is considered to result in several abnormalities 
of the Z lines (Yu et al. 2004). Rods can be a secondary 
response to metabolic stress. Numerous rods were observed 
in a few patients with Complex I deficiency (Lamont et al. 
2004) and in both muscle and non-muscle cells in vitro, they 
can be induced by a variety of substances that cause energy 

shortage, including ATP depletion and heat shock proteins 
(Vandebrouck et al. 2010). This in vitro study suggested 
that rods formed under different conditions vary with regard 
to their cofilin and α-actinin content. In addition, specific 
ACTA1 mutations affected the localization of rods (nuclear 
versus cytoplasmic).

Genetics

Nemaline myopathy may be caused by mutations in at least 
12 genes (Table 1) and some cases are still molecularly 
unresolved. A recently identified gene is TNNT3, the gene 
encoding fast skeletal troponin 3 (Sandaradura et al. 2018). 
In addition, a homozygous mutation in MYO18B, encoding 
an unconventional myosin, has been reported as a possible 
cause of nemaline myopathy in an atypical case (Malfatti 
et al. 2015). Nemaline rods were also observed in associa-
tion with a mutation in MYO18B but the patient also had 
Klippel–Feil anomaly, dysmorphic features, microcephaly 
and short stature (Alazami et al. 2015). Furthermore, in 
experimental models, myofibre assembly failed in a way not 
characteristic of nemaline myopathy biopsies (Berger et al. 
2017; Gurung et al. 2017) but animal models often do not 
recapitulate human diseases precisely.

Other genes are also associated with the presence of 
nemaline rods or cap-like areas, but additional structural and 
clinical features are present in these patients and thus, they 
do not fulfil the criteria of nemaline myopathy as outlined 
at a European Neuromuscular Centre workshop (Wallgren-
Pettersson et al. 1998), although publications may refer to 
them as such. For example RYR1 and TTN, encoding the 
ryanodine receptor 1 and titin, respectively, (Sewry and 
Wallgren-Pettersson 2017; Oates et al. 2018), EXOSC3 that 
encodes a component of the human RNA exosome complex 
(Pinto et al. 2019), PPA2 that encodes the mitochondrial 
pyrophosphatase (Guimier et al. 2016), and RYR3 encoding 
the ryanodine receptor 3 (Nilipour et al. 2018).

The commonest forms of nemaline myopathy are caused 
by mutations in the genes encoding skeletal muscle α-actin 
(ACTA1) and nebulin (NEB). Several of the other causative 
genes have only been shown to be mutated in a few families 
each, although the wide application of novel gene sequenc-
ing methods is increasing the number of patients with veri-
fied genetic diagnoses (Wallgren-Pettersson et al. 2011; 
Malfatti and Romero 2016). Most of the ACTA1 mutations 
are heterozygous dominantly inherited mutations, often aris-
ing de novo. NEB mutations are usually recessively inher-
ited, but recently, the first dominantly inherited mutation 
was identified in NEB, causing a distal form of nemaline 
myopathy (Kiiski et al. 2019). A great number of different 
mutations have been identified in these two genes (Sparrow 
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et al. 2003; Feng and Marston 2009; Nowak et al. 2013; 
Lehtokari et al. 2014; Moreno et al. 2017).

Nine of the genes for nemaline myopathy encode proteins 
of the sarcomere, in addition, MYO18B is also a sarcom-
eric protein localized to the Z lines (Ajima et al. 2008) and 
may yet prove to be a causative gene of nemaline myopathy, 
although the phenotype of affected patients is different from 
others reported. The other three genes encode Kelch-like 
proteins, a large family of proteins possibly associated with 
thin filament regulation (Wallgren-Pettersson et al. 2011; 
Gupta and Beggs 2014; Malfatti and Romero 2016).

Nemaline myopathies occur all over the world. Some 
mutations have arisen as founder mutations, such as the dele-
tion of the entire exon 55 of NEB in persons of Ashkenazi 
Jewish ancestry, with a world-wide distribution (Anderson 
et al. 2004; Lehtokari et al. 2009), and the TNNT1 muta-
tion (E180X in exon 11 causing a stop codon) in the Amish 
population (Johnston et al. 2000). Probable founder muta-
tions have also been identified in TPM3 (deletion of the 
first nucleotide of the last exon, c.913delA) in the Turkish 
population (Lehtokari et al. 2008), KLHL40 (c.1582G>A) 
in the Japanese, Kurdish and Turkish populations (Raven-
scroft et al. 2013), ACTA1 (p.Asp181fsX10) in the Pakistani 
population (Nowak et al. 2007), KBTBD13 (c.1222C>T) in 
the Low Countries of The Netherlands and Belgium (Sam-
buughin et al. 2010), three mutations in NEB (p.Ser6366Ile 
in ex122, p.Thr7382Pro in ex151, and p.Thr6350Profs*4 in 
ex122) in the Finnish population (Lehtokari et al. 2014) and 
in LMOD3 (c.1648c>T) in German and Austrian popula-
tions (Schatz et al. 2018).

Currently, many mutations are identified by screening pan-
els of genes known to be associated with nemaline myopathy. 

There is often difficulty, however, with mutation detection, 
especially in NEB. It is an extremely large gene (183 exons), 
giving rise to many isoforms in both skeletal muscle and brain 
(Laitila et al. 2012). The gene has multiple splice sites and a 
triplicate repeat region, where the most common large variants 
of the gene are found (Kiiski et al. 2016). Identifying both 
mutations in NEB in a patient may also be difficult because 
most patients have two private mutations anywhere along the 
length of the gene, and some of them are easily missed using 
massive parallel sequencing methods (Kiiski et al. 2016). 
Determining the pathogenicity of especially missense vari-
ants, which are numerous in NEB, constitutes a further diag-
nostic challenge. Recent advances include a targeted array 
which, in many patients, has helped to identify the second 
mutation (Kiiski et al. 2016; Zenagui et al. 2018), and also the 
development of functional assays for testing the effects on the 
protein of missense variants. For example, a nebulin in super 
repeat panel reveals stronger actin binding toward the ends of 
the super repeat region (Laitila et al. 2019), and how disease-
causing mutations in NEB alter interactions with actin and 
tropomyosin (Marttila et al. 2014).

Although mutations in ACTA1 are often dominant (and de 
novo, although sometimes inherited), a few rare instances of 
recessive transmission have also been reported (Nowak et al. 
2013). Some of these recessive mutations are null mutations 
that result in no production of skeletal actin protein whilst in 
others it is present (Nowak et al. 2007; O’Grady et al. 2015).

Table 1   Genetic causes of nemaline myopathies

AR autosomal recessive, AD autosomal dominant, FTD fibre type disproportion
a MYOD18B is not yet clearly identified as a ‘nemaline myopathy’ as it was associated with complex phenotypes, not typical of nemaline myopa-
thy

Gene Inheritance Associated features in addition to cytoplasmic nemaline rods

ACTA1 de novo AD, AR, AD Actin accumulation, nuclear rods, cores, cores + rods, zebra bodies, FTD
NEB AR, (AD) Distal myopathy, cores + rods, FTD
TPM2 AD, de novo AD, (AR) FTD, caps, distal arthrogryposis, Escobar syndrome
TPM3 AD, de novo AD, AR FTD, caps
KBTBD13 AD Slow movement, cores + rods
CFL-2 AR Ophthalmoplegia, cores, actin accumulation
KLHL40 AR Ophthalmoplegia, rectangular rods with fringes
KLHL41 AR No cores, typical pathology
LMOD3 AR Rectangular rods with fringes
MYPN AR Cardiomyopathy, nuclear rods, caps
TNNT1 AR, (AD) Excess connective tissue, contractures
TNNT3 AR Arthrogryposis, excess connective tissue
MYO18Ba AR Cardiomyopathy, dysmorphism, Klippel–Feil anomaly
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Clinical features

The spectrum of clinical phenotypes of nemaline myopathies 
is wide, even in individuals with mutations in the same gene, 
or in the same family. It ranges from neonates with severe 
disease and onset in utero, sometimes with fetal akinesia, to 
mild childhood-onset forms (Colombo et al. 2015; Jungbluth 
et al. 2018).

Classification of nemaline myopathies

A clinical classification, mainly designed for gene discov-
ery, was defined at an ENMC workshop in 1999 (Table 2; 
Wallgren-Pettersson and Laing 2000). Since then, altogether 
twelve genes and numerous mutations have been identified, 
and it has turned out that genotype–phenotype correla-
tions are weak, or few and far between. Thus, we propose a 
revised, simplified classification, based on current knowl-
edge of the spectrum of identified patients with nemaline 
myopathy (Table 3).

Among the categories in Table 2, the intermediate form 
was designated because there was a difference between 
typical (mainstream) nemaline myopathy and this group of 
patients, in that their course of the disease was more severe. 
This was exemplified by the use of a wheelchair from an 
earlier age than may occur in the typical form, where a 
wheelchair, if needed at all, is often only used from the pre-
pubertal growth spurt. In other words, it was only possible 
to distinguish this category of patient in late childhood. It 
has turned out that no specific “intermediate” genes have 
been identified; the most common genes, NEB and ACTA1, 
may both cause this form. To our knowledge, there are few 
if any definite adult-onset cases with a proven genetic cause. 

The rapidly progressive adult-onset form (SLONM) is often 
immune-mediated and responsive to treatment (see Schnit-
zler et al. 2017).

Since the current classification was established, addi-
tional novel clinical forms have been described, not fitting 
into the current classification. Examples of this are the 
“Amish” form caused by mutations in TNNT1 with contrac-
tures, tremor and a progressive course (Johnston et al. 2000; 
Fox et al. 2018), and the form with slowness of movements 
and core-rod histology (Gommans et al. 2002; Sambuughin 
et al. 2010; de Winter and Ottenheijm 2017). There have 
also been publications describing patients with an unusual 
distribution of weakness, such as scapuloperoneal or distal 
weakness, or distal arthrogryposis, and it can be argued that 
these should be classified as separate entities. However, most 
forms of nemaline myopathy have individual variation in the 
distribution of weakness, and a number of patients may have 
distal contractures early or late in the course of the disease, 
so that lines of division are difficult to draw between such 
“novel” entities and the forms already described. Thus, we 
argue that it is time for a new and simplified classification 
of nemaline myopathy, which would be useful for yielding 
at least an estimate of prognosis in an individual patient 
(Table 3).

The prognosis in the severe form is often grave, but there 
have been exceptions, where patients have shown improve-
ment over time (Roig et al. 1987). The typical form often 
follows a static or only slowly progressive course, and some 
patients have shown improvement, e.g. related to active 
physical training. Onset in childhood or at juvenile age often 
implies a mild course, while recessively inherited TNNT1 
(Amish) nemaline myopathy follows a relentlessly progres-
sive course, with thoracic immobility, restrictive lung dis-
ease and often death in childhood (Johnston et al. 2000; Fox 

Table 2   Current classification of nemaline myopathies

Severe nemaline myopathy
Intermediate nemaline myopathy
Typical (mainstream, classical) congenital nemaline myopathy
Mild (childhood or juvenile) onset form
Adult-onset forms
”Other” (unusual) forms

Table 3   New proposed classification of nemaline myopathies

Severe nemaline myopathy (with contractures or fractures at birth, or with no respiratory effort or no movements at birth) (ACTA1, NEB, 
LMOD-3, KLHL40, KLHL41, TNNT3, TPM2, TPM3)

Congenital nemaline myopathy (with perinatal onset and milestones delayed but reached) (NEB, ACTA1, CFL-2, TPM2)
Mild (childhood or juvenile onset) nemaline myopathy (ACTA1, NEB, TPM2, TPM3, KBTBD13, MYPN, dominant mutations inTNNT1)
Recessive TNNT1 (Amish) nemaline myopathy
Childhood-onset nemaline myopathy with slowness of movements and core-rod histology (KBTBD13)
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et al. 2018). The dominantly inherited form with slowness 
appears to follow a milder course.

Although most patients present with muscle hypotonia, 
there are rare patients with muscle hypertonia and a stiff 
gait (Marttila et al. 2014; Davidson et al. 2013), thought 
to stem from higher than normal calcium sensitivity (Jain 
et al. 2012; Donkervoort et al. 2015; Marston 2018). Mus-
cle weakness is usually generalised, with involvement of 
the neck flexors, the face and proximal muscles, often with 
a later, additional distal involvement. Distal weakness is a 
particular presentation in some patients with mutations in 
NEB, but rods may not always be a present in their muscle 
biopsies (Wallgren-Pettersson et al. 2007). Weakness of res-
piratory muscles is common and an important clinical fea-
ture to monitor regularly and manage according to interna-
tional guidelines (Wallgren-Pettersson et al. 2011). Insidious 
onset of hypoventilation is the greatest risk for this group 
of patients and the most common cause of death. Thus, in 
the absence of expert monitoring of respiratory function, 
respiratory insufficiency may ensue suddenly and without 
any preceding symptoms (Wallgren-Pettersson et al. 2004). 
Extraocular muscles are usually spared, except in patients 
with mutations in KLHL40 and LMOD3, who may have oph-
thalmoplegia (Ravenscroft et al. 2013; Yuen et al. 2014). 
Cardiac involvement is rare in patients with nemaline myo-
pathy, but has been identified in a few patients with defects 
in ACTA1, MYPN or MYO18B (D’Amico et al. 2006; Kim 
et al. 2011; Finsterer and Stollberger 2015; Malfatti et al. 
2015; Miyatake et al. 2017). Mutations in TNNT1 encod-
ing troponin T were first identified in homozygous form in 
the Amish population, but a few patients of Dutch descent, 
and others of non-Amish origin have also been described 
(van der Pol et al. 2014; Abdulhaq et al. 2016). Characteris-
tics are tremor and severe progressive contractures, muscle 
weakness and atrophy with stiffness and thoracic rigidity. A 
dominantly inherited TNNT1 mutation causing a different 
clinical picture has been reported, with similarities to the 
childhood onset form caused by mutations in other genes 
(Konersman et al. 2017). A severe clinical picture has been 
described in the patient with a homozygous TNNT3 muta-
tion, with contractures, hip dislocation (unusual in nemaline 
myopathy) and ventilator dependence until death at the age 
of 8 months (Sandaradura et al. 2018). Patients with muta-
tion of KBTDB13 often have an unusual slowness of muscle 
movements due to slow relaxation kinetics, and cores as well 
as rods (Gommans et al. 2003; Sambuughin et al. 2010; de 
Winter and Ottenheijm 2017). In all forms of nemaline myo-
pathies, creatine kinase levels are usually normal or only 
slightly elevated.

Histopathology

The characteristic cytoplasmic nemaline rods that stain red 
with the Gömöri trichrome technique in nemaline myopa-
thies are usually numerous but the number and distribution 
per fibre can be variable (Fig. 1). The number also var-
ies between muscles and there is no apparent correlation 
between clinical severity and the number of rods. Rods may 
be present in peripheral clusters, often near nuclei, or may 
be diffusely distributed, or in lines within fibres (Fig. 1). 
They are usually not observed in intrafusal fibres of spindles. 
Rods need to be distinguished from other structures that 
also stain red with the Gömöri trichrome technique, such as 
mitochondria and cytoplasmic bodies. In biopsies with very 
small fibres, rods may only be apparent with very high power 
optics. Examination of resin sections stained with toluidine 
blue or with electron microscopy is then helpful. An occa-
sional cytoplasmic body may be observed in a few fibres but 
in three severely affected patients with the same missense 
ACTA1 mutation (p.Asn94Lys), only dense accumulation of 
material reported as ‘suggestive of cytoplasmic bodies’ were 
seen, but no rods (Donkervoort et al. 2017). In addition to 
these patients, rods have not been observed in other patients, 
although mutations in genes that cause nemaline myopathy 
may be present. Repeat biopsies from a series of patients 
with NEB mutations and a distal myopathy did not reveal 
rods (Wallgren-Pettersson et al. 2007). Moreover, a family 
with progressive scapuloperoneal and distal weakness with 
an ACTA1 mutation had no rods visible with light or electron 
microscopy (Zukosky et al. 2015). Mutations in ACTA1 have 
also been found in cases with no rods but only cores (Kaindl 
et al. 2004). Sampling and variable distribution may also 
influence the detection of rods, for example rods may only 
be observed in the sample taken for electron microscopy.

Abnormal variation in fibre size is often present and type 
1 atrophy or hypotrophy (fibres that have never attained nor-
mal dimensions) is common. Atrophy can be distinguished 
from hypotrophy by the presence of redundant basal lamina 
associated with atrophic fibres, using electron microscopy. 
There may also be hypertrophy of type 2 (fast myosin) fibres. 
This size variation may appear as FTD in which type 1 fibres 
are 12–25% smaller than type 2 and there are no additional 
pathological abnormalities such as rods or cores or central 
nuclei. FTD without structural defects can be associated 
with defects in several genes that cause a congenital myo-
pathy, including several that are responsible for a nemaline 
myopathy (see Table 1) (Clarke 2011). Type 1 predomi-
nance, a common feature in congenital myopathies, is often 
present, but is not universal (Malfatti et al. 2014). Antibodies 
to myosin isoforms may show co-expression of slow and fast 
isoforms in some fibres, and there is often a variable num-
ber of fibres with foetal myosin. In addition, recent studies 
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of a few cases caused by NEB mutations have revealed a 
predominance of fibres with fast myosin and uneven distri-
bution of fibre types in others (Fig. 1). Involvement of type 
2/fast fibres is also seen in patients with mutations in the 
TNNT3 gene encoding the troponin T isoform of fast fibres 
(Sandaradura et al. 2018).

Immunohistochemistry of nebulin does not show a total 
absence of protein, although an absence has been reported in 
rare patients which was dependent on the mutation and the 
antibody used (Sewry et al. 2001; Wallgren-Pettersson et al. 
2002). Recent studies with antibodies specific to exons 143 
and 144 of nebulin, that are differentially spliced, suggest 
that there is developmental regulation of these two exons, 
and that exon 143 appears later in myogenesis (Lam et al. 
2018). In addition, there is a clear fibre typing pattern with 
the antibody to exon 143 that is highly expressed in fibres 
with fast myosin (Fig. 1).

Rods are restricted to type 1 fibres in patients with TPM3 
mutations, as the protein is only expressed in these fibres, 
and in patients expressing no TNNT3 they were reported to 
be restricted to type 2 fibres (Sandaradura et al. 2018), but 
in most biopsies they are seen in both fibre types. Rods in 
most biopsies of nemaline myopathy patients are present in 
the cytoplasm but in some cases electron microscopy reveals 
both nuclear and cytoplasmic rods, or very occasionally only 

nuclear rods (Hutchinson et al. 2006; Koy et al. 2007; Miya-
take et al. 2017).

Areas with rods are often devoid of mitochondria, thus 
they may appear as core-like areas devoid of oxidative 
enzyme staining. Caution in interpretation is then needed. 
Sometimes cores and rods, however, may be in separate 
fibres or the core-like area lacking oxidative enzymes 
may be more extensive than the area with rods (Dubowitz 
et al. 2013; Scoto et al. 2013). Muscle biopsies from some 
nemaline myopathy patients show both rods and cores with 
disrupted myofibrils (Jungbluth et al. 2001; Agrawal et al. 
2007; Romero et al. 2009; Dubowitz et al. 2013). Some of 
these patients have been classified as having a ‘core-rod 
myopathy’ (Hernandez-Lain et al. 2011), but they empha-
sise the overlapping pathological and clinical spectra of 
the nemaline myopathies and other congenital myopathies. 
Similarly, cap-like structures are regarded as being part of 
the histopathological spectrum of nemaline myopathies and 
not forming a distinct clinical entity. Although focal periph-
eral cap areas with myofibrillar disruption and thickened Z 
lines are associated with defects in the TPM2 and TPM3 
genes (Marttila et al. 2014), they have also been described 
in association with defects in other genes associated with 
nemaline rods, ACTA1, NEB and MYPN. Both cap-like areas 
and rods can be present in the same sample and are part of 

Fig. 1   Muscle biopsies from patients with a a mutation in ACTA1 
(Gӧmӧri trichrome), b heterozygous mutations in NEB (Gӧmӧri tri-
chrome), c heterozygous mutations in TNNT1 (haematoxylin and 
eosin), d, e heterozygous mutations in NEB (slow and fast myosin 
respectively), f control with no molecular defects causing a neuro-
muscular disorder (antibody to exon 143 of NEB). Note the variable 

number and distribution of nemaline rods in a and b, the pronounced 
connective tissue in c, the uneven distribution of fibre types in d and 
e with several fibres co-expressing both isoforms (*) and the three 
intensities of labelling of exon 143 of nebulin in f (most of the darker 
fibres express fast myosin)
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the spectrum of Z-line abnormalities in nemaline myopa-
thies (Malfatti et al. 2013).

Muscle fibre necrosis and regeneration are not usually 
features of nemaline myopathy. Similarly, fibrosis is rarely 
seen but can occasionally be extensive, for example in 
patients with mutations in the TNNT1 gene (Fig. 1).

It is rarely possible to identify the defective gene from 
histopathological features and few of them are specific. 
Areas of accumulation of actin filaments suggest ACTA1 as 
the cause, although such accumulation has also been seen 
in the rare patients with CFL-2 mutations and in an animal 
model for this gene defect (Agrawal et al. 2007; Gurniak 
et al. 2014). Nuclear rods can occur in nemaline patients 
with ACTA1 mutations but they have also been observed 
in the rare cases of MYPN mutation and in patients with 
a myofibrillar myopathy, although the clinical phenotype 
of these is not that of a congenital myopathy (Dominguez 
Rubio et al. 2016; Miyatake et al. 2017).

All fibres expressing cardiac actin without skeletal actin 
is a phenomenon seen in rare patients homozygous for 
ACTA1 null mutations (Nowak et al. 2007) but other patients 
with recessively inherited ACTA1 mutations retain skeletal 
actin (O’Grady et al. 2015). Zebra bodies are also part of the 
ACTA1 pathological spectrum and observed in ACTA1 null 
patients (Nowak et al. 2007). They defined the original case 
of ‘zebra body myopathy’ in whom an ACTA1 mutation has 
been identified (Sewry et al. 2015). They are not specific to 
ACTA1 nemaline myopathy, as occasional zebra bodies have 
been observed in a variety of disorders. Electron microscopy 
of biopsies from patients with KLHL40 mutations shows 

not only typical rods but also fibres with numerous small, 
rectangular rods in fibres with very few myofibrils (Fig. 2). 
However, patients with LMOD3 mutations can also show 
similar rods (Fig. 2; Malfatti and Romero 2016). LMOD3 
biopsies have been reported to show rods with a fringe of 
myofibrils attached (Yuen et al. 2014), but we have observed 
similar rods associated with other nemaline myopathy gene 
mutations, in particular KLHL40 (Fig. 2). Pairs of rods con-
nected by thin filaments were also present in a patient with a 
homozygous LMOD3 mutation (Michael et al. 2019).

Animal and in vitro models of nemaline 
myopathy

To increase the understanding of the pathogenetic mecha-
nisms leading to nemaline myopathy, several avenues of 
research have been opened. Animal and in vitro models 
of nemaline myopathy, in particular mouse and zebra fish 
models are being explored (Table 4). Moreover, functional 
studies are being performed in relation to specific gene 
mutations and their proteins, in vitro contraction studies of 
muscle fibres in relation to altered actin and tropomyosin 
molecules has identified differences in calcium sensitivity 
as a mechanism by which disruption of sarcomeric proteins 
leads to muscle weakness (Marston et al. 2013; Chan et al. 
2016; de Winter and Ottenheijm 2017). Efforts are con-
centrating on the most commonly mutated genes causing 
nemaline myopathy, ACTA1 and NEB, and descriptions have 
been published of a variety of knock-in and knock-out mouse 

Fig. 2   Electron micrographs of 
muscle biopsies from patients 
with nemaline myopathy caused 
by a a mutation in ACTA1, b 
homozygous mutation in CFL2, 
c heterozygous mutations in 
KLHL40 and d LMOD3. Note 
in a the variable size of the 
nemaline rods and irregularities 
of the Z line, in b the very small 
rods and accumulation of thin 
actin filaments (*) and in c and 
d the similar rectangular shape 
of the rods and the fringe-like 
filaments attached to many of 
them
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models of causative mutations in these genes (Nowak et al. 
2013; de Winter and Ottenheijm 2017). In addition, there 
are also mouse models of the more rarely affected genes 
CFL-2, TPM2, TPM3, TNNT1, KLHL40, KLHL41, LMOD3 
(see below).

Many of the mouse models have shown early lethality, 
precluding their use as testbeds for experimental therapies, 
while others are less severely affected. An ideal model for 
the most common (mainstream or typical) form of nema-
line myopathy caused by two different mutations in NEB is 
being developed (Laitila et al. submitted for publication). 
Mice devoid of nebulin, and showing early lethality, mir-
ror the human disease only to a limited extent and do not 
consistently show rods (Bang et al. 2006; Witt et al. 2006). 
As no human patients with mutations causing total absence 
of nebulin have been reported, and since it has been thought 
that nebulin works as a ruler for thin filament length and 
maintaining Z-line structure (Ottenheijm et al. 2012), it is 
remarkable that the knock-out mice do form sarcomeres 
despite the absence of nebulin.

In a mouse model of TPM3 nemaline myopathy (Gineste 
et al. 2014), the onset of muscle weakness, caused at least 
partially by hypotrophy of type 1 fibers, appeared to be 
delayed by compensatory hypertrophy of type 2 fibers, as 
in human patients.

In Tnnt1 mice, depicting the “Amish” form of nemaline 
myopathy, there was severe weakness of the diaphragm (Wei 
et al. 2014), as in human patients, and an increase in fast 
2B fibre types, but this myosin isoform is not expressed in 
human limb muscle.

A mouse model of CFL-2 nemaline myopathy showed 
severe weakness, small body size and early lethality. Histo-
logically, there was actin accumulation (as seen in humans 
with CFL-2 mutations) whereas nemaline bodies were small 
and only seen on EM in severely disrupted fibres (Agrawal 
et al. 2012; Gurniak et al. 2014).

Mouse models of LMOD3 nemaline myopathy showed 
atrophy of fibres with fast myosin, a 50% reduction of grip 
strength (Tian et al. 2015), small body size and normal lifes-
pan (Cenik et al. 2015).

Mouse models of KLHL40 and KLHL41 nemaline myopa-
thy showed early lethality (within days to weeks from birth). 
KLHL40-deficent mice had a secondary reduction in nebu-
lin and LMOD3 whereas the KLHL41 knock-out mice only 
showed reduction of nebulin (Garg et al. 2014; Ramirez-
Martinez et al. 2017). The rectangluar rods seen in human 
patients with nemaline myopathy caused by mutations in 
these two genes were not reported in the Klhl40 model but 
they were apparent in the Klhl41 knock-out mouse.
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Development of therapies for nemaline 
myopathies

There is currently no curative treatment for patients with 
nemaline myopathy, but much can be achieved by a multi-
disciplinary approach, addressing the management of symp-
toms and maintaining muscle strength, mobility, joint move-
ments, and independence in the activities of daily living 
through exercise and physiotherapy. Particularly important 
is regular monitoring of respiratory function and addressing 
orthopaedic problems, especially any scoliosis (Wallgren-
Pettersson et al. 2004; Wang et al. 2012).

Tyrosine as a treatment for nemaline myopathy has been 
advocated, but an apparently beneficial effect in a limited 
clinical trial of dietary tyrosine supplementation (Ryan 
et al. 2008) was not supported up by studies of the nemaline 
myopathy TgACTA1D286G mouse model, nor the zebrafish 
model based on the same mutation (Messineo et al. 2018; 
Sztal et al. 2018a). Other amino acid supplements tested in 
zebrafish also showed no clear positive effect (Sztal et al. 
2018a). The improvement in skeletal Acta1 knock-out mice 
through upregulation of cardiac actin (Nowak et al. 2009) 
raises hopes for therapeutic implications for patients, but 
requires very early diagnosis. Another therapeutic option 
to explore is increasing the proportion of normal skeletal 
actin in heterozygous patients (Ravenscroft et al. 2011a, b). 
Interestingly, a zebrafish morpholino knock-down model 
of ACTA1 nemaline myopathy showed a milder phenotype 
because of a transcriptional upregulation of an actin paral-
ogue, i.e. through genetic compensation (Sztal et al. 2018b).

Experimental trials with myostatin in two mouse models 
of Acta1 nemaline myopathy did not yield stronger mice, but 
in the TgACTA1D286G mouse model the body size increased 
(Tinklenberg et al. 2018) and a similar trial in the Acta1H40Y 
mouse model led to both larger size and longer life-span 
(Tinklenberg et al. 2016). The use of a myosin transgene 
to improve muscle function in an Acta1 mouse model for 
nemaline myopathy (Lindqvist et al. 2016) and the use of 
calcium sensitizers to improve diaphragm function (Ochala 
2010; Doorduin et al. 2012) raise interesting perspectives 
for the future.

Conclusions

Our increasing understanding of the pathogenetic mecha-
nisms, and the lines of therapeutic options explored hitherto 
make it timely to plan a natural history study of nemaline 
myopathy and an international patient registry. In doing so, 
the international collaborative effort will pave the way for 
therapeutic trials, once non-hazardous and potentially effec-
tive treatment modalities become available.
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