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Intra-articular adipose tissue deposits known as articular fat pads (AFPs) are described 
to exist within synovial joints. Their assumed role in normal joint biomechanics is increas-
ingly objectivized by means of advanced methods of functional imaging. AFPs possess 
structural similarity with body subcutaneous white adipose tissue (WAT), however, seems 
to be regulated by independent metabolic loops. AFP dimension are conserved during 
extreme WAT states: obesity, metabolic syndrome, lipodystrophy, and cachexia. Hoffa 
fat pad (HFP) in the knee is increasingly recognized as a major player in pathological joint 
states such as anterior knee pain and osteoarthritis. HFP contains numerous popula-
tion of mesenchymal and endothelial progenitors; however, the possible role of mature 
adipocytes in the maintenance of stem cell niche is unknown. We propose that AFP is 
an active component of the joint organ with multifunctional roles in the maintenance of 
joint homeostasis. Endowed with a rich network of sensitive nervous fibbers, AFPs may 
act as a proprioceptive organ. Adipokines and growth factors released by AFP-resident 
mature adipocytes could participate in the maintenance of progenitor stem cell niche as 
well as in local immune regulation. AFP metabolism may be locally controlled, correlated 
with but independent of WAT homeostasis. The identification of AFP role in normal joint 
turnover and its possible implication in pathological states could deliver diagnostic and 
therapeutic targets. Drug and/or cell therapies that restore AFP structure and function 
could become the next step in the design of disease modifying therapies for disabling 
joint conditions such as osteoarthritis and inflammatory arthritis.

Keywords: intra-articular fat pad, Hoffa fat pad, white adipose tissue, cellular therapies, osteoarthritis

introdUCtion

White adipose tissue (WAT) is increasingly recognized as a multifunctional, metabolically active 
organ (1). The evolutionary conserved attribute of storing excess energy as lipid deposits is coupled 
with WAT role in controlling metabolic balance as a body-wide distributed endocrine organ (2). 
By accumulating nutrients deposits, mature WAT resident cells—the adipocytes—fulfill a basic 
life function necessary to provide energy during periods of high caloric demands. However, far 
from being mere inert warehouses, the adipocytes not only store triacylglycerol but secrete as 
well regulatory bioactive molecules such as adipokines (leptin, adiponectin, resistin, adipsin, and 
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visfatin), cytokines (IL-6 and TNF-α), and acylation-stimulating 
protein. Such bioactive molecules have local, peripheral, and 
central effects in controlling nutrient intake, energy storage, and 
expenditure (3). The multifactorial role WAT posses in coordinat-
ing and executing a diversity of organismal functions is reflected 
by its heterogeneous cellularity. WAT is composed not only of 
adipocytes but harbors a variety of blood cells, immune resident 
and endothelial elements, pericytes, and adipose precursor cells 
as well as mesenchymal progenitor cells. Various enzymatic 
or mechanical methods can be used to separate the so called 
stromal vascular fraction (SVF)—a mixture of mononuclear ele-
ments among which adipose derived mesenchymal stromal cells 
(ADSCs).

Mature adipocytes together with WAT resident macrophages 
are active players in local and systemic immune response by relea-
sing pro-inflammatory cytokines and adipokines that orchestrate 
local and central pathways of the innate immune system (4). The 
endothelial cells, pericytes together with adipose precursor cells 
are responsive of the angiogenetic and expansive capabilities 
WAT displays (5). In the last decades, WAT has been recognized 
as a reservoir of ADSCs and sought as convenient, easy accessible, 
source for cellular therapies (6). Complex physiological roles of 
WAT in lipid and glucose metabolism, coagulation, appetite regu-
lation, angiogenesis, body weight control, and reproduction have 
been well described and documented [for review, see Ref. (2)].

White adipose tissue is widely distributed in almost the entire 
body subcutaneous region, in organs and hollow viscera of the 
abdominal cavity, in mediastinum as well as in several muscle 
groups functioning as a thermal insulator and shock absorber. Its 
role in mechanical protection has been related to the lax extracel-
lular matrix (ECM) structure and to the important capability to 
recover from mechanical deformation (7).

White adipose tissue structure and function varies with body 
distribution. Subcutaneous fat presents distinct cellular and sec- 
retory profile compared to visceral fat (8). Regions where fat 
deposits might serve a mere mechanical role—soles, palms, and 
periarticular deposits—seem to have a particular genetic profile 
as they are conserved in some forms of congenital generalized 
lipodystrophy (9).

However, despite WAT heterogeneity in structure and func-
tion, its responsiveness appears to be closely correlated by similar, 
if not the same, neuroendocrine and biochemical pathways. 
Shared biochemical profile during pathological states obesity and 
metabolic syndrome at one pole and lipodystrophy and cachexia 
at the opposite pole draws the picture of a body-wide organ 
functioning as an organismal network with possible site-specific 
adaptive particularities.

artiCULar Fat pad (aFp) is a 
MULtiFUnCtionaL tissUe WitHin  
tHe norMaL Joint orGan

An interesting and potentially important WAT location has been, 
surprisingly, largely neglected. AFPs have been mainly mentioned 
in the context of pathological joint states (such as knee pain and 
osteoarthritis—OA) (10) or as a source of progenitor and stem 

cells (11). Their potential roles in maintaining homeostasis in 
normal joints remains unexplored. It remains obscure if AFP 
function and metabolic profile is correlated with systemic WAT 
normal and pathological states or is regulated by potential sepa-
rate mechanism connected or not to the biomechanical function 
within the joint.

This paper will introduce the hypothesis of AFP as an internal 
homeostatic joint regulator, in possible relation but distinctive 
from body WAT function and balance. We propose that AFP 
is a specialized tissue of the joint organ contributing to its 
homeostasis by releasing bioactive molecules implicated in cell 
and ECM growth, turnover, and repair. AFP biomechanical role 
and its function in joint homeostasis are intertwined and might 
be locally regulated and systemically coordinated. AFP might act 
by converting information about joint biomechanics (alignment, 
axis, and dynamics) into biochemical cues that contributes to 
regulating the homeostasis of all articular tissues.

tHe anatoMy—aFp, UBiQUitoUs 
presenCe in synoViaL and non-
synoViaL Joints

Commonly, intra and periarticular fat deposits are included within 
the category of joint adjacent supportive structures together with 
menisci and ligaments. Such structures, described to be heteroge-
neously present in some joints (hip, knee) are thought to contribute  
to joint stability and to function as a shock absorber (12).

Possibly the largest AFP in humans, the infrapatellar fat pad of 
the knee joint, known as Hoffa’s fat pad (HFP) (13) is one of the 
three fat pads of the knee joint interposed between the capsular 
layer and the synovium, described as intra-articular (intracap-
sular) but extra synovial structures. HFP is delimited superiorly 
by the inferior pole of the patella, inferiorly by the tibial bone, 
intermeniscal ligament, meniscal horns, and infrapatellar bursa, 
anteriorly by the patellar tendon while posteriorly is bounded by 
the femoral condyles and the intercondylar notch. It occupies 
the entire anterior part of the joint in all knee positions (14). 
Macroscopically, HFP is composed of a fibrous scaffold filled with 
fat lobules containing as well a number of septae such as the infra-
patellar plica (IPP) (also known as the ligamentum mucosum) 
(15). A clinically relevant classification of HFP variants based on 
the presence or the absence of IPP has been proposed (Class I, 
HFP constrained, IPP present; and, Class II, FP unconstrained, 
no IPP), suggesting class I HFP might function as an intra-
articular ligament involved in joint stability (16). Similarly with 
WAT, HFP cellularity consist of mature adipocytes but include 
as well fibroblasts, macrophages, and leukocytes within a lax 
network of conjunctive tissue and a rich network of blood ves-
sels. As a particularity, the presence of peptidergic C-fibers, nerve 
fibers suggests HFP role as a sensory organ. HFP has anatomical, 
histological, and imagistic characteristic that distinguish it from 
underlying synovial tissue (Figures 1 and 2) (17). HFP is sought 
to act as a deformable space filler that adapts to the changing 
articular contours during joint movement and to facilitate syno-
vial joint distribution. HFP is seen as a contributor to anterior 
knee pain probably due to an impingement mechanism after 
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FiGUre 2 | Ultrasound image of infrapatellar fat pad of a normal knee joint White arrow indicates the fat tissue with distinct ultrasound features compared to the 
underlying patellar tendon (PT) and synovial tissue (Syn). HFP, Hoffa fat pad; FC, femoral condyle; T, tibia. (a) Sagittal view, (B) coronal view.

FiGUre 1 | Anatomy of the HFP. The HFP (Hoffa fp) is limited anteriorly by the patellar tendon (PT) (Pat ten) and the joint capsule, superiorly by the inferior pole of 
the patella (Pat) (a), inferiorly by the proximal tibia (Tib) and the deep infrapatellar bursa (asterisk), and posteriorly by the synovium (arrows) and femur (Fem). It is 
attached directly to the anterior horns of the menisci (Med men, Lat men) (B). Normal vascular supply consists of two vertical arteries, posterior and parallel to the 
lateral edges of the PT (C). Courtesy of Draghi et al. from Insights into Imaging 2016 (15).
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joint trauma (18) and as a source of inflammation and disease 
progression in knee OA (10). By far the most known, HFP is not, 
however, the sole AFP.

In the hip joint, a relatively recently identified structure placed 
at the anterior head–neck junction of the upper femur has AFP 
characteristics and is sought to be a source of femoroacetabular 
impingement (19). Fat pads opposite the olecranon, coronoid, 
and radial fosse as well as fibroadipose meniscoids in the non-
articular waists of the trochlear notch and into the posterolateral 
aspect of the radiohumeral joint were described in 28 normal 
adult cadaveric elbows and proposed to be starting points in 
arthrofibrosis (20).

Articular fat pads were described to be present superior and 
inferior to lumbar facet joints from which fat-filled synovial 
folds project between the articular surfaces the superior being 
intracapsular between the ligamentum flavum and the lamina 

while the inferior remains extracapsular lying on the back of the 
lamina below and communicates with the joint through a hole 
in the inferior capsule. Lumbar facets AFPs can be identified by 
computer tomography scans. Lumbar facets AFPs enlargement is 
sought to be associated with degenerative changes and capsular 
laxity of the facet joints (21).

Intermetacarpal fat pads have been described to be adipose 
structures located between the heads of the second, third, 
fourth, and fifth metacarpal bones, filling the spaces between 
the palmar fascia and its deep expansions. They are proposed to 
act as protection from shear forces during gripping, to protect 
neurovascular finger bundles, and to contribute to neurological 
symptoms when inflamed or injured (22).

The development of modern imagistic such as ultrasound 
and arthroscopy made possible not only the identification of 
previously unknown AFPs location but enabled as well direct 
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visualization, dynamic assessment, and quantification of their 
biomechanical role within the joint.

tHe pHysioLoGy—aFp—siMpLe 
CUsHion or MULtiFUnCtionaL 
reGULator?

It is noteworthy to mention that historically, “synovial fat pads” 
were regarded as the sources of synovial fluid (SF). AFPs were 
denominated harversian glands and thought to produce sub-
stances that “oil” the joint surface. Currently, the name is kept 
only in regard with the acetabular floor AFP (known as harver-
sian fat). The attributed physiological role in joint lubrication was 
only later replaced by an assumed mechanical filler-cushioning 
function.

The existence of physiological particularities of the intra-
articular deposits distinguishing this tissue from widespread 
subcutaneous fat was suspected by anatomists as late as the 
middle of the twentieth century. Despite the structural similarity 
to body-wide WAT, AFPs persist even during advanced states of 
malnutrition, when all other deposits are depleted. This obser-
vation raised the hypothesis that such tissue might possess yet 
unexplored particular ultrastructural and secretory features of 
potential importance for joint function (23).

However, the study of fat pat deposits seem to have fallen 
into oblivion until late 1990s when sports physicians and 
physiotherapists become interested in its involvement in pro-
ducing (especially knee) joint pain. Reports related almost, if not 
completely to HFP, are stressing out the involvement of its rich 
nervous network and abundant substance P fibers in producing 
anterior knee pain in various pathological states (18, 19, 24). 
Noteworthy, until not too long ago, AFP biomechanical role was 
simple assumption. Very few biomechanical studies were con-
ducted to address directly the role of adipose structures within or 
adjacent to joints. Indirect evidence points toward inflammatory 
reactivity of HFP during patellar mal tracking correlated with 
trochlear morphology and patella alignment (25). Moreover, 
static imaging or cadaveric studies make it difficult to assess 
the dynamics of articular structures. With the development of 
high resolution ultrasound probes, fat pad kinesiology within 
the knee joint and the mechanism of impingement could be 
explored (26). Kager’s fat pad located in Kager’s triangle between 
the Achilles tendon, the superior cortex of the calcaneus, and 
flexor hallucis longus muscle and tendon has been reported to 
perform important biomechanical functions that are crucial for 
the maintenance of ankle posterior tendons as well as ankle joint. 
Using high-resolution dynamic ultrasound and electromyogram, 
Kager fat was shown to lubricate the subtendinous region, to 
reduce the pressure change within the Achilles tendon enthesis, 
and to remove debris from within the retro calcaneal bursa (27). 
Due to advances in functional imaging, the assumed role of AFP 
and its participation to the joint biomechanics is increasingly 
documented. Its importance in the normal functioning of several 
joints is increasingly acknowledged. Little is known, however, 
about the possible participation of AFP in joint mechanical bal-
ance. Could it be possible that similar to other musculoskeletal 

structures, AFP possess a proprioceptive role contributing to 
dynamic alignment of the structures around the joint? Further 
studies about the presence of such proprioceptive receptors 
within AFP could elucidate this question.

possiBLe LinKs BetWeen adipose 
tissUe MetaBoLisM and Joint 
FUnCtion

Recent years have broadened understanding about the role of 
local and systemic hormonal balance in maintaining joint health 
(28). With increasing understanding about the WAT function as 
an endocrine organ, a growing list of adipokines with pleiotropic 
local and systemic actions are investigated in relation to muscu-
loskeletal tissue biology (29). Adipokines have been implicated 
in a bidirectional bone—energy metabolism interplay, in the 
central regulation of bone mass as well as in the fatty bone 
marrow metabolism (30). Leptin levels are correlated with WAT 
mass, functioning as a food intake and energy consumption 
regulator. Leptin has been demonstrated to play crucial roles 
in influencing prenatal development and postnatal growth as 
well as in modulating systemic immune response. In humans, 
leptin deficiency or resistance is implicated in the pathogeny of 
obesity, metabolic syndrome, diabetes, and infertility. Leptin 
is expressed not only by adipocytes but as well by osteoblasts 
and chondrocytes and contribute to regulating chondrocyte 
differentiation and matrix maturation during enchondral bone 
formation (31). Human and murine chondrocytes express 
leptin and adiponectin both in vivo and in vitro (32) in normal 
conditions. Cultured and native normal human chondrocytes 
express leptin receptor b, shown to modulate expression of 
Frizzled-1 and Frizzled-7 in a possible cross talk with canoni-
cal Wnt signaling pathway that could be implicated in cartilage 
homeostasis (33). Not surprisingly, HFP express leptin however 
to date, the majority of existent data result from investigating 
pathological joint states (see below). Mainly studied in relation 
to joint degenerative processes. Leptin is known to stimulate 
inflammatory cytokine production (such as interleukine β 
Ilβ), to induce expression of matrix degradative peptides (such 
as matrix metalloproteinases—MMPs) and to activate nitric 
oxide synthase. Leptin facilitates the activation of macrophages, 
neutrophils, dendritic cells, and natural killer cells contributing 
to establishing an inflammatory milieu within OA joints (34). 
Little is known about the mechanisms of leptin production by 
AFP and its levels in normal joints. SF leptin levels have been 
shown to fluctuate in correlation to body mass index (BMI) as 
well as with knee OA stages (35) however not correlated with 
plasma leptin levels (36) suggesting an independent regulatory  
mechanism within the joint. Moreover, existent basic science 
studies on normal osteoblast and chondrocyte development 
and metabolic homeostasis points toward an independent intra- 
articular regulatory mechanism of leptin levels that could have 
AFP as central point. Another well-studied adipokine, adiponec-
tin, possess divergent roles in metabolism and musculoskeletal 
biology, being implicated in bone loss and inflammation-mediated 
matrix degradation (29). Human normal chondrocytes express 
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functional adiponectin receptors that under specific stimulation 
were shown to express pro-inflammatory cytokines and nitric 
oxide synthase type II (37). Adiponectin SF levels were found, 
however, to be lower in female subjects with OA compared to 
plasma levels while higher levels could be recorded in rheuma-
toid arthritis (RA) compared to OA joints. Adiponectin could 
have anti-inflammatory role in RA by counteracting the pro- 
inflammatory role of tumor necrosis factor alpha (TNF-α), 
mechanism not reproduced in OA patients. While the multifac-
eted role of adiponectin in RA progression still needs to be clari-
fied, to date there is no evidence that intra-articular and serum 
levels are correlated or that the protein can cross the capsular 
barrier to enter the joint. Intra-articular adiponectin was found 
to be released by synovial tissue, HFP, and even by osteophytes 
(38). Here again, there is a scarcity of data collected from normal 
joints. If adiponectin intervene in joint homeostasis or its release 
is solely an adaptive mechanism triggered by the presence of 
inflammatory mediators, needs to be further elucidated. Other 
adipokines such as resistin and visfatin were shown to be present 
in SF or plasma of RA or/and OA patients mainly in correla-
tion with increased pro-inflammatory cytokines levels TNFα 
or interleukin 6. Their role as possible mediators of destructive 
joint inflammation is under investigation (39).

Adipokines are involved in normal joint development and 
possibly participate to adult bone and cartilage homeostasis. As 
resulting from epidemiological studies, intra-articular levels in 
diseased joints do not correlate with plasma serum levels. Due to 
obvious ethical limitations, very few information exist to profile 
the adipokine levels in normal joints in subjects with various BMI 
values. It is yet unknown if intra-articular adipokines in normal 
and pathological joints are produced by local elements or origi-
nate in WAT with different location (such as subcutaneous fat). 
In the absence of relevant information, AFP contribution to the 
homeostasis of the normal joints remains unknown. Conversely, 
AFP involvement in pathological joint conditions is increasingly 
stressed out and suggests a local regulatory mechanism in close 
dialog with the well-known inflammatory milieu that character-
izes such diseases. The interplay between AFP biomechanical and 
secretory function may serve as a turning point between joint 
dynamics, axis, and alignment and the control of local metabolism, 
under the influence but possible distinct from body nutritional 
status. Deciphering the cross talk between AFP as a bio mechanic 
sensory organ that responds by modulating joint organ turnover 
and controlling local inflammation could contribute to increased 
understanding of joint functioning.

aFp—a possiBLe roLe in MaintaininG 
artiCULar steM CeLL niCHe

Tissue niches are known to control site-specific stem cell function, 
governing their transition from quiescence to proliferation and 
maturation. Mature adipocytes were shown to contribute to the 
maintenance of stem cell niche in various locations and to gener-
ate niches for other cell types. Mature adipocytes within bone 
marrow were shown to inhibit hematopoetic stem cell engraft-
ment (40). Conversely, adipocytes were proved to upregulate the 

branching and development of mammary gland epithelium 
(41). Adipocyte precursors may promote muscle differentiation 
since interaction between muscle cells and adipogenic PDGFR 
alpha(+) mesenchymal progenitors has a considerable positive 
impact on muscle turnover (42). Mature adipocytes were shown 
to be necessary and sufficient for the activation of skin epithelial 
stem cells (43).

HFP was shown to represent a rich source of ADSCS or peri-
vascular stem cells with superior chondrogenic potential com-
pared to the subcutaneous fat pad (44). HFP-derived stem cells 
from diseased knee states maintain their chondrogenic potential 
in vitro suggesting a conserved cartilage progenitor pool might 
exist within the tissue (45).

The mechanism by which HFP contributes to controlling the 
decision of intra-articular stem cells of various origin to entering 
cell cycle and differentiation remains to be established. Local 
release of growth factors (GFs) that trigger stem cell activation 
or an indirect immune-mediated contribution could be involved. 
Indeed IL-10-producing type 1 regulatory T  cells (Tregs) were 
shown to modulate the activity of mice MSCs in a mice model 
of RA (46). Further in  vivo studies are needed to confirm the 
interplay between local Tregs and mesenchymal progenitor in 
normal joint states and disease as well as the possible influence 
of intra-articular mature adipocytes in maintaining this balance.

HoFFa Fat pad—an aCtiVe pLayer in 
Knee pain and osteoartHritis

By far the most investigated AFP, HFP begins to develop in humans 
starting with the 11th gestational week from the mesenchymal 
tissue below the patella, between the cruciate and the patellar 
ligaments (38). Its structure is very similar with subcutaneous 
WAT, however, does not fluctuate quantitatively with caloric 
intake, persisting even in severe cases of malnutrition and do 
not increase with BMI in obese subjects. Noteworthy, impaired 
functionality of HFP mature adipose cells with decreased 
adipose-related markers PPARγ together with increased fibrosis 
and macrophage infiltration could be demonstrated in obese 
compared to lean patients during late-stage OA of the knee (47). 
HFP has been implicated in a direct manner in occurrence of  
persistent anterior knee pain during local trauma or impingement 
syndrome. Its involvement in the development and progression 
of joint degenerative diseases is proposed to be multifactorial. 
Sensory tissue innervation and the contribution to increasing 
immune cell amount and activity within the joint are doubled 
by the role of pro-inflammatory adipokines are proposed as 
mechanisms of knee joint degeneration.

HFP is a very sensitive structure due to the presence of pepti-
dergic C-fibers, nerve fibers staining positive for substance P (48) 
that are implicated in the development of knee pain after repeti-
tive trauma in athletes and in painful knee OA (49). Moreover, 
substance P-induced Hoffa pad vasodilatation and immune 
cell extravasation could be the mechanisms of fat pad edema 
documented in patients with Lyme arthritis (50). The disturbed 
balance between substance P fibbers and sympathetic nerve 
fibers releasing anti-inflammatory cytokines and endogenous 

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


6

Labusca and Zugun-Eloae Intra-articular Fat Modulates Joint Homeostasis

Frontiers in Veterinary Science | www.frontiersin.org March 2018 | Volume 5 | Article 35

opioids was implicated in RA knee pain or in painful total knee 
arthroplasty. Besides their role in neuropathic sensitization,  
P fibers could have a direct pro-inflammatory effect that ignite 
and maintain OA development (51).

As it is the case with synovial tissue, HFP is the stage of 
immune cells invasion during OA and RA that triggers produc-
tion of pro-inflammatory and pro fibrotic cytokines from local 
activated macrophages. After the initiation of joint degradation, 
cartilage breakdown molecules could activate monocytes and 
trigger innate immunity mechanisms (52). HFP-resident mac-
rophages could produce various GFs, cytokines, and enzymes 
having as effect osteophyte formation, cartilage breakdown by 
MMPs activity, joint effusion by vasodilation, and perturbed 
subchondral bone metabolism.

The role of WAT produced adipokines in the initiation and 
aggravation of inflammatory processes at systemic level as well 
as within the joint is well established. Leptin, adiponectin, and 
resistin were reportedly found in SF of OA and RA patients at con-
centrations that differ from blood levels. Such pro-inflammatory 
mediators could be produced by HFP by an independent locally 
regulatory mechanism that is not correlated with body fat and 
nutritional status.

Pertaining to the largest joint in the body, HFP contribution to 
knee pain and pathological conditions is increasingly recognized. 
If, however, there is a connection between biomechanical joint 
misbalance and HFP function in contributing and sustaining 
joint inflammatory milieu, has not yet been established. Dynamic 
biomechanical studies could elucidate if potential HFP function 
as a proprioceptive sensor correlates with its secretory role and 
contributes to both joint organ maintenance. Its perturbed func-
tional states could generate targets for complex joint re-balancing.

Wat and its eXtreMes—iMpLiCation 
For aFp FUnCtioninG

Obesity and metabolic syndrome are currently recognized to 
generate systemic and peripheral pro- inflammatory status. 
Moreover, OA has been proposed to be a metabolic disease 
associated with the chronic low-grade inflammation that defines 
obesity and metabolic syndrome and with the impaired cartilage 
homeostasis in the context of lipid and glucose abnormalities 
(53). Far less is known about systemic and local WAT metabolism 
and pathways that are involved in involuntary adipose tissue 
loss—lipodystrophy and cachexia.

Lipodystrophy is defined as the acquired or genetically induced 
partial or complete loss of metabolically active WAT. Age or 
disease-associated cachexia are wasting syndromes associating 
severe fat and muscle loss (54). As a common denominator, all 
pathological systemic involuntary WAT loss cannot be reversed 
by nutrition. Many of the metabolic impairments associated 
with obesity and metabolic syndrome are shared between 
the two extremes. Insulin resistance, glucose intolerance, and 
systemic inflammation are common findings in both excess 
and waste of systemic WAT (55). The particularities of joint 
metabolism during extreme adipose tissue loss are less under-
stood. Disabling decrease in joint and body mobility is generally 

attributed to severe muscle loss and disturbed energy metabo-
lism. During RA, progressive stage of the disease is associated 
with progressive fat and muscle waste, reduced joint mobility 
correlated with increased levels of intra-articular and systemic 
pro-inflammatory cytokines. Despite a theoretically adequate 
diet, TNF-α and IL-1 β were found to increase resting energy 
expenditure (REE) and to alter body composition in RA patients 
(56). Cancer-associated systemic inflammation, indicated by the 
production of C reactive protein and fibrinogen, was associated 
with increased muscle catabolism, hypothalamic-driven ano-
rexia, and increase in REE in cachectic patients (57). There are 
currently no available data to characterize the metabolic activity 
of AFP during extreme WAT pathological states. Description 
of an eventual independent AFP regulatory mechanism and/or 
its fluctuations in relation to systemic WAT has the potential to 
generate therapeutic targets for degenerative and inflammatory 
joint diseases such as OA and RA. Interestingly enough, both 
waste syndromes and diseases of excess WAT, regardless of their 
origin, are reported to benefit physical activity. Various regimens 
of exercise therapy are among the very few effective therapeutic 
interventions in cachexia, age-related lipodystrophy but as well 
in obesity, metabolic syndrome, and diabetes mellitus (54, 58). 
Recently, muscle mitochondrial activity and exercise-driven 
fibroblast growth factor 2 release were found to significantly 
reduce muscle mass and WAT loss in aging mice, linking mus-
cle metabolism to both muscle and WAT maintenance during 
senescence (59). Moreover, diet and exercise are known to be 
efficient for the prevention and treatment of OA including in the 
non-weight-bearing joints (60).

Articular fat pad deposits remain quantitatively unmodified 
during extreme WAT states as a possible mechanism for preserv-
ing the joint homeostasis and hence enabling the body to remain 
mobile and to interact with the surroundings. In turn, preserva-
tion of mobility and the capability to engage in physical activities 
are mandatory for self-adjusting the equilibrium in multiple 
hierarchical systems inside and outside the body. AFP acting as 
a biomechanical sensor could adjust joint organ homeostasis by 
means of physical activity. Systemic WAT extremes are prevented 
and/or adjusted by mobility and so is the organism ability to 
interact within its ecosystem. Obviously, at the extremes, obesity 
and advanced wasting states overcome articular joint capability 
to self-adjustment by imposing severe external restrictions in 
mobility. Morbid obesity but as well lipodystrophy and cachexia 
mechanically restrict joint movements either by excessive body 
weight or by muscle wasting. Systemic or local inflammatory 
status and insulin resistance overcome the capability of AFP to 
maintain intra-articular homeostasis. Here, complex interven-
tion that addresses both systemic conditions and intra-articular 
AFP impairment are needed.

Recently, intra-articular therapies using SVF and/or adipose 
tissue administration in OA joints are reporting favorable results 
in the management of knee OA (61, 62); however, their mecha-
nism of action remains unknown. It is possible that such therapies 
act by recovering the HFP structural and functional balance that 
in turn contributes to restoring cellular turnover in several joint 
compartments and rehabilitate the metabolic and immune joint 
microenvironment. Intra-articular cell therapies could prove a 
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disease modifying procedure to stop degradative processes dur-
ing OA and RA.

We propose that AFP is an active component of the joint organ 
with multifunctional roles in maintenance of joint homeostasis. 
AFP rich network of sensitive nervous fibbers could act as a 
sensory organ possible involved in proprioception having role in 
acquiring information about joint axis, stability, and dynamics. 
Endocrine and paracrine secretion of adipokines and GFs AFP 
mature adipocytes could participate to joint organ turnover being 
involved in the maintenance of progenitor stem cell niche, cell 
renewal, and differentiation as well as local immune regulation. 
Local immune residents such as macrophage and Tregs are 
involved in balancing cellular growth and respond to pathologi-
cal stimuli by controlling joint organ inflammatory status. While 
correlating with body-wide WAT status, AFP could possess 
genetic particularities as well as an independent mechanism of 
local control. Genetic and metabolic profiling of AFT could pos-
sibly result in description of molecular particularities that define 
distinct disease phenotypes. A metabolic-based classification of 
OA could result in predicting therapeutic response to existent 
preventive and therapeutic methods (63).

Further studies are needed to assess the biomechanical and 
molecular particularities of AFP in normal and diseased joints  
during normal and extreme WAT conditions. Cellular components 
as well as sensory fibers and ECM should be the subject of com-
parative investigation in both normal and pathological joint states 
as well as during normal and WAT pathological states. Using omics 
technologies at the single-cell level, complete AFP genetic and epi-
genetic profiling could be performed potentially deriving targets for 
future therapies. In vivo monitoring of AFP function (biomechan-
ics, endocrine and paracrine release, and immune modulation) in 
animal models could elucidate its role within normal joint organ 
functioning and discriminate the contribution to the occurrence 
and progression of diseases. Bioinformatics analysis and compu-
tational modeling could identify currently unknown pathways 
involved in AFP functioning, eventually identifying AFP as  
an internal homeostatic system that connects joint biomechanics 

with structural maintenance mechanisms, correlated with systemic 
WAT but independently regulated. Cell therapies that aim to 
restore AFP structure and function could become the next step in 
delivering disease modifying therapies for disabling joint condi-
tions such as OA and RA. Intra-articular therapies using adipose 
tissue derivatives might act by triggering AFP secretory and/or 
biomechanical role in regenerating joints structure and function.

ConCLUsion

The presence and biomechanical importance AFP deposits 
are increasingly revealed due to the use of new and improved 
advanced dynamic imaging. Historically thought to possess a role 
in joint physiology by assumed production of joint lubricants, 
AFP metabolic role has been largely disregarded. WAT is increas-
ingly recognized as an important endocrine organ with impact in 
body homeostasis. The similarity between WAT and articular fad 
pad regarding structure, cellularity, and composition invites to 
the reconsideration of its role in the maintenance of normal joint 
homeostasis. Methods that are designed to locally restore the 
functionality of the intra-articular adipose tissue could represent 
an effective modality to re balance joint homeostasis, improve 
joint function, and restore body mobility. This will derive impor-
tant consequences for the treatment not solely for joint diseases 
but for extreme WAT misbalances—obesity, metabolic syndrome, 
age, and disease-associated wasting.
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