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Simple Summary: Head and neck squamous cell carcinoma (HNSCC) encompasses a variety of
tumors developing in the head and neck region, mainly affecting the oral cavity. The past decades
have seen little advancement in the understanding of the biological basis of HNSCC, which strongly
hampered the development of novel, more effective treatments. Here, we summarize the current
therapies available for the treatment of HNSCC and give an overview of new models for screening
and testing emerging therapeutic approaches.

Abstract: Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent types of
cancer with a lethal outcome in half of the diagnosed cases. Mostly, HNSCC develops in the oral
cavity, and its development is associated with tobacco and areca nut/betel quid usage, alcohol
consumption, and HPV infection. Oral squamous cell carcinoma, as other head and neck cancers,
presents a high degree of intratumor heterogeneity, which makes their treatment difficult, and directly
correlates with drug resistance. Since the classical treatments for HNSCC oftentimes do not resolve
the clinical picture, there is great need for novel therapeutic approaches, models for drug testing, and
new drug delivery systems.

Keywords: head and neck squamous cell carcinoma; oral cancer; drug testing; drug delivery; organoids;
spheroids; exosomes

1. Introduction
1.1. Squamous Cell Carcinoma in the Head and Neck Region
1.1.1. Distribution and Incidence

Head and neck squamous cell carcinoma (HNSCC) represents the sixth most common
cancer worldwide with 880,000 new cases registered in 2018 [1]. It mainly affects male
patients and has a lethal outcome in 51% of the cases [1–3]. HNSCC originates in many
anatomical regions, such as the larynx, hypopharynx, oropharynx, nasopharynx, and oral
cavity. According to the cancer size and its depth of invasion, HNSCC is classified as T1,
T2, T3, and T4 types, with T1 being the smallest and least aggressive and T4 the most
aggressive type (moderately advanced or very advanced disease) [1–3]. In total, 60% of
HNSCC belong to the oral squamous cell carcinoma (OSCC), which develops at the alveolar
ridge, buccal mucosa, floor of the mouth, hard palate, lip, and tongue [4,5].

1.1.2. Causes

The most common causes of OSCC are tobacco and areca nut/betel quid usage, alcohol
consumption, and HPV infection [6–8] (Figure 1). The risk for developing oral cancer is 5 to
25 times higher in smokers compared with non-smokers, also in relation to the quantity
and duration of exposure to carcinogens [6,9,10]. Cigarette smoke contains a plethora of
pre-carcinogenic molecules, belonging mainly to three different families: benzopyrenes,
nitrosamines, and aromatic amines. These molecules face alterations mediated by oxidative

Cancers 2021, 13, 5515. https://doi.org/10.3390/cancers13215515 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-9812-9982
https://doi.org/10.3390/cancers13215515
https://doi.org/10.3390/cancers13215515
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13215515
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13215515?type=check_update&version=2


Cancers 2021, 13, 5515 2 of 13

enzymes, become reactive metabolites, and promote the emergence of mutations upon
physical interaction with DNA [6,7,11–13]. Chronic usage of tobacco and alcohol has a
synergistic effect in disrupting the oral mucosa structure, causing epithelial lesions [9,14].
Alcohol causes oral epithelial atrophy by interfering with the lipid’s composition of the
epithelial layer, hence leading to damage in the DNA synthesis and repair processes [6,15,16].
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After tobacco and alcohol, the main cause of OSCC is the consumption of the areca
nut. The consumption of the nut is a cultural habit in South Asian countries and di-
rectly correlates with the development and high frequency of OSCC [17]. The nut can
be chewed alone, or in a mixture with other substance (including tobacco), receiving the
name of betel quid [18]. The areca nut itself has a very diverse composition, containing
polyphenols, tannins, and alkaloids, with the arecoline (alkaloid) being the main carcino-
gen [19]. Arecoline is transformed into nitrosamines that interact with DNA via chromatin
relaxation [16,20–26].

Another main cause of oral cancer is the infection from human papillomavirus (HPV).
HPV16 and HPV18 infections together are the cause of 40% of all OSCC, usually developing
at the oropharynx and base of the tongue. In general, patients with OSCC caused by HPV
present a better prognostic than HPV-negative patients with OSCC. This could be directly
correlated with the carriage of the viral protein E6 that inactivates TP53, one of the most
mutated genes in OSCC [5,6,27–29].

1.1.3. Intra-Tumor Heterogeneity (ITH)

A few studies have suggested that malignant cells have the ability to recruit cells
from the surrounding tissues, supporting tumor invasion, progression, proliferation, and
metastases [30]. The newly formed tumor microenvironment (TME) allows the tumor
to thrive, as it protects, nourishes, and sustains cancer growth. Several elements are
part of the TME: immune system components (e.g., T-cells, B/plasma cells, macrophages,
dendritic cells, and mast cells), endothelial cells, fibroblasts (e.g., myofibroblasts and CAFs),
myocytes, and malignant cells themselves [31]. The interaction between malignant cells
and the TME is essential to maintain tumor homeostasis and survival [32,33], although
the details of how this communication exactly occurs remain to be clarified. Malignant
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cells can manipulate their surroundings to their advantage, influencing, among others,
hypoxia, cell cycle, and differentiation processes [31]. Novel sequencing techniques, such
as next-generation sequencing techniques (NGS), allow for the identification of genetic
variability and a general understanding of intra-tumor heterogeneity (ITH) [34–36]. It has
been demonstrated that not only is ITH involved in drug resistance [35,37], but also
that the order in which the mutations appear can influence the clinical evolution of the
malignancy [35,38]. Recurrence and metastatic behavior processes are often occurring
in OSCC, with the appearance of lymph node metastasis in the majority of cases [39,40].
As the presence of metastases indicates the capability of tumor cells to escape from the
original site and build a supportive microenvironment elsewhere, it directly correlates
with their ability to elude internal surveillance and circumvent therapy. Therefore, the
appearance of lymph node metastasis directly correlates with therapy resistance and likely
contributes to the lack of improvement in the 5-year survival rate registered worldwide
over the last few years [41,42].

2. Therapeutic Approaches for Head and Neck Squamous Cell Carcinoma
2.1. Current Therapies

Classical treatments of HNSCC are mainly based on surgical resection followed by
radiotherapy and chemotherapy, with specificity of treatment depending on different
factors (e.g., pre-existing clinical conditions and location and stage of the tumor) [5,7,43,44].
Radiotherapy techniques applied to HNSCC patients are often 3D conformal radiotherapy
and intensity-modulated radiotherapy (IMRT) (Figure 2). The latter is considered to
be more precise, reducing the damage caused by irradiation in the surrounding healthy
tissue [45]. Amongst the chemotherapeutic agents, the most common for HNSCC treatment
is cisplatin, a platin-based compound that binds the purine components of DNA, forming
adducts and inducing apoptosis [46]. However, since cisplatin alone is often not efficient,
other drugs have been used upon genetic screening for patient-specific mutations. Most
HNSCC patients present mutations in the epidermal growth factor receptor (EGFR). In these
cases, cetuximab, a monoclonal antibody against EGFR, has been efficiently used either
alone or in combination with radiotherapy or chemotherapy [5,47,48].
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2.2. Emerging Therapies

Most of the time, the traditional treatments for HNSCC do not resolve the clinical
outcome, and, therefore, innovative therapeutic approaches have started to be applied,
such as the usage of natural compounds, gene therapy, and immunotherapy (Figure 2).

Natural compounds, such as vitamin A, luteolin, and resveratrol, have shown thera-
peutic potential in treating HNSCC [49–51]. Their mechanism of action involves induction
of apoptosis and a consequent decrease in tumor size whilst facing important limitations
(e.g., poor bioavailability and dose-dependent toxicity) [52–59].

Many different genetic mutations found in HNSCC patients assist in tumor cell survival,
invasiveness, and therapy resistance. Amid the most common altered genes, p53 has a high
mutation frequency [60,61]. Gendicine, the first gene therapy approved for HNSCC, is
based on an antitumor effect by restoring p53 function using an adenoviral vector delivery
system. Instead of killing the tumor, the adenovirus stimulates the tumor cells to express the
corrected form of p53 and consequently restore its normal function [62]. Cytoreductive gene
therapy has also been tested for HNSCC. Transgene-mediated, tumor-specific activation
of the prodrug induces the expression of its toxic metabolite. This approach is known as
“suicide gene therapy”, as once the prodrug is internalized in the cancer cells, its toxic
metabolite leads to programmed cell death [60,63].

Immunotherapy is a novel promising therapy based on the exploitation of the immune
system’s potential to fight cancer. Pembrolizumab and nivolumab are the two drugs
approved for immunotherapy in HNSCC patients. They are antibodies anti-PD1, a protein
that regulates immune response. They are currently being used in patients presenting with
recurrent or metastatic HNSCC [5,64–67].

3. Modeling HNSCC for Drug Testing

Two-dimensional (2D) cell culture systems are a common in vitro model to study
cell biology and reaction to treatment. They allow rapid acquisition of results, have low
maintenance costs, and require minimal establishment by the experimenter. Traditional
drug testing performed in 2D cultures allowed us to have a better understanding of the
potential effects and toxicity of the new drugs. However, 2D cultures only partially replicate
the complex environment found in patients, and, thus, the use of more appropriate culture
model systems is essential for drug testing [68–70].

Three-dimensional (3D) culture models (e.g., organotypic cultures, spheroids, and
organoids) are more similar to the native tumor regarding cell heterogeneity, genetic vari-
ability, and cell to microenvironment interaction, thus representing an excellent platform
for personalized medicine and drug screening [68,71].

Amongst the various subtypes of 3D models, spheroids are the simplest model. In gen-
eral, spheroids contain a proliferating cell layer (external layer) and a quiescent cell layer
(internal layer) [71–86]. Various techniques can be used to grow and maintain spheroids
in culture, with applications ranging from studies on tumor microenvironment to drug
screening and molecular testing [68,78,87,88]. In one of the most common methods for
spheroid production, the hanging drop, a drop of culture medium containing patient’s
derived cells, is plated, suspended, and cells aggregate by gravity at the bottom of the drop.
The popularity of this technique is mainly associated with the low cost and uniform size of
the spheroids obtained, although their survival in culture conditions is limited [89]. The
liquid overlay technique consists of generating spheroids using non-adherent surfaces (e.g.,
ultra-low attachment plates). The spheroid is developed in an individual well and can be
accessed easily for treatment and manipulation. On the other hand, the size of the spheroid
will depend on the size of the well, which might influence drug permeability within the
spheroid [89,90]. Finally, the scaffold-based 3D cell culture relies on the presence of a spe-
cific matrix (e.g., Matrigel or polyethylene glycol (PEG)). Matrigel is generated from mouse
sarcoma cells and contains factors that are present in native tumors, adequately mimicking
the drug response in the presence of a complex tumor microenvironment. The components
of the matrix stimulate cell growth and proliferation, two necessary processes contributing
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to spheroids generation and development. Rich matrices (e.g., Matrigel) act as reservoirs of
growth factors that actively sustain a spheroid’s growth, while simpler synthetic matrices
(e.g., PEG) provide only a basic structural support. Additionally, synthetic matrices might
limit drug penetrability and potentially alter drug responses [15,88,91–97]. The use of
spheroids for drug testing in HNSCC is still in its developmental phase, mainly due to
the high intrinsic variability of the tumor and the lack of consensus in the technology for
spheroid production. A comparison between 2D and 3D culture effectiveness of therapy
highlights how spheroids display mechanisms of resistance to treatment not observed in
monolayer cell cultures [71,98–100]. On the other hand, important limitations still exist in
using spheroids for drug testing. Besides the complexity in establishment and manipula-
tion, the size of spheroids can largely vary, influencing drug penetrance, efficiency, and,
ultimately, reproducibility of results [71,85].

Organoids can also be used to study TME and drug screening [101,102]. They can
be cultured in a matrix, or in suspension, with specific supplemented media [68,101,103].
Organoids can be expanded from patient-derived cells and maintained in culture for
long periods, allowing the development of personalized biobanks [68]. Cancer-derived
organoids are able to preserve the characteristics of the original tumor [101,104–106],
including tumor metabolism [68,107], and, therefore, constitute ideal tools for identifying
novel cancer-specific biomarkers [108,109]. Cryopreserved patient-derived organoids can
be used in the future for personalized drug screening and evaluating individual toxicity
and efficacy [101]. Although cancer-derived organoids have been generated in the last few
decades from a vast variety of cancer types, HNSCC-derived organoid formation is quite
recent. The first OSCC organoids were generated in 2018 from either cancer cell lines or
primary cells from oral cancers [68,109,110]. Tanaka and colleagues compared the effects
of cisplatin and docetaxel in 2D cultures and in organoids, and demonstrated different
sensitivities to drug treatment, with organoids being more resistant to docetaxel [108]. The
fact that organoids can be established from tumor tissues and grow rapidly supports the
idea of using organoids to study the best therapeutic approach for any individual patient.
OSCC-derived organoids can be used to test the efficacy of current chemotherapeutic
treatment, demonstrating that the monoclonal antibody cetuximab did not present a radio-
sensitizing effect in organoids derived from HNSCC. Some tests face the limitations of the
organoid model itself, such as the presence of common genetic mutations. For instance,
many of the organoid’s lines used present mutation in PIK3CA and, therefore, cannot
be used to predict drug response for the PIK3CA inhibitor [111]. Additionally, specific
protocols of cell maintenance and expansion should be established by the user, and some
cell types hardly grow in these conditions (e.g., multilayer epithelium) [112,113]. It is
important to mention that it is still not known what the level of cell heterogeneity kept
on the various organoids is, an important element in OSCC maintenance [68,114]. Finally,
although organoids grow fast and can be cryopreserved, the cost of keeping organoids in
culture remains high and inadequate for usage on a large scale [68,106].

Animal tests remain the most appropriate for studying and mimicking the physio-
logical and pathological complexity of tumors, but they carry numerous drawbacks (e.g.,
elevated cost, time consuming, and the need for highly educated personnel) [99]. The
actual presence of various transgenic mouse lines allowed us to analyze the impact of
systematic medications, with the possibility of following their effect on a specific molecular
pathway, either via colored reporter line, functional knock-out or by analyzing genomic
complexity via quantitative trait locus (QTL) (Figure 3).
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of the microenvironment and intercellular communication. In vivo systems (right panel) allow for the study of complex
pharmacological interaction occurring in the full organism, including inter-tissue and inter-organ effects.

4. Novel Drug Delivery Systems

New drug delivery systems can be put in place to improve the pharmacodynamics,
efficiency, and sensitivity of novel treatments. Nanoparticles, liposomes, micelles, and
exosomes are novel delivery systems currently used to improve the efficiency and safety
of drugs.

Nanoparticles can specifically target tumor cells, increasing the bioavailability of
drugs and reducing drug dosage, consequently diminishing the side-effects and off-target
toxicity [115–128]. The size of nanoparticles can vary between 3 and 200 nm. Nanoparti-
cles developed using colloidal structures composed by lipids generate liposomes, which
can be easily modified by adding structural adjustments [129,130]. In polymer-derived
nanoparticles, drugs are added to a polymer chain, resulting in a water-soluble compound
with high penetrance [129,131,132]. Instead, water-insoluble drugs are hosted in micelles
formed by polyethylene glycol (PEG), with an outer hydrophilic surface and a hydrophobic
internal core carrying the active agent [132–134]. Nanoparticles have been used to improve
the treatment of HNSCC. It has been demonstrated that gold nanoparticles covered with
cisplatin were able to deliver the drug specifically to HNSCC, also presenting a radio-
sensitizing effect [135]. Natural compounds, such as luteolin and resveratrol, have shown
great therapeutic potential when delivered via nanoparticles in HNSCC, resulting in tumor
growth inhibition [52,115,136–139]. Despite the fact that HNSCC treatment using nanopar-
ticles looks very promising, there are important limitations, such as an insufficient tissue
distribution of nanoparticles, toxicity of some reagents used for nanoparticle generation,
and diminished oral bioavailability [129].

Exosomes are vesicles released in the extracellular compartment (e.g., microvesi-
cles and apoptotic bodies) [140–144]. They can be found in many of the body fluids,
and their sizes vary between 30 and 150 nm [143–146]. While their role was initially
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thought to solely participate in cell’s endogenous waste clearance, several observations
indicate that exosomes have a much broader function, such as participating in cell sig-
naling, modulating the immune system, and regulating gene expression and intercellular
communication [140,141,143,147]. In HNSCC, tumor-derived exosomes have been linked
with all stages of cancer development. Exosomes from tumors may participate in cancer
initiation, progression and invasion, immune response regulation, and, finally, treatment
resistance [144,148,149]. HNSCC patients have a higher quantity of exosomes in plasma,
and the number of exosomes increases according to the tumor stage, showing that they can
be used as a potential source of HNSCC biomarkers [140,144,150–153]. HNSCC-derived
exosomes contain a variety of microRNAs and factors able to regulate the TME. Particularly,
exosomes from HNSCC contain miR-21, a microRNA present in hypoxic cells that are able
to promote cell migration and invasion, ultimately stimulating epithelial–mesenchymal
transition [154]. They can also regulate immune cells by inhibiting T cells, thus increasing
tumorigenesis [144,155–158]. Additional to their role in pathogenesis, exosomes can be
exploited for therapeutic usage. They can be modified and used as exogenous and/or en-
dogenous carriers for drug delivery, increasing their sensitivity to the target tissue [140,159]
(Figure 4). However, the safety of exosomes for clinical applications is still under debate,
and more studies are needed to grant their routine therapeutic usage in clinics.
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5. Conclusions

Our knowledge on the biological basis of HNSCC is slowly progressing. This lag of
basic knowledge is reflected in reduced possibilities for the development of novel thera-
peutic strategies. New approaches to drug development include innovative experimental
approaches, modeling systems for drug screening, personalized medicine tools, identifica-
tion of drug targets, and more efficient delivery routes. Advances in these fields of study
will pave the way for more efficient and safe therapies to treat HNSCC.
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