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Abstract: Topology control is one of the most essential technologies in wireless sensor networks
(WSNs); it constructs networks with certain characteristics through the usage of some approaches,
such as power control and channel assignment, thereby reducing the inter-nodes interference and
the energy consumption of the network. It is closely related to the efficiency of upper layer protocols,
especially MAC and routing protocols, which are the same as underwater acoustic sensor networks
(UASNs). Directional antenna technology (directional transducer in UASNs) has great advantages in
minimizing interference and conserving energy by restraining the beamforming range. It enables
nodes to communicate with only intended neighbors; nevertheless, additional problems emerge,
such as how to guarantee the connectivity of the network. This paper focuses on the connectivity
problem of UASNs equipped with tri-modal directional transducers, where the orientation of a
transducer is stabilized after the network is set up. To efficiently minimize the total network energy
consumption under constraint of connectivity, the problem is formulated to a minimum network cost
transducer orientation (MNCTO) problem and is provided a reduction from the Hamiltonian path
problem in hexagonal grid graphs (HPHGG), which is proved to be NP-complete. Furthermore, a
heuristic greedy algorithm is proposed for MNCTO. The simulation evaluation results in a contrast
with its omni-mode peer, showing that the proposed algorithm greatly reduces the network energy
consumption by up to nearly half on the premise of satisfying connectivity.

Keywords: UASNs; topology control; directional; connectivity; NP-complete

1. Introduction

Underwater acoustic sensor networks are extensively used in marine exploration,
disaster warning, sea area surveillance, etc. With the progress of sensor technology and
the arousal of marine rights and interests of numerous countries, UASN technology has
attracted more and more attention from researchers [1–4]. However, due to the disadvan-
tages of high propagation delay, low bandwidth and low communication rate brought
by the high complexity of underwater acoustic channel [5], transmitting/receiving with
a traditional half duplex omni-directional transducer will cause serious packet collision.
In fact, many studies [6,7] indicate that a large portion of packet losses are rooted in data
conflict, including transmitting/receiving conflict and receiving/receiving conflict [8],
which wastes a lot of the very limited energy and reduces the network lifetime.

Some recent works [9] show that using directional technology can greatly improve
network performance; this is because the directional transducer [10] is able to radiate
toward a certain direction so as to reach farther at the same power, compared with trans-
ducer radiating energy omni-directionally. What is more, a long time pursuit for network
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spatial reuse is achieved by reducing interference between non-communicating nodes in
the network, which benefits from the focusing ability of directional transducer. Eventually,
it improves the network lifetime as well as the network traffic.

In spite of the huge advantages brought by directional technology, new challenges
arise. The first and foremost one is the problem of determining the beam direction to make
the total network symmetrically connected [11]. A large number of researchers put forward
many different optimization goals with the network connectivity as a constraint, such
as the minimum latency data aggregation problem [12], network coverage maximization
problem [13], power assignment problem [14], etc. In addition, some authors also make
many extraordinary creative works to prove their NP property.

This paper focuses on the challenges that UASNs face with, for example, sound signals
attenuate seriously in an underwater environment [15,16], and nodes of UASNs always
have limited energy and are almost impossible to be recharged underwater [17]. Studying
the problem of maximizing the network lifetime under the connectivity constraint, we
intend to orientate the nodes to be connected with minimum energy consumption, which
is formulated to a minimum network cost transducer orientation (MNCTO) problem.
The problem is reduced from a Hamiltonian path in a hexagonal grid graph problem
(HPHGG) [18] that was proved to be NP-complete.

The main contributions of our work are as follows:

1. Based on the tri-modal transducer model, the optimal beamwidth of UASNs stochas-
tically distributed near π/3 is analyzed.

2. For UASNs equipped with π/3 beamwidth directional transducer, the problem of
MNCTO is formulated, which is the first attempt, to the best of our knowledge.

3. The problem of MNCTO is proved to be NP-complete by a reduction from HPHGG.
4. A volume model is introduced to denote the energy radiation, especially for omni-

directional and directional models.
5. An O(n2) complexity heuristic greedy algorithm is elaborated to solve the MNCTO

problem.

The rest of the paper is organized as follows: in Section 2, some inspiring related works
are introduced; in Section 3, the system model is expounded, including the theoretical
analysis of the optimal beamwidth of UADSNs as well as the network model that nodes
use to communicate. Then, the problem of MNCTO is formulated, and the NP-complete
proof is provided in Section 4; an excellent heuristic algorithm to solve the problem is also
elaborated. Next, in Section 5, the simulation evaluations and comparisons are conducted.
Finally, the paper is concluded in Section 6.

2. Related Works

Connectivity is a very important issue in underwater acoustic directional sensor
networks (UADSNs); some related enlightening works are introduced in the following
section.

In [19], Li provided a detailed analysis of a cone-based distributed topology-control
algorithm, which only depends on the directional information that a node can achieve.
The basic idea is to transmit with the minimum power required to ensure that in every
cone of degree α around a node u, there are some nodes that u can reach. It is shown that
taking α = 5π/6 is a necessary and sufficient condition to guarantee that the network is
connected.

In [20], Aschner R. et al. researched, under the condition of an unbounded transmis-
sion range, the smallest angle α for which there exists an integer n = n(α) such that for any
node set P of n antennas of angle α, there can form a symmetric communication graph
by appropriately orienting the antennas. Finally, they came to the conclusion of n = 4
for α = π/2, and a thesis was further derived, which reveals that if an omni-directional
unit disk connected graph meets the condition of r = 14

√
2, the induced symmetric

communication graph connects.
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A new graph structure called α-MST was studied in [21], which is a minimum span-
ning tree of a set of vertexes P with the additional property that for each point p ∈ P , the
smallest angle around p containing all the edges adjacent to p is at most α. A generation
algorithm is provided in the paper for α-MST, where a boundary of α = π/3 is asserted,
while an α-MST does not always exists when α < π/3. In addition, the author reduced the
connectivity with α = 2π/3 to be NP-hard from HPHGG, whose thinking afforded us a
lesson in the proof of MNCTO in this paper.

Ref. [22] studied an interesting relevant geometric problem from the view of mathe-
matics; the authors formulated a problem of building a connected communication network
for a set P of n vertexes with an α-degree directional antenna, and proved that it is always
possible if α ≥ 60. An O(n log k) complexity algorithm was also proposed to orient the
antenna direction, which utilized the properties of the convex hull of P . Nevertheless,
given an unbounded transmission range, the network sets up without considering the
energy consumption and leads to a geometric topology with a large average link length.

Dobrev S. et al. in [23] conducted some research on the work mentioned above, and
showed that for antenna beamwidth α < π/3, the problem is NP-complete to connect the
network with a given radius, while for π/3 ≤ α < π/2, it is still unknown how to connect
any set of vertexes with a constant range.

Some other related works helpful to our work are summarized as follows Table 1.

Table 1. Researches for symmetric connectivity problem under condition of one beam.

Beamwidth Mode Range Complexity Reference

α < π/3 Fixed Orientation Not always
guaranteed NPC [22]

α = π/2 Fixed Orientation 14
√

2 O(n log n) [20]
α = π/2 Fixed Orientation 7 O(n log n) [24]

π/3 < α < 2π/3 Fixed Orientation 4/ cos(α/2) O(n log n) [25]
α = 2π/3 Fixed Orientation 5 O(n log n) [26]

2π/3 < α < π Fixed Orientation 2 cos(α/2) + 2 O(n2) [25]
π ≤ α ≤ 5π/3 Fixed Orientation 2 sin(α/2) + 1 O(n log n) [23]

Motivated by the observations, including, but not limited to, the results tabulated
above, whose ranges seldom cover the condition of α = π/3, which coincides with our
previous study on the most suitable beamwidth for an underwater directional transducer,
we attempt to conduct some further work on the coincidence brought by the specialty of
an underwater acoustic environment, which is illustrated in the next section.

3. System Model

In this section, the directional model of UASNs is firstly introduced through the theo-
retical analysis of the best parameters for the use of a multi-modal underwater transducer,
which is called an underwater acoustic directional sensor network (UADSN). Based on the
result, the network model and the energy cost model are defined.

3.1. Directional Model in UASNs
3.1.1. Multi-Modal Transducer Model

The sound field radiated by multi-modal transducer at different spatial azimuth angles
can be expressed as the following formula [10]:

p(θ) =
B0

2
+

∞

∑
n=1

Bn cos(nθ) (1)

In Equation (1), p denotes the sound pressure with reference µPa, θ denotes the
azimuth in rad, and Bn denotes the weight of the nth modal. While cos(nθ), the normalized
directional function can be calculated by Equation (2):
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Bn =
2
π

π∫
0

p(θ) cos(nθ)dθ (2)

Therefore, the appropriate parameters can be selected according to the requirements
to obtain the intended directivity performance.

Except for the monopole modal (exactly omni-directional mode), most transmitting
transducers can also produce dipole modal directivity, and a few may provide the di-
rectivity of the quadrupole modal, and thus Equation (1) can be consequently reduced
as follows:

p(θ)
p(0)

= R(θ) =
1 + A1 cos θ + A2 cos 2θ

1 + A1 + A2
(3)

For different combination of A1 and A2, there forms different normalized directional
performance, as shown in Figure 1 below:

Figure 1. Normalized directional characteristics graphs for different combined coefficients.

3.1.2. Optimal Beamwidth

As a rule of thumb, the more communication nodes coveraged by a sponsoring node,
the better; the fewer nodes out of its coverage, the better. This ensures directional network
connectivity as much as possible. Assuming that some nodes are uniformly distributed in
the Euclidean plane and that their coverage area is divided into 8 sectors, the number of
nodes nCov(p) that an arbitrary node p covers can be denoted by the area that p covers, as
the formula shows below:

nCov(p) = S(−π

8
< p <

π

8
) =

∫ π
8

− π
8

dist(θ)dθ (4)

nExc(p) = S(
π

8
< p < π) + S(−π < p < −π

8
)

=
∫ π

π
8

dist(θ)dθ +
∫ − π

8

π
dist(θ)dθ

(5)

where dist(θ) denotes the farthest distance a beam can reach in direction θ, and Equation (5)
denotes the uncovered area of p; thus, the node coverage ratio(NCR) can be defined as a
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ratio of the coverage area of p to the uncovered area of p, which is denoted by Equation (6)
as follows:

NCR(p) =
nCov(p)
nExc(p)

=
S(−π

8 < p < π
8 )

S(π
8 < p < π) + S(−π < p < −π

8 )

=

∫ π
8
− π

8
dist(θ)dθ∫ π

π
8

dist(θ)dθ +
∫ − π

8
π dist(θ)dθ

(6)

Then the goal is to find the parameters that maximize NCR(p). Observing the fact
that Equation (6) is closely related to dist(θ), according to sonar equation [27], we achieve
the following: {

SL(0)− TL(dist(0))− NL = DT
SL(θ)− TL(dist(θ))− NL = DT

(7)

In Equation (7), SL(θ) denotes the sound source level in direction θ, TL(dist(θ))
denotes propagation loss, and NL and DT denote the noise level and directional index,
individually. Therefore, a further simplification can be made as shown in Equation (8):

SL(0)− TL(dist(0)) = SL(θ)− TL(dist(θ)) (8)

Consequently, according to the relationship between the sound source level and sound
pressure, and the empirical formula of propagation loss in shallow water, we can obtain
the following:

SL(θ) = 20lg
p(θ)
pre f

(9)

TL(dist(θ)) = 15 lg dist(θ) (10)

Substituting Equations (9) and (10) into Equation (8), we obtain the following:

dist(θ) = dist(0)(
p(θ)
p(0)

)
4
3 = dist(0)(R(θ))

4
3 (11)

So, it is equivalent to solving the following optimization problem, combining the goal
as follows: 

max NCR =

π
8∫
− π

8

(R(θ))
4
3 dθ

/
(

π∫
π
8

(R(θ))
4
3 dθ +

− π
8∫

−π
(R(θ))

4
3 dθ)

s.t. R(θ) = (1 + A1 cos θ + A2 cos 2θ)/(1 + A1 + A2)
0 ≤ A1 ≤ 2
0 ≤ A2 ≤ 2

(12)

Finally, the result of A1 = 1.8305, A2 = 1.3019 is achieved. The result maximizes
NCR(p) and its directional performance is shown in Figure 2.

The corresponding 3dB beamwidth is about 2θ−3dB = 1.23rad = 70◦, which is just
slightly higher than the critical point of α = π/3 that guarantees connectivity, so the fan
angle of α = π/3 is chosen as the breakpoint due to the number of beams is an integer
and the beams do not overlap each other.
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Figure 2. Optimal beamwidth directivity diagram.

3.2. Network Model

In this chapter, the network model is introduced, which models the connectivity
properties among nodes. Networks just keep connection among nodes throughout the
lifetime, and there are various operating cases, according to their communication modes.

In the omni-directional case, a wireless network is often represented by a connected
graph, where vertices correspond to the network nodes, and a directed edge from one
vertex u to another vertex v indicates that data from the node u can reach directly to
the latter node v [28]; the relationship can be expressed as a directed arrow from u to v
as follows:

u→ v : ~d(u, v) < ru (13)

The vector ~d(u, v) denotes the Euclidean distance between nodes u and v. The directed
edge converts to an undirected one if the communication link is symmetrical, i.e., node v
locates within the transmission range of node u, and vice versa, which can be expressed
as follows:

u↔ v :

{
~d(u, v) < ru
~d(v, u) < rv

(14)

If the nodes share a same transmission range r, the equation is simplified to
the following:

u r↔ v : d(u, v) < r (15)

The equation above implies that u and v are symmetric, connected with transmission
range r; the relationship of the three nodes sharing a unified transmission range is shown
in Figure 3.
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Figure 3. Omni-directional connection between three nodes.

In the directional case, it is much more complicated to take into account the situation
where two nodes interact because a node can transmit/receive either directionally or
omni-directionally. Given a communication mode pair (X, Y), the symbols in the brackets
individually represent the transmission and reception modes of a node, so if directivity is
considered, there are altogether two modes that the node may work in, as listed below [29]:

• (D, O) ((respectively, (O, D)) mode: A node u transmits directionally and receives
omni-directionally, or conversely. In this case, u can reach any node v as long as its
beam covers the latter.

• (D, D) mode: A symmetric link sets up if both the sender and receiver are orientated
toward each other and they all lay within each other’s transmission range.

The diverse link connection feasibility of different operating modes are illustrated in
Figure 4, where the solid lines with arrows represent effective communication links, and
the dashed ones denote invalid links. As can be seen, Figure 3 is actually a (O, O) mode,
where two nodes communicate without any additional limit, apart from the transmission
range, while in Figure 4a of the (D, O) mode, a sending node u must orientate toward its
intended node v. If two sending nodes transmit to a same destination simultaneously, a
collision then occurs. In the (D, D) mode shown in Figure 4b, two communicating nodes
can set up a physical link only if they orientate toward each other at the same time, so node
w does not influence the ongoing communication between u and v.

Although it is more convenient to analyze the condition (D, O) or (O, D), the actual
network performance may not be as good as that of (D, D), as it is not realistic to reduce
the interference between nodes and improve the spatial reusage as desired (see Figure 4b).
Thus, the (D, D) mode with beamwidth π/3 is limited in the research.
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(a) Directional connections between two nodes
working in DO mode.

(b) Directional connections between two nodes work-
ing in DD mode.

Figure 4. Nodes connection feasibility of different operating modes. Solid lines with arrows represent
active communication links.

3.3. Energy Cost Model

According to the principle that the multi-modal transducer focuses its beam energy
and emits toward a certain orientation spatially, the energy conservation theorem is used
for modeling the energy cost model for simplicity. Although it can be modeled as a 2D
plane if the nodes depths are identical, we have to take into consideration the actual
situation that the multi-modal transducer works in a 3D environment. Thus, the following
question is raised: compared with the omni-directional one, how does a transducer with
π/3 beamwidth perform regarding energy cost?

Assuming that the radiant energy is uniformly distributed in the space that it covers,
the volume of 3D space that a beam covers can be expressed as its energy cost. So the
costs for an omni-directional transducer and directional transducer radiating radius r are
individually denoted as CO(r) and CD(r), as depicted below in Figure 5.

Figure 5. Spatial radiation range of omni-directional and directional models.

We know the volume of the whole sphere is CO(r) = 4
3 πr3, while CD(r) can be

calculated by dividing the volume into two parts, a inverted wedge and a dome. Their
volumes can be calculated by a definite integral operation as follows:
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V = Vwedget + Vdome

=
∫ √

3
2 r

0
π(

1√
3

z)2dz +
∫ r
√

3
2 r

π(r2 − z2)dz

=
π

9
z3|

√
3

2 r
0 + πz(r2 − 1

3
z2)|r√3

2 r

=

√
3π

24
r3 +

2π

3
r3 − 3

√
3π

8
r3

=
2−
√

3
3

πr3

(16)

Finally, the relative energy cost between the omni-directional and directional models
are achieved, and the energy cost ratio (ECR) is defined as follows:

ECRO
D(r) =

4
3 πr3

2−
√

3
3 πr3

= 4(2 +
√

3) (17)

This value is approximately 14.93, meaning that directional transducer saves about
93% energy on the condition that they transmit the same distance. The result is used for
evaluating our algorithm in the next section.

4. Problem Formulation and Algorithm Proposed

In this section, the problem of minimum network cost constrained transducer orienta-
tion for the network model discussed above is formulated, and a corresponding algorithm
is proposed to solve it.

4.1. Problem of Minimum Network Cost Transducer Orientation
4.1.1. NP-Complete of Transducer Orientation Problem

Firstly, we consider the fixed orientation problem of transducers with π/3, whose
orientations are stabilized after the network is established.

Assuming a symmetric connected network composed of nodes set V can be expressed
as an undirected graph G = (V, E), E is the edges set that ∀u, v ∈ V, i f eu,v ∈ E, u r↔ v. The
nodes are equipped with a directional transducer of beamwidth π/3, and its transmission
range is r. So the first problem is formulated as follows.

Problem 1. Given a transmission range R and a set of nodes V with a π/3 beamwidth transducer,
can a network be symmetrically connected by assigning to each node a suitable orientation?

Problem 1 is called the transducer orientation problem (TOP), which is proven to be
NP-complete in the following.

Theorem 1. The TOP is NP-complete.

Proof. In order to prove that the TOP is NP-complete, we firstly prove TOP ∈ NP, and
then prove that TOP is NP-hard by reducing HPHGG ≤P TOP.

For the proof of NP, given a certification C = [C1, C2, ..., Cn], n = ‖V‖, denoting the
set of nodes’ orientations, we can easily determine if the network, including all nodes, is
fully connected in polynomial time. Therefore, the TOP is NP.

Before the reduction is commenced, an equilateral triangular widget of side length r is
introduced at first. r is infinitesimally larger than the transmission range R, as is shown in
Figure 6a:
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(a) An equilateral triangular widget includ-
ing 6 nodes located in triangular vertex.

(b) A hexagon of HPHGG replaced with equi-
lateral triangular widgets.

Figure 6. An equilateral triangular widget and a replacement of the hexagon.

The vertexes of the outer triangle x, y, z represent nodes provided with the π/3
beamwidth transducer, and then we add three inner nodes u, v, w located in the midpoint
of each edge, so each node can be assigned an orientation so that the triangle vertexes are
symmetrically connected, as the triangles in Figure 6b show. We call the vertex in the outer
triangle whose beamforms form inward as the Emitting Node, while the other forms as
the Contacting Node.

Each vertex in a hexagon of HPHGG of side length r can be replaced with the above
widgets in order to construct a reduction, as is depicted in Figure 6b. A connected HPHGG
instance with vertexes replaced by equilateral triangular widgets is thus achieved in the
same way, as Figure 7 shows, according to Appendix A Lemma A1, in which a few widgets
need to be turned round.

Figure 7. Reduction from HPHGG to TOP.

From the picture above, we can see that a HPHGG with the largest node degree 3
is found; the paths are highlighted with bold black arrows. In fact, according to [18], a
Hamiltonian path can always be found in a hexagon grid graph.

In summary, given a HPHGG, we can reduce it to a TOP by adding some equilateral
triangular widgets, which can be completed in polynomial time; thus, the reduction is
completed.
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4.1.2. NP-Complete of MNCTO Problem

In underwater environment, the path loss that occurs over a distance l for a signal of
frequency f is given by the following [30]:

A(l, f ) = A0lka( f )l (18)

where A0 is a unit-normalized attenuation constant, k is the spreading factor ranging from
1 to 2, and a( f ) is the absorption coefficient. Thus, the acoustic path loss expressed in dB is
given by the following:

10 log
A(l, f )

A0
= k log l + l log a( f ) (19)

Fixing the signal frequency, we can treat the absorption coefficient a( f ) as a constant,
and the energy cost that a signal travels for a distance of l can be denoted in unit dB as the
following:

cost(l) = K log l + Al (20)

where the capitalized letters represent constant coefficients. Then, the problem of MNCTO
is formulated as follows:

Problem 2. Given a set of nodes V with a π/3 beamwidth transducer and a total energy consump-
tion E , can a network be symmetrically connected by assigning to each node a suitable orientation
and transmission range R?

Theorem 2. The MNCTO problem is also NP-complete.

Proof. In order to prove that MNCTO is NP-complete, we firstly prove MNCTO ∈ NP,
and then prove that MNCTO is NP-hard by reducing the former proven TOP ≤P MNCTO.

For proof of MNCTO ∈ NP, it can be easily determined whether the network is
symmetrically connected under constraint of total cost E in polynomial time. Given a
certification of C = [C1, C2, ..., Cn], n = ‖V‖, where Ci = [oi, costi→j] is a tuple, denotes the
cost of node i communicating to its adjacent node j with orientation oi.

In order to reduce TOP ≤P MNCTO, we recall the previous structure of HPHGG,
whose vertexes are replaced by equilateral triangular widgets in Figure 7 and make a
further analysis. Assuming that the side lengths of the triangular and the regular hexagon
are identical, r, the inner edges of the widgets are of length r/2 and the edges connecting
the two widgets are of length r, so the according costs are as follows:

cost(r) = K log r + Ar

cost(
r
2
) = K log

r
2
+ A

r
2

= K log r +
Ar− K log 2

2

(21)

From Lemma A1, we know a widget can only connect to its adjacent peers; in fact, only
in this way does it cost the minimum energy. According to the concept of the Hamiltonian
path, we obtain the number of edges outside the widgets as n− 1, while in order to connect
them, the links inside have to be added.

The relationship between number of nodes n and the cost of the inner widget is
investigated in the following, which is shown in Lemma A2. Thus, the minimum total cost
of the whole HPHGG for TOP can be obtained as follows:

COST = Ct + (n− 1)cost(r)

=
(6n− 7)(5K log r + 3Ar− 2K) + K log 2

5

(22)
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Hence, the reduction is conducted.

Recalling Problem 2, if a TOP has a Hamilton Path, the minimum cost COST is
obtained, and if COST ≤ E , the network can be symmetrically connected by assigning to
each node a suitable orientation and transmission range r, but not the opposite.

4.2. Algorithm Proposed
A Greedy Heuristic Algorithm for MNCTO

In order to expound ideas of the algorithm, we analyze and construct a greedy
heuristic algorithm to solve the problem of MNCTO step by step in this section.

Given a 2D underwater Euclidean plane randomly deployed of sensors with π/3
beamwidth directional transducer, an intuitive thought is that there must be more than
6 nodes that the whole plane can cover, although the locations and orientations of these
nodes should meet some certain conditions. Fortunately, the conditions are not very strict,
i.e., even though they need to occupy all the sectors of a disk, the satisfactory orientations
are independent of their accurate positions, which just depend on the sector they are
located in as Figure 8 shows.

Figure 8. Three pairs of symmetrically connected nodes covering the entire plane.

Each node in different sectors can choose its orientation from the directions displayed
in Figure 8 to cover the disk center; in this way, its associating node laying in the opposite
sector is also connected, and vice versa. The three pairs of nodes are sure to construct three
symmetric connections and cover the entire plane.

Obviously, this not enough to build a fully connected network for the reason that we
cannot guarantee that the three pair of nodes are interconnected. In fact, this is impossible,
according to the lemma bellows:

Lemma 1. The 6 nodes located in different sectors of a disk cannot interconnect, even if their
transmission ranges are unlimited, when they cover the entire plane.

Proof. It is known from the above analyses that the 6 nodes can form 3 pairs of symmetric
connections, and each of them is composed of 2 nodes laying oppositely. Without losing
generality, one of the symmetric links a ↔ b and other link nodes, e and f , are taken for
illustration.

As can be seen from Figure 8, node b covers node f but not vice versa, because
one of their coverage boundaries is parallel. It is the same with node e, and thus, a fact
can be deduced that nodes in different symmetric connections cannot reach each other
simultaneously.

In this way, the lemma is proved.



Sensors 2021, 21, 6548 13 of 24

Therefore, some more work should be done to construct a core group that guarantees
connectivity. Considering the ideas that Paz Carmi proposed in [22], a method to construct
the structure is proposed, but first of all, another lemma is introduced as an auxiliary.

Lemma 2. Any three nodes with directional transducer of π/3 beamwidth can form an intercon-
nection if their orientations are unrestricted.

Proof. Assuming that the three nodes x, y, z compose a triangle whose interior angles are
∠yzx < ∠xyz < ∠zxy, as Figure 9 shows, despite the special case that it is equilateral (in
this case, the three nodes are symmetrically connected, simultaneously), the three angles
have the following relationship.

Figure 9. Any 3 nodes with directional transducer of π/3 beamwidth are interconnected.

∠xyz +∠yzx +∠zxy = 180◦

=⇒ 3∠yzx < 180◦ < 3∠zxy

=⇒ ∠yzx < 60◦ < ∠zxy

(23)

So, there must be an interior angle no more than 60◦, assuming it is ∠yzx, which
means that the node z can cover another two nodes with its π/3 beam, so the symmetric
connections between them are easily built only if x, y orientate themselves to z.

Combining Lemma 2 and Figure 8, it is easy to find a target group composed of at
least 9 nodes that always interconnect and radiate omni-directionally, which is called a
target group. The method is illustrated in Lemma 3 as follows.

Lemma 3. Given a disk with 6 sectors, if each sector covers at least 1 node with beamwidth π/3,
called HexNodes, and another 3 homogeneous nodes, which are called TriNodes that are located in
3 interlaced sectors of them, the nodes interconnect if the maximal interior angle of the TriNodes is
no more than 2π/3.

Proof. For the reason that further constraint of orientations emerge, here, we need to
prove that the connections are assured between HexNodes and TriNodes as well as the
connections of the inner TriNodes.

First of all, it is known that two HexNodes in opposite sectors are connected, so if
we want to connect the 6 HexNodes through TriNodes, there must be one TriNode in each
opposite sector. This can be described as a permutation and combination problem, i.e.,
how we can select from sector sets of [0, 3], [1, 4] and [2, 5] that every set is chosen as the
only element? Taking [0, 1, 2] and [0, 1, 5] as examples, both sets construct a semicircle,
implying that the three TriNodes lay on one side of the diameter; in this situation, they
cannot communicate with all the HexNodes. Thus, there are only two possible scenarios
left: [0, 2, 4] and [1, 3, 5].
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As depicted in Figure 10, 9 nodes construct a target group satisfying the above condi-
tions, where the dashed lines denote symmetric connections of the inner HexNodes that
are colored in orange. The solid lines will be analyzed next. Without loss of generality,
let x, y, z be the outer nodes in the sectors, which cover no less than 2 nodes, and the
corresponding x′, y′, z′ lay in the opposite sectors. From Lemma 2, we know there must be
an acute angle formed by TriNodes : x, y, z, assuming ∠xyz, so node y can cover x, z with
a π/3 beam as well as node y′, covered by ∠xyz. On the other hand, y lays in the sector
covered by y′; thus, a symmetric connection y↔ y′ and two directed connections, y→ x
and y→ z, are set up.

Figure 10. Nine nodes make cross-connections.

Meanwhile, assuming that ∠yzx is the maximal interior angle, which is less than 2π/3
and larger than π/3, then ∠xzz′ +∠z′zy < 2π/3; this implies that either ∠xzz′ or ∠z′zy
must be less than π/3, so a symmetric connection z↔ z′ and an only directed connection
of either z→ y or z→ x can be established. The same applies for x.

Thus, the Lemma 3 is proved.

Based on the analyses above, an ingenious way to construct a connected group that
radiates the entire plane is thus formed, as is detailed in the following algorithm.

Algorithm 1 MNCTO.
Input: Nodes set V , Anticipated groups number nGroups
Output: Target groups set gSet
1: procedure FIND_TAR_GROUPS(V , nGroups)
2: nSet← set(); // Saves isolated nodes set
3: gSet← set(); // Target group set
4: if nGroups < 1 then
5: return ∅
6: else
7: tgSet← KMeans(V , nGroups); // Clustering V with K-Means
8: for all group ∈ tgSet do
9: if group contains more than 9 nodes then

10: c← CalculateCentroid(group); // Get the centroid of the group
11: g← group;
12: partition g into 6 sectors;
13: if g has a target group gItem then
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14: gSet← gSet ∪ gItem;
15: nSet← nSet ∪ (g− gItem);
16: else
17: Sorting gGroup with asending order for all its vertexes
18: for all vertex ∈ group do
19: angle← CalculateAzimuth(c→ vertex);
20: g← Rotate(g, angle); // Rotate g with angle anti-clockwise
21: if g has a target group gItem then
22: gSet← gSet ∪ gItem;
23: nSet← nSet ∪ (g− gItem);
24: break;
25: end if
26: end for
27: nSet← nSet ∪ group;
28: end if
29: else
30: nSet← nSet ∪ group;
31: end if
32: end for
33: if len(gSet) = 0 then // In order for convergence
34: nGroups← nGroups− 1
35: else
36: nGroups← nGroups− len(gSet)
37: end if
38: return gSet ∪ Find_Tar_Groups(nSet, nGroups); // Recursion
39: end if
40: end procedure

In Algorithm 1, an operation of rotating a group is a method that endeavors to make
it a target group, whose key idea is transforming a rotating problem of continuous angle to
a discrete condition, and thus, the computational expense is upper restricted by the group
size without affecting its performance too much. The Algorithm 2 is listed as follows.

Algorithm 2 MNCTO.
Input: Target group gGroups, Rotating Angle bias
Output: Rotated target group gGroup
1: procedure ROTATEA(gGroup, bias)
2: for all vertex ∈ gGroup do
3: azimuth← getAzimuthAngle(gGroup.center, vertex)− bias + 0.0001
4: Re-calculate sectorId for azimuth
5: gGroup resets sectorId for vertex
6: end for
7: return gGroup
8: end procedure

Nevertheless, although we have our network cut apart into target groups and outliers,
it is not completely connected until the connections for the two kinds of nodes are built.
Recollect the capability that a target group beams omni-directionally; it is easy to set up
symmetric connection between a target group with an isolated node, because no matter how
a target group rotates (see Algorithm 1), the outlier must lay in one of its sectors. However,
this truth is unavailable for connecting two different target groups for the reason that their
orientations are fixed. Fortunately, we investigate the problem and reach the conclusion as
follows:
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Lemma 4. Given two target groups of nodes stochastically distributed with arbitrary deflection
angles in a Euclidean 2D plane, which are composed of nodes with a π/3 directional transducer
whose transmission range is unbounded, they are symmetrically connected through at least one link.

Proof. Without loss of generality, two normal cases are analyzed for the proof.
Given that the radius of the two target groups is R and the distance between their

centers is DIST, we know there must be a value of DIST for which one of the groups
is entirely covered by a HexNode of another group. The value is denoted by Dt; it is
dismissed because it does not affect the conclusions. Then, we have two cases of the
distance relationship between the two groups.

• Case 1: DIST < Dt
• Case 2: DIST ≥ Dt

In Case 1, where the line links the centers O1, O2 of the two groups and is extended as
a guideline L, there must be two HexNodes in one of the groups that are separated, which
are assumed to be b, c of the group O2 (the disk of red lines) as Figure 11 shows. Obviously,
HexNode b and c may be located in the same sector or different sectors of group O1.

Figure 11. Two target groups are connected in the case of DIST < Dt.

As for the former situation, b, c are covered by a because L passes through O2; to-
gether with the reason that the beam boundaries of HexNode are parallel with the sectors
boundaries, the coverage area of b and c is 2π/3. Considering that a lies opposite of b or c,
the angle of O2 → a with Lmust be less than π/3, so b or c is affirmative to cover a.

In another situation in which b, c are covered by a and d individually, the center O1
must be covered by either b or c, which is assumed to be c , as Figure 11 shows. With the
help of guideline L, we find that the included angle aO1 with L is less than π/3, so a is
sure to be covered by either b or c.

In this way, the validation that two target groups are connected in the case of dist < Dt
is proved.

While in Case 2, we know that all HexNodes of a target group are covered by a single
HexNode, the situation will be the same with the first situation of Case 1, and therefore,
they are connected too.

Thus, we prove the truth of Lemma 4.

For the last step, we just need to set up links between the target group and between
the target group and target group, as well as links between target groups and outliers, as the
Algorithm 3 describes below:
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Algorithm 3 MNCTO.
Input:Target groups gGroups, Isolated nodes outliers
Output: Void
1: procedure ESTABLISH_FULL_CONNECTIONS(gGroups, outliers)
2: MAXDIST = 65536
3: gGroups← MST(gGroups) // Establish MST for gGroups centers
4: for all group ∈ gGroups do
5: for all tar ∈ gGroups do // link target group with peers
6: if group not tar then
7: link group with tar
8: end if
9: end for

10: for all node ∈ group do // link TriNodes with HexNodes
11: if node ∈ TriNodes then
12: link node with its peer // peer: node locating in opposite sector
13: end if
14: end for
15: for all node ∈ TriNodes do // link TriNodes themselves
16: find node corresponding to the smallest angle
17: link node with other 2 TriNodes
18: end for
19: end for
20: for all node ∈ outliers do // link outliers with their nearest target group
21: tGroup← null
22: dist← MAXDIST
23: for all group ∈ gGroups do
24: if distance(node, group) ≤ dist then
25: dist← distance(node, group)
26: tGroup← group
27: end if
28: link node with tGroup
29: end for
30: end for
31: end procedure

In this way, connections for all the nodes in network are established. An artifice of
recursion is adopted in Algorithm 1, aiming at finding as many target groups as possible,
which guarantees that the algorithm can be maximally energy efficient.

5. Simulation Evaluations

In order to provide a detailed performance exhibition of the proposed MNCTO
algorithm, several metrics such as the total energy consumption and average hop distance
are designed to quantify the algorithm performance; a comparison of the omni-directional
mode is provided as reference.

5.1. Performance Metrics

• Network Energy Cost (Enc)
The energy consumed by a network G = (V, E) originates from packets delivered
from the source node to sink node. In ad hoc networks, all nodes are homogeneous
and able to act as at least one of sender/relay/sink, so the metric Enc is defined to
evaluate the energy efficiency, as shown below:

Enc =
1
N

N

∑
i=1

∑
u,v∈V

dk
u,v, u 6= v (24)
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where N = 1000 random packet paths are counted, u, v in denote arbitrary two
stochastic nodes and dk

u,v implies that the cost is positively correlated to the spreading
distance (see Equation (18)), where k denotes the spreading factor that ranges from 1
to 2 in an underwater environment; thus a median of 1.5 is used. In addition, ECRO

D
needs to be weighted when compared with the omni-directional mode, and du,v
should be normalized by a common constant; thus the network deployment boundary
is chosen.

• Delivery Distance Distribution
As the term suggests, this metric counts the distribution of traveling distances of large
quantities of packets with random source and sink, which is actually another enhanced
metric of network energy consumption that presents key performance intuitively.

• Average Single Hop Distance(Dhop)
It indicates the average link distance, and can be measured as Equation (25), where
du,v denotes the traveling path length of a random packet, while hu,v denotes the hops
number between u, v.

Dhop =
∑ du,v

hu,v
(25)

In order to confirm the performance of the algorithm under stable conditions and
meet the premise of Lemmas 1 and 4, MNCTO is designed to be a transmission range
free algorithm, meaning that the network implementing MNCTO is always connected
without much attention given to the parameter of the transmission range, but it is not
the same with an omni-directional network modeled as an unit disk graph (UDG), where
a communication link between two peers is set up as long as their distance is less than
a certain value. A situation that must be guaranteed is the connectivity of the latter,
which is still a challenging topic of research so far [31]; thus, a Monte Carlo analytical
method is developed. Various situations with different combinations of nodes number
and transmission range are simulated to provide comparisons.

5.2. Simulation Performance

Given an Euclidean 2D square plane and some nodes randomly deployed within
the water area, different metrics between underwater acoustic sensor networks running
MNCTO and UDG are evaluated. The simulation parameters are listed in Table 2:

Table 2. Parameters for simulation evaluations.

Parameter
Network Type

UADSNs UASNs

Connection Algorithm MNCTO UDG
Deployment Range 1000 × 1000 1000 × 1000
Number of Nodes 100–400 100–400
Clustering Ratio 0.2–1.0 -

Transmission Range - [150, 200, 250, 300]
Unit Distance Energy Cost 1 14.93

Routing Aigorithm Dijkstra Dijkstra

The reason why the clustering ratio (CR) is chosen as a parameter bases on an ob-
servation that the recursive MNCTO would try its best to make every 9 nodes target
groups; nevertheless, it is not always necessary because it may generate groups of large
communication radii during the anaphase, as Figure 12 exhibits.
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(a) Connectivity graph with nodes 200 ratio 0.3. (b) Connectivity graph with nodes 200 ratio 0.5.

(c) Connectivity graph with nodes 200 ratio 0.7. (d) Connectivity graph with nodes 200 ratio 0.9.

Figure 12. The connectivity graph of the network with 200 nodes.

In the figure above, the circle with six sectors denotes a target group with a certain
rotation angle; this phenomenon is more obvious on occasions of higher ratio value. Solid
circles of the same color within a group denote the corresponding HexNodes, while a
TriNode is displayed as an isomorphic one with a black edge. The other black squares
denote Outliers, which should be connected to their nearest group. At last, the dashed
dotted line indicates that the two groups are connected. Not all connections are shown for
the simple purpose that the figure is not chaotic.

As can be seen, various numbers of target groups are generated, according to the
value of the ratio. Recall that in a network of 200 nodes, the maximum number of groups
formed is 22, as, for the greedy MNCTO, it will find as many target groups as possible, so
the phenomenon will be inevitable in the convergence stage of the algorithm. A simple
but effective method is to limit the upper boundary of the intended number of the target
groups. In fact, with the increase in the number of target groups, the average scope that a
group covers decreases as a trade-off, so the gap is not as obvious as imagined.

Other performance indicators, such as the delivery distance distribution and average
hop distance, are provided below in Figure 13. It can be seen from the left of the figure that
the curve with a higher number of nodes is more dumpy, indicating that with an increase in
nodes, the total path length tends to be uniform. The right of the figure shows a mutually
corroborating conclusion, namely, the too-high or too-low numbers of hops reduce, and
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the waveform energy is concentrated in a certain value of the distance of 200, meaning that
the energy consumption of the nodes is balanced.

Figure 13. Path length distributions for different node numbers and ratios.

In Figure 14, the performance of the average hop distance (AHD) between MNCTO
and UDG are simulated. It is apparent that with CR increasing, the AHD of MNCTO tends
to decrease but is still higher than that of UDG. The reason lies in the algorithm generating
a target group that a directional node cannot communicate to its adjacent neighbors directly.
While taking the energy cost into account, the former is more energy efficient, as is depicted
below in Figure 15a, where the scales are all relative:

Figure 14. Average hop distance comparison.

(a) Average single hop cost. (b) Average path cost.

Figure 15. Energy cost of a single hop and a successful delivery.

What can be seen from the above figure is that the relay process of the directional
mode saves as much as 90% energy compared to the omni-directional mode. It also has
a better performance of the average delivery cost all over the whole network in spite of
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its higher path length, as Figure 15b reveals. The figure has two scales: the MNCTO is
represented by the ordinate on the left, while UDG is represented by the opposite ordinate.
A network implementing MNCTO with appropriate parameters may save more than half
of the energy, which is crucial for the underwater environment. Another observation is
that, with the expansion of network scale, the average hop cost reduces, the performance
differs from Figure 14; the reason lies in the result shown in Figure 13, i.e., the hop distances
distributions are more concentrated. Larger CR leads to a longer path distance, neutralizing
the advantages brought by short single hop distance; however, it is still comfortably ahead
of the omni-directional network.

6. Conclusions

From the perspective of the challenges that UASNs are confronted with, such as
topology control and energy efficiency, this paper investigates the advantages brought
by directional communication technology. However, there are many difficulties involved,
among them, the network connectivity being the key challenge to be solved. This research
provides a reduction from HPHGG to prove that the issue to connect an UADSN with a π/3
beamwidth directional transducer is NP-complete as well as to further the NP-complete
proof of connecting the network with minimum cost, which are defined as the TOP and
MNCTO problems, individually. Subsequently, a greedy heuristic algorithm is proposed
to construct a connected network of O(n2) complexity degree with constant probability
100%; relevant proofs are also provided within the paper. The simulation results show
that the proposed algorithm achieves the goal of full connection with lower energy cost,
compared with traditional UASNs equipped with omni-directional transducers, which
saves more than half of the energy. The research provides some significant guidance for
further research in related fields.
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Appendix A

Lemma A1. An equilateral triangular widget can connect adjacent edges in a hexagon grid graph.

Proof. From Figure 7a, it can be seen that there are totally 6 variants of equilateral triangular
widget, whose orientations are one of the sectors set as S = [[2,6], [3,1], [4,2], [5,3], [6,4], [5,1]]
in a counter-clockwise direction. Obviously, their orientations cover the whole Euclidean
plane. In addition, the degree of a vertex is intuitive, at most three in a hexagon grid graph,
which is also the most sophisticated condition of how a widget can be linked. As illustrated
in Figure A1, the construction also includes the situation of a node degree of two.
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Figure A1. Equilateral triangular widgets connections with others.

Without loss of generality, the structure depicted above is used to represent con-
nections in a hexagon grid graph, where the black solid lines indicate an equilateral
triangular widget that can only connect to at most two other widgets, because it has only
two Contacting Nodes. The side’s length is r, while the dashed line indicates that the
vertex is incapable of connecting to other widgets at present but this is not always so in
other variants.

The conclusions in [18] show that there is no need to make a widget connected to more
than two adjacent widgets to construct a Hamiltonian path, but a capacity to orientate to
six directions is necessary, which is satisfied by the structure above. Thus, we make the
proof.

Lemma A2. A HPHGG for TOP of nodes set V with side length r,its total inner cost is [(5n−
6)(5K log r + 3Ar− 2K)− 2(Ar + K log 2)]/5, where n = ‖V‖.

Proof. From Lemma A1, it is known that a widget can only connect to at most two other
widgets, and from Figure 6, we notice an Emitting Node can only connect to one of the
Contacting Nodes directly, so the distance a signal travels is r. When another connection
(the connection between the Emitting Node and another Contacting Node) is required,
a signal need to relay three times to reach, so the total distance is 4 ∗ r

2 ; they cannot be
multiplied directly, as they are not of a linear relationship.

Another observation lies in the fact that the Hamiltonian path is a one-way directed
path, so a widget should receive from its previous transmission and transmit to its next
hop. For the reason explained above, the link distance between two Contacting Node is the
sum of their distances to the Emitting Node, so the distance of the inner widget is r + 4 ∗ r

2 .
Then, the according cost is obtained as follows:

cin = cost(r) + 4 ∗ cost(
r
2
)

= 5K log r + 3Ar− 2K log 2
(A1)

Considering the particularity of head and tail nodes of the path, the total inner cost of
HPHGG for TOP is as follows:

Ct = (n− 2) ∗ cin + 4 ∗ cost(
r
2
)

= (n− 2)(5K log r + 3Ar− 2K log 2) + 4K log r + 2(Ar− K log 2)

= (n− 6
5
)(5K log r + 3Ar− 2K)− 2

5
(Ar + K log 2)

=
(5n− 6)(5K log r + 3Ar− 2K)− 2(Ar + K log 2)

5

(A2)

Thus, the lemma is proved.
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