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new feature selection algorithm
for quantitative structure–activity relationship
models

Yuting Li, a Zhijun Dai,a Dan Cao,a Feng Luo,b Yuan Chen*a and Zheming Yuan*ac

Quantitative structure–activity relationship models are used in toxicology to predict the effects of organic

compounds on aquatic organisms. Common filter feature selection methods use correlation statistics to

rank features, but this approach considers only the correlation between a single feature and the

response variable and does not take into account feature redundancy. Although the minimal redundancy

maximal relevance approach considers the redundancy among features, direct removal of the redundant

features may result in loss of prediction accuracy, and cross-validation of training sets to select an

optimal subset of features is time-consuming. In this paper, we describe the development of a feature

selection method, Chi-MIC-share, which can terminate feature selection automatically and is based on

an improved maximal information coefficient and a redundant allocation strategy. We validated Chi-

MIC-share using three environmental toxicology datasets and a support vector regression model. The

results show that Chi-MIC-share is more accurate than other feature selection methods. We also

performed a significance test on the model and analyzed the single-factor effects of the reserved

descriptors.
1. Introduction

Quantitative structure–activity relationship (QSAR) models have
been applied widely in chemical sciences such as biochemistry,
environmental chemistry, food chemistry, and pharmacology.1

Water pollution is a global concern, and developing efficient
procedures for assessing the toxicity of organic pollutants to
aquatic organisms has become a research priority.2,3 QSAR can
model referential activity and toxicity for an unknown
compound by computing statistical relationships between bio-
logical activities andmolecular descriptors (features) for a set of
chemical compounds.4

In general, QSAR modeling includes four steps: recording
the bioactivity or toxicity of a specic compound, extracting or
calculating molecular descriptors, selecting features, and con-
structing and validating the model. Bioactivities can be ob-
tained by experimental observations, relevant literature, or
toxicity databases.5 The quantum chemistry soware enable
researchers to calculate thousands of theoretical parameters or
physico-chemical properties for a chemical molecule,6 like
HyperChem, MOPAC, Gaussian, ADF, and Dragon soware
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packages.7 Another package, Parameter Client (PCLIENT),
interfaces with various programs to provide calculations for
approximately 3000 descriptors,8 we selected PCLIENT for the
QSAR modeling in the present study.

The selection of descriptors is the most important step in
constructing an efficient QSAR model, as it is essential to
remove irrelevant and redundant descriptors.9 Feature selection
methods are commonly categorized into three groups: lter,
wrapper, and embedded algorithms. The lter algorithm is
widely used because of its simplicity and efficiency.10 Univariate
lter methods, such as Pearson's correlation coefficient (R),
distance correlation coefficient (dCor), and mutual information
criterion can eliminate irrelevant features but fail to remove
redundancy between features.11 The classical multivariate lter
method, minimum redundancy maximal relevance (mRMR),12

considers the maximum correlation between a feature subset
and the response variable and simultaneously removes redun-
dancies during the feature selection process. mRMR uses
mutual information (I) to characterize the relevance for paired
discrete variables, the F statistic for paired discrete versus
continuous variables, and Pearson's correlation coefficient R for
paired continuous variables. However, the F statistic may not
always be appropriate for an unknown population distribution,
the R statistic fails to reveal non-linear correlation, and the F
and I statistics are not comparable in the mRMR method. What
is needed is a measure that can assess the linear and non-linear
correlations simultaneously regardless of the distribution of
paired variables. Maximal Information Coefficient (MIC) can
This journal is © The Royal Society of Chemistry 2020

http://crossmark.crossref.org/dialog/?doi=10.1039/d0ra00061b&domain=pdf&date_stamp=2020-05-25
http://orcid.org/0000-0003-2024-3694


Paper RSC Advances
captures dependence between different types of paired vari-
ables, is a major breakthrough in measuring the correlation.13

Its estimation algorithm ApproxMaxMI performs uniform
segmentation on one variable and unequal interval discrete
optimization on another variable, and make MIC ˛ [0,1]
through maximal grid correction. ApproxMaxMI tends to cause
excessive segmentation in the direction of optimization for
small data, and the MIC value is falsely high. Chen et al.
proposed an improved algorithm, Chi-MIC,14 uses the chi-
square test to terminate grid optimization and then removes
the restriction of maximal grid. Chi-MIC has stronger statistical
power and better equitability, so was used in the present study
instead of the R statistic.

Another implicit disadvantage of mRMR is that the redun-
dancies within the selected features are not removed properly.15

We used redundancy apportionment in mRMR and formed a new
feature selectionmethod, Chi-MIC-share, which can removemany
redundancies and terminate feature selection automatically.

Once the rened feature subset is obtained, a statistical model
can be applied to evaluate the relationship between these
features and molecular bioactivities.16 Support vector regression
(SVR) is frequently used in QSAR studies,17–19 and a QSAR model
is generally validated by mean square error (MSE) and the coef-
cient of determination (R2), which we used for internal cross-
validation and external independent prediction. The retained
descriptors were analyzed for the biological or chemical molec-
ular mechanisms using a signicance test and their effects.20
Table 1 Toxicities of phenols to Tetrahymena pyriformisa

Compound �log IGC50 (mmol L�1) C

Phenol �0.431 2
*p-Cresol �0.192 *

m-Cresol �0.062 4
2,5-Dimethylphenol 0.009 4
3-Fluorophenol 0.017 2
3,5-Dimethylphenol 0.113 2
*2,3-XYLENOL 0.122 *

3,4-Dimethylphenol 0.122 3
2,4-Dimethylphenol 0.128 2
2-Ethylphenol 0.176 4
2-Fluorophenol 0.248 2
*2-Chlorophenol 0.277 *

3-Ethylphenol 0.299 4
2,6-Dichlorophenol 0.396 4
3,4,5-Trimethylphenol 0.418 2
4-Fluorophenol 0.473 2
*4-Isopropylphenol 0.473 *

2-Bromophenol 0.504 2
4-Chlorophenol 0.545 4
3-Isopropylphenol 0.609 2
2-Chloro- 5-methylphenol 0.64 4
*4-Bromophenol 0.681 *

4-Chloro-2-methylphenol 0.7 2
3-tert-Butylphenol 0.73 2
4-Chloro-3-methylphenol 0.795 2

a �log IGC50: half-maximal growth inhibitory concentration. *A test set sa

This journal is © The Royal Society of Chemistry 2020
2. Materials and methods
2.1 Datasets

To evaluate the performance of our method, we used three
QSAR datasets. Dataset 1 (Table 1) comprises of anesthetic
toxicities of 50 phenolic compounds to the free-living ciliate
Tetrahymena pyriformis.21 Dataset 2 (Table 2) records anesthetic
toxicities of 52 alcohol phenolic compounds to tadpoles,22 and
Dataset 3 (Table 3) describes anesthetic toxicities of 85
substituted aromatics to fathead minnows.23 The toxicities in
the three datasets are represented by half-maximal growth
inhibitory concentration (�log IGC50), concentration (log 1/C),
and half-maximal lethal concentration (�log LC50), respec-
tively. Each dataset was divided into a training set and a test set;
the compounds in the test set were selected at equal intervals
from the dataset in order of toxicity, and the remaining records
were used as a training set. Feature selection andmodeling were
performed only on the training set.
2.2 Calculation of molecular descriptors

High-dimensional molecular structure descriptors were ob-
tained from the PCLIENT soware package.24 We rst drew the
structural formula for compounds in the JME editor embedded
in PCLIENT, then imported them into the task window and 24
groups of descriptors were calculated. Aer removing the
invalid and duplicate descriptors, 1219, 1323, and 1360
descriptors from the three datasets were used for analysis.
ompound �log IGC50 (mmol L�1)

-Isopropylphenol 0.803
3-Chloro-4-uorophenol 0.842
-Iodophenol 0.854
-tert-Butylphenol 0.913
,3,7-Trimethylphenol 0.93
,4-Dichlorophenol 1.036
2-Phenylphenol 1.094
-Iodophenol 1.118
,5-Dichlorophenol 1.128
-Chloro- 3,5-dimethylphenol 1.203
-(tert-Butyl)-4,6-dimethylphenol 1.245
2,3-Dichlorophenol 1.271
-Bromo-6-chloro-2-methylphenol 1.277
-Bromo-2,6-dimethylphenol 1.278
-tert-Butyl-4-methylphenol 1.297
,4-Dibromophenol 1.403
3,5-Dichlorophenol 1.562
,4,6-Trichlorophenol 1.695
-Bromo-2,6-dichlorophenol 1.779
,6-Di-tert-Butyl-4-methylphenol 1.788
-Chloro-2-isopropyl-5-methylphenol 1.862
2,4,6-Tribromophenol 2.05
,4,5-Trichlorophenol 2.1
,6-Diphenylphenol 2.113
,4-Dibromo-6-phenylphenol 2.207

mple.
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Table 2 Toxicities of alcohol phenolic compounds to tadpolesa

Compound
log 1/C
(mmol L�1) Compound

log 1/C
(mmol L�1)

Methanol 0.24 Ethyl isobutanoate 2.24
Acetonitrile 0.44 *Isobutyl acetate 2.24
*Acetone 0.54 Butyl acetate 2.30
Ethanol 0.54 Chloroethane 2.35
Methyl aminoformate 0.57 Ethyl butanoate 2.37
Isopropyl alcohol 0.89 Pentane 2.55
tert-Butyl alcohol 0.89 *Bromoethane 2.57
*Aldoxime 0.92 Chloroethylene 2.64
Propyl alcohol 0.96 1-Pentene 2.65
Butanone 1.04 Benzene 2.68
Nitrocarbol 1.09 Ethyl pentate 2.72
Methyl acetate 1.10 *Amyl acetate 2.72
*Ethyl formate 1.15 Anisole 2.82
Neopentyl alcohol 1.24 Chloroform 2.85
Isobutyl alcohol 1.35 Iodoethane 2.96
Ethyl aminoformate 1.39 Acetophenone 3.03
Butyl alcohol 1.42 *1,4-Dimethoxybenzene 3.05
*Ethyl acetate 1.52 Phenyl carbamate 3.19
3-Pentanone 1.54 1,3-Dimethoxybenzene 3.35
Diethyl ether 1.57 1-Octanol 3.40
Isoamyl alcohol 1.64 Dimethylbenzene 3.42
2-Pentanone 1.72 *Butyl valerate 3.60
*1,3-Dichloro-isopropyl alcohol 1.92 Naphthalene 4.19
Ethyl propionate 1.96 2-Methyl-2-isopropyl phenol 4.26
Propyl acetate 1.96 Azobenzene 4.74
Acetal 1.98 Phenanthrene 5.43

a log 1/C: concentration. *A test set sample.
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2.3 Chi-MIC-share

Chi-MIC can capture linear and non-linear correlations
universally. Similarly to other correlation criteria, it only ranks
features by their correlation values with the response variable,
and cannot automatically select a subset of features. Although
mRMR takes into account both the correlation between features
and response variable and the redundancy between features, its
method of removing redundancy may cause some loss of
prediction accuracy. In addition, mRMR also only sorts features
and cannot automatically select a subset of features.25

We used Chi-MIC as an indicator of correlation and redun-
dancy, and replaced redundancy with redundant allocation.
Redundant allocation scores of individual features and feature
sets are calculated, and feature selection is automatically
terminated when the score no longer increases. The process
does not depend on the learning machine. The specic process
runs as follows:

We have sets of independent features, U ¼ {X1, X2, ., Xi, .,
Xm}, whose set length (number of elements) is |U| ¼ m. If it is
assumed that the introduced feature set is S, then the comple-
ment of feature set S is US ¼ U � S.

(1) For an introduced feature Xi in S, the score aer redun-
dancy allocation is:

Chi-MIC-share ðXiÞ ¼ Chi-MICðXi;Y ÞP
Xj˛S

Chi-MIC
�
Xi;Xj

� (1)
19854 | RSC Adv., 2020, 10, 19852–19860
(2) The total score of all features in S aer redundancy allo-
cation is:

Chi-MIC-share ðSÞ ¼
X
Xi˛S

Chi-MICðXi;Y ÞP
Xj˛S

Chi-MIC
�
Xi;Xj

� (2)

(3) Let the next incoming feature be Xnext, remember D ¼ S +
{Xnext}, then |D| ¼ |S| + 1. The standard for introducing the next
optimal feature by Chi-MIC-share is:

maxXnext˛Us
½Chi-MIC-share ðDÞ� ¼

X
Xi˛D

Chi-MICðXi;Y ÞP
Xj˛D

Chi-MIC
�
Xi;Xj

� (3)

(4) The Chi-MIC-share termination feature criterion is:

Chi-MIC-share (D) # Chi-MIC-share (S) (4)

It should be noted that the correlation score of each feature
in D aer redundant allocation will be refreshed aer the
introduction of Xnext. Therefore, with the introduction of
features, there is a maximum value for the total correlation
score of the feature subset aer redundant allocation.
Furthermore, Chi-MIC-share does not set the upper limit for
feature introduction and can automatically terminate feature
introduction without cross-validation, which saves time.
This journal is © The Royal Society of Chemistry 2020



Table 3 Toxicities of aromatics to fathead minnowsa

Compound �log LC50 (mmol L�1) Compound �log LC50 (mmol L�1)

Nitrobenzene 3.02 *4-Methyl-2,6-dinitroaniline 4.21
Resorcinol 3.04 P-XYLENE 4.21
1,4-Dimethoxybenzene 3.07 1,2,4-Trimethylbenzene 4.21
*3-Methoxyphenol 3.21 3-Methyl-2,4-dinitroaniline 4.26
p-Toluidine 3.24 4-Chloro-3-methylphenol 4.27
m-Cresol 3.29 *2,4-Dichlorophenol 4.30
Toluene 3.30 1,3-Dichlorobenzene 4.30
2-Methyl-5-nitroaniline 3.35 2,4,6-Trichlorophenol 4.33
*4-Nitrophenol 3.36 4-Chlorotoluene 4.33
Benzene 3.40 1,3-Dinitrobenzene 4.38
2-Methyl-3-nitroaniline 3.48 *1,2-Dichlorobenzene 4.40
o-Xylene 3.48 2-Phenylphenol 4.45
Phenol 3.51 4-tert-Butylphenol 4.46
*2-Methyl-4-nitroaniline 3.54 4-Methyl-3,5-dinitroaniline 4.46
2,6-Dimethylphenol 3.57 4-Butylphenol 4.47
2-Nitrotoluene 3.57 *1-Naphthol 4.53
p-Cresol 3.58 2,4-Dichlorotoluene 4.54
3-Nitrotoluene 3.63 1,4-Dichlorobenzene 4.62
*4-Amino-2-nitrophenol 3.65 2,4,6-Tribromophenol 4.70
4-Hydroxy-3-nitroaniline 3.65 3,4-Dichlorotoluene 4.74
4-Fluoronitrobenzene 3.70 *1,3,5-Trichlorobenzene 4.74
2-Nitroaniline 3.70 4-tert-Amylphenol 4.82
2,4-Dinitrotoluene 3.75 2,4,6-Trinitrotoluene 4.88
*4-Nitrotoluene 3.76 1,2,3-Trichlorobenzene 4.89
Chlorobenzene 3.77 5-Methyl-2,4-dinitroaniline 4.92
o-Cresol 3.77 *2,4-Dinitro-6-cresol 4.99
3-Methyl-2-nitroaniline 3.77 1,2,4-Trichlorobenzene 5.00
4-Methyl-3-nitroaniline 3.77 2,3-Dinitrotoluene 5.01
*4-Methyl-6-nitroaniline 3.79 3,4-Dinitrotoluene 5.08
2-Methyl-6-nitroaniline 3.80 2,5-Dinitrotoluene 5.15
3-Methyl-6-nitroaniline 3.80 *4-Pentylphenol 5.18
3-Chlorotoluene 3.84 1,4-Dinitrobenzene 5.22
2,4-Dimethylphenol 3.86 4-Phenylazophenol 5.26
*Bromobenzene 3.89 1,3,5-Trinitrobenzene 5.29
3,5-Dinitrotoluene 3.91 2-Methyl-3,6-dinitroaniline 5.34
2-Allylphenol 3.93 *1,2,3,4-Tetrachlorobenzene 5.43
3,4-Dimethylphenol 3.94 1,2-Dinitrobenzene 5.45
3-Nitrochlorobenzene 3.94 2,3,4,5-Tetrachlorophenol 5.72
*2,6-Dinitrotoluene 3.99 1,2,3,5-Tetrachlorobenzene 5.85
2-Chlorotoluene 4.02 Pentachlorophenol 6.06
2,4-Dinitrophenol 4.04 *4-Nonylphenol 6.20
2-Methyl-3,5-dinitroaniline 4.14 2,3,6-Trinitrotoluene 6.37
3-Methyl-2,6-dinitroaniline 4.18

a �log LC50: half-maximal lethal concentration. *A test set sample.
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2.4 Model evaluation and interpretation

The independent test evaluation standard uses MSE (eqn (5))
and R2 (eqn (6)). Smaller MSE and larger R2 indicate better
prediction ability of the model.

MSE ¼
Xn

i¼1

�
ytest_i � ŷtest_i

�2.
n (5)

R2 ¼ 1�
Xn

i¼1

�
ytest_i � ŷtest_i

�2,Xn

i¼1

�
ytest_i � ytest

�2
(6)

To test whether the regression of the SVR model is signi-
cant, we used an F-test. In eqn (7), U is the regression square
This journal is © The Royal Society of Chemistry 2020
sum of the model U ¼ Pn
i¼1

ðŷtrain_i � ytrainÞ2; Q is the sum of the

residual square of the model Q ¼ Pn
i¼1

ðytrain_i � ŷtrain_iÞ2; m0 is

the number of reserved descriptors, and n is the number of
training set samples. If F > Fa(n�m0 � 1), we can assert that the
model has signicant nonlinear regression at level a (0.01).
Furthermore, we used the single-factor effect analysis method
to assess the inuence trend of the single reserved descriptors
on response variable Y.20

F ¼ U
�
m

0

Q=n�m0 � 1
(7)
RSC Adv., 2020, 10, 19852–19860 | 19855
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where ytest_i is the experimental value in the test set, ŷtest_i is the
predicted value in the test set, ytest is the mean experimental
value of the test set, ytrain_i is the experimental value in the
training set, ŷtrain_i is the predicted value in the training set, and
ytrain is the mean experimental value of the training set.
3. Results and analysis
3.1 Chi-MIC-share feature selection process

Aer feature selection by Chi-MIC-share, the reserved descrip-
tors of the three datasets were 15, 27, and 22. Fig. 1 displays the
selection processes. The redundancy allocation score no longer
increases when features were introduced to a certain number.
3.2 Comparison of feature selection methods

To verify the efficacy of the redundancy allocation concept, we
performed feature selection on the three high-dimensional
datasets using univariate lter methods R, dCor, Chi-MIC and
multivariate lter methods mRMR, Chi-MIC-share. The well-
tuned SVR model was used to evaluate the feature subsets
rened by feature selection methods. The SVR model used in
this paper is derived from the LIBSVM soware package
(https://www.csie.ntu.edu.tw/�cjlin/libsvm/index.html). The
SVM type is set to epsilon-SVR; the SVR model has three
commonly used kernel functions, linear kernel, polynomial
Fig. 1 Chi-MIC-share scores for three datasets.

Table 4 Feature selection and independent prediction accuracy of SVR

Methods Feature number

Dataset 1
Fea
numMSE R2

All 1219 0.1066 0.7793 132
Ra 19 0.0626 0.8686 6
Rb 20 0.0994 0.8121 1
dCora 49 0.0948 0.7873 8
dCorb 15 0.0701 0.8368 4
Chi-MICa 86 0.0985 0.7842 6
Chi-MICb 27 0.1387 0.7029 3
mRMRa 15 0.1339 0.7180 9
mRMRb 13 0.1291 0.7188 2
Chi-MIC-share 15 0.0280 0.9590 2

a Forward selection method without culling feature. b Forward selection m

19856 | RSC Adv., 2020, 10, 19852–19860
kernel, and Radial Basis Function (RBF). Compared with other
kernel functions, RBF kernel shows better generalization ability
in most cases. Therefore, RBF kernel was used in the experi-
ment. The parameters include penalty parameter c, RBF kernel
parameter g, and loss function parameter p. The three param-
eters were optimized by grid search with 5-fold cross-validation
on the training set. The range of each parameter is set according
to the soware default, and 2 is the base of logarithm, the index
range of parameter c is [�1, 6], the index range of parameter g is
[�8, 0], and the index range of parameter p is [�1, �8].
Normalize the data to [�1, 1] before training the model to
correctly reect the actual situation of the data.

Since R, dCor, Chi-MIC and mRMR cannot automatically
select feature subsets, two heuristic forward selection methods
were used to lter the nal feature subsets. (a) Introduce one
forward feature at a time, and for each feature introduced, 5-
fold cross-validation was implemented on the training set by
machine learning algorithms such as support vector machine
until all features were introduced, and no features were
removed in this process. The features with highest accuracy
aer cross-validation were selected for the optimal feature
subset;26 (b) introduce one forward feature at a time, retained
those that were useful and eliminated the useless until all
features were traversed. In this process, features that cannot
improve cross-validation accuracy were eliminated.27 When
there are too many features, forward selection methods are
model

ture
ber

Dataset 2
Feature
number

Dataset 3

MSE R2 MSE R2

3 0.1740 0.8389 1360 0.1709 0.7468
5 0.0489 0.9658 91 0.3431 0.4541
8 0.0477 0.9503 37 0.3655 0.4445
8 0.0283 0.9733 100 0.2358 0.6212
2 0.0229 0.9767 25 0.1640 0.7518
1 0.0561 0.9467 82 0.2488 0.5975
4 0.0791 0.9716 15 0.4184 0.3631
8 0.1088 0.8876 70 0.1686 0.7503
6 0.1139 0.8578 11 0.2968 0.5607
7 0.0226 0.9750 22 0.0454 0.9367

ethod with culling feature.

This journal is © The Royal Society of Chemistry 2020
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time-consuming, so we selected the top 100 features and then
performed forward selection methods on the training set.

Table 4 shows that Chi-MIC-share is superior to the reference
feature selection methods in all three datasets. There is no
obvious difference among the three univariate lter methods
because the feature selection process is affected by many
factors. First, the univariate screening methods ignore the
correlation between features, and at the same time selecting
features with strong correlation will lead to deviations in
prediction accuracy. Second, heuristic search does not traverse
all features, and it is easy to fall into the local optimal. In
addition, relying on a learning machine to search for a subset of
features may lead to overtting of training model. The multi-
variable screening method mRMR does not show advantages
over the univariate screening methods, indicating that the
redundancy is not removed correctly. Chi-MIC-share considers
redundant allocation among features, does not rely on learning
machine, and uses a complete search in the feature space.
Experimental results show the superiority of this algorithm.
3.3 Comparison of the results of this article with references

Due to differences in descriptors and evaluation indicators, we
simply compared the results with related published reports. For
Dataset 1, the MSE of the present work is 0.0280 and R2 is
Fig. 2 Observed values and predicted values of three datasets.

Table 5 Fifteen reserved descriptors in Dataset 1

Group name Descriptor name Explanation

Molecular properties BLTF96 Verhaar model of algae ba
3D-MoRSE descriptors Mor30p 3D-MoRSE-signal 30/weig

Mor16m 3D-MoRSE-signal 16/weig
Mor28m 3D-MoRSE-signal 28/weig
Mor18m 3D-MoRSE-signal 18/weig
Mor21m 3D-MoRSE-signal 21/weig

Geometrical descriptors SPAN span R
L/Bw Length-to-breadth ratio b

WHIM descriptors Am A total size index/weighte
Atom-centered fragments H-047 H attached to C1(sp3)/C0(

C-024 R–CH–R
2D autocorrelations ATS5p Broto–Moreau autocorrela

GATS3e Geary autocorrelation-lag
GETAWAY descriptors R5p+ R maximal autocorrelation

HATS5u Leverage-weighted autoco

This journal is © The Royal Society of Chemistry 2020
0.9590; the previously reported values21 are 0.0424 and 0.919,
respectively. For Dataset 2, we found that R2 ¼ 0.9750, and
a previously reported value22 is 0.8949. For Dataset 3, we found
that R2 is 0.9367, and a previously reported value23 is 0.9197. We
can see that our independent predictions of SVR based on Chi-
MIC-share are better than those reported in the literature. Fig. 2
shows the distribution of observed values and predicted values
for the three datasets, conrming the results.
3.4 Model signicance test and single-factor effect analysis

Taking Dataset 1 as an example, the 15 reserved descriptors
selected by Chi-MIC-share established the SVRmodel, F¼ 21.93
> F0.01(15, 40) ¼ 2.1076, indicating that the model is signicant.
Table 5 shows the reserved descriptors and the corresponding
group names and explanations, and Fig. 3 shows the single-
factor effects of the 15 reserved descriptors in Dataset 1.

For the 15 reserved descriptors, the molecular global
descriptors are molecular properties, three-dimensional mole-
cule representation of structure based on electron diffraction
(3D-MoRSE) descriptors, geometrical descriptors, and weighted
holistic invariant molecular (WHIM) descriptors. The molecular
local descriptor is atom-centered fragments. Molecular combi-
nation descriptors are two-dimensional autocorrelations and
geometry, topology, and atom weights assembly (GETAWAY)
se-line toxicity from MLOGP (mmol l�1)
hted by atomic polarizabilities
hted by atomic masses
hted by atomic masses
hted by atomic masses
hted by atomic masses

y WHIM
d by atomic masses
sp2)

tion of a topological structure-lag 5/weighted by atomic polarizabilities
3/weighted by atomic Sanderson electronegativities
of lag 5/weighted by atomic polarizabilities

rrelation of lag 5/unweighted

RSC Adv., 2020, 10, 19852–19860 | 19857



Fig. 3 Single-factor effects of the 15 reserved descriptors in Dataset 1.
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descriptors. BLTF96 is the n-octanol/water partition coefficient,
which is a parameter in measuring the lipophilicity of organic
compounds in water. Experiments have shown that the n-
octanol/water partition coefficient is strongly correlated with
various toxicological properties of compounds.28 Mor30p,
Mor16m, Mor28m, Mor18m, and Mor21m29–34 are atomic
polarity parameters and atomic mass parameters; SPAN and L/
Bw descriptors35 reect geometrical features such as molecular
surface area, volume, and stereoscopic parameters. H-047 and
C-024 36 highlight the importance of hydrogen and carbon
atoms in inuencing the negative log half-maximal inhibition
growth concentration, as they participate in intermolecular
interactions through hydrogen bonds in the solid state. ATS5p
and GATS3e37,38 are vector descriptors that are based on the two-
dimensional structure of a molecule and the properties of
atomic pairs. R5p+ and HATS5u39,40 characterize the distribu-
tion of atomic properties on a topological structure, which is
a combination of geometry, topology, and atomic components.
The effects of these parameters on chemical compounds have
been reported in the literature.

WHIM descriptors are new three-dimensional molecular
property indices, contain information about the molecular
structure of a chemical compound in terms of size, shape,
symmetry, and atom distribution. Am is the total molecular
volume parameter of WHIM descriptors, and our ndings
demonstrate that its effects cannot be ignored.

Fig. 3 displays the single-factor effect. The factors that are
positively correlated with the effects of phenolic compounds on
T. pyriformis are Mor30p, Am, R5p+, SPAN, ATS5p, Mor28m,
Mor16m, L/Bw, and GATS3e. The factors that are negatively
correlated with the effects are BLTF96, H-047, C-024, Mor18m,
Mor21m, and HATS5u.
4. Conclusions

When the features of sample contain massive irrelevant or
redundant information, the performance of the mathematical
model is seriously affected. By constructing more reasonable
and reliable correlation or signicance metrics, feature selec-
tion methods can single out the most suitable feature subset
19858 | RSC Adv., 2020, 10, 19852–19860
from high-dimensional features, reduce the complexity of the
model, avoid over-tting, and enhance the interpretability of
the model. MIC can be used to measure the correlation
compactness between variables, has universality and equiva-
lence, and relevant studies have shown its effectiveness.

In this paper, we used the redundancy allocation algorithm
with Chi-MIC to automatically lter trusted features, then
veried the superiority of redundancy allocation over de-
redundancy using experimental datasets. Dynamic calculation
of share score is an important part of the chi-MIC-share algo-
rithm. First, it does not rely on the learning machine, but only
uses the constructed statistics to lter features. Second, based
on the overall features, it comprehensively weighs the change of
each feature score in the original set aer a new feature is
introduced, and the impact of such changes on the entire new
set. This dynamic adjustment will prevent the subset score from
increasing all the time. When a vertex is reached, the feature
selection process is also terminated. This may provide a new
idea for quantitative research and has certain reference value.
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