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Abstract

Aim

To identify biochemical and genetic variation relating to increased risk of developing type 2

diabetes mellitus and cardiovascular disease in young, lean male and female adults of dif-

ferent ethnicities.

Method

Fasting blood and urine and non-fasting blood following oral glucose intake were analysed

in 90 Caucasians, South Asians and South East/East Asians.

Results

There were no differences in age, birthweight, blood pressure, body mass index, percent

body fat, total energy, percentage of macronutrient intake, microalbumin, leptin, cortisol,

adrenocorticotropic hormone, nitric oxide metabolites, C-reactive protein, homocysteine,

tumor necrosis factor-α, interleukin-6, von Willebrand factor, vascular cell adhesion mole-

cule-1, plasminogen activator inhibitor-1, and tissue plasminogen activator. Fasting total

cholesterol (P = .000), triglycerides (P = .050), low density lipoprotein (P = .009) and non-

fasting blood glucose (15 min) (P = .024) were elevated in South Asians compared with

Caucasians, but there was no significant difference in glucose area under curve (AUC).

Non-fasting insulin in South Asians (15–120 min), in South East/East Asians (60–120 min),

and insulin AUC in South Asians and South East/East Asians, were elevated compared

with Caucasians (P�0.006). The molar ratio of C-peptide AUC/Insulin AUC (P = .045) and

adiponectin (P = .037) were lower in South Asians compared with Caucasians. A significant

difference in allele frequency distributions in Caucasians and South Asians was found for
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rs2166706 (P = 0.022) and rs10830963 (P = 0.009), which are both near the melatonin

receptorMTNR1B.

Conclusions

Elevated non-fasting insulin exists in young South Asians of normal fasting glucose and

insulin. Hepatic clearance of insulin may be reduced in South Asians. No current biochemi-

cal evidence exists of endothelial dysfunction at this stage of development.MTNR1B signal-

ling may be a useful therapeutic target in Asian populations in the prevention of type 2

diabetes mellitus.

Introduction
The metabolic syndrome, a clustering of cardiometabolic risk factors (abdominal obesity,
hyperglycaemia, dyslipidaemia, hypertension), increases an individual’s probability of develop-
ing type 2 diabetes mellitus (T2DM) or cardiovascular disease, and varies significantly among
ethnic groups [1]. Insulin resistance (IR) and T2DM has increased in countries which have
adopted a ‘western lifestyle’ (comprised of reduced physical activity and a diet higher in fat)
with some ethnic groups having a higher prevalence of this disease compared to other groups
living in the same multiethnic environment. It is more common in peoples of non-Caucasian
compared to Caucasian (C) origin and most wide spread in Asia/Australasia with 82.7 million
diagnosed, which is half of the world-wide prevalence. [1, 2]. South-Asians (SA), especially
Asian-Indians appear to be the most insulin resistant. Compared with a 5% incidence in C, the
prevalence of T2DM in Asian-Indians living in ‘westernised’ countries is around 19% and
develops about 10 years earlier. South-East Asians are also highly susceptible with an estimated
8% and 12% incidence in peoples fromMalaysia or Thailand, respectively [3].

Many studies have focused on older (>40 years), overweight participants with well estab-
lished IR, however it is evident that IR is becoming increasingly prevalent in youth. A previous
study [4] observed that younger (18–35 year old), leaner (body mass index (BMI)< 25 kg/m2)
adults without T2DM, already have elevated glucose and insulin following an oral glucose load.
This effect was marked in the Asians compared to C. That study, however, did not examine for
other blood markers of the metabolic syndrome.

High blood insulin and glucose are damaging to blood vessel function thus T2DM is consid-
ered a risk factor for cardiovascular disease, with 60–80% of people with diabetes having hyper-
tension and around 75% of deaths in this population due to cardiovascular disease [5].
Conversely, many cardiovascular risk factors are present before the development of T2DM.
One similarity between the two is endothelial dysfunction (ED) [6]. The term refers to
impaired vasodilation to specific mediators and to a proinflammatory and prothrombic state
associated with the vascular endothelium [7]. It appears to precede the development of T2DM
or cardiovascular disease, and has been identified in young normotensive individuals without
diabetes but with IR [8] and in young normotensive offspring whose parents have either hyper-
tension [9] or diabetes [10]. A correlation between ED, and higher non-fasting glucose and
insulin has been observed in individuals with a normal fasting glucose [10].

The current study aims were threefold, the first being a confirmation whether glucose and
insulin following an oral glucose load are elevated in younger leaner individuals of Asian com-
pared to Caucasian origin, despite a normal fasting glucose. If so, this would further emphasize
that the oral glucose tolerance test (OGTT) which measures the rise and fall of blood glucose
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for 2 hr following a meal, together with the measurement of insulin, is a more suitable diagnos-
tic than fasting blood glucose alone, in identifying young ‘at risk’ participants in populations in
whom diabetes is more prevalent. Secondly, though an interrelationship between T2DM and
cardiovascular disease, with ED as an early common denominator has been established, in
older overweight populations [11], this study undertook for the first time an extensive bio-
chemical screening for markers of ED in younger non-overweight, non-obese adults of differ-
ent ethnicities in whom prediabetes is absent. Any biochemical markers successfully identified
could serve as useful future diagnostic tools, along with contributing to existing knowledge on
the early onset of ED, T2DM and cardiovascular complications. This study measured blood
glucose, insulin, C-peptide, glycosylated haemoglobin (HbA1C), lipids (total cholesterol,
triglycerides, low and high density lipoproteins), cortisol, adrenocorticotrophic hormone
(ACTH), nitric oxide (NO) metabolites (nitrate, nitrite), the prothrombic markers (tissue
plasminogen activator (t-PA), plasminogen-activator inhibitor-1 (PAI-1) and von Willebrand
factor), the proinflammatory markers (C-reactive protein (CRP), homocysteine, interleukin-6
(IL-6) and tumor necrosis factor-α (TNF-α)), the soluble markers of inflammation (vascular
cell adhesion molecule-1 (VCAM-1) and endothelial-leukocyte adhesion molecule-1 (E-selec-
tin)), adipose tissue biomarkers (adiponectin and leptin), and urinary creatinine and
microalbumin.

Thirdly, while the environmental factors of sedentary lifestyle and consumption of energy-
dense foods undoubtedly contribute to T2DM, this condition also appears to have a genetic
contribution. The World Health Organization (WHO) estimates that by 2025, one-quarter of
T2DM patients globally will be Asian Indian [12]. Indians, within India and elsewhere, have
the highest prevalence of T2DM, earning the unfortunate term of ‘diabetes capital of the world’
[12, 13]. Therefore, in addition to the above, the current study also examined both the Cauca-
sian and Asian populations for single nucleotide polymorphism (SNP) frequencies in genes
associated with T2DM risk [14]. The risk of T2DM and the metabolic syndrome is variable,
even within the Asian population. Studies have separately grouped SA and South East Asians
in their comparisons with other cohorts [4]. The International Diabetes Federation has also
acknowledged differences within the Asian population by distinguishing between SA, Chinese
and Japanese in their ethnic specific cut-off points for waist circumference [15]. Therefore this
study kept separate the SA and the South East and East Asian (SEA) groups to examine for dif-
ferences between them and C.

Methods

Study population
The study was approved by the University of New South Wales Human Research Ethics
Committee (HREC 05311). All participants in the study provided a written consent. Ninety
male and female volunteer university students (30 per group) of C, SA (Sri Lankan, Indian,
Pakistani, Bangladeshi) and SEA (Vietnamese, Cambodian, Indonesian, Malaysian, Philippine,
Burmese, Korean) ethnicity were recruited by a written advertisement distributed on
notice boards, university publications and electronic university communications. They were
admitted into the study after satisfying the following: age 18–25 years, BMI 18–25 kg/m², waist
circumference< 90cm (males) and< 80 cm (females), and blood pressure<140/90 mmHg
(since overweight and hypertension contribute to IR). Participants were excluded if they (via a
questionnaire) had any known cardiovascular or non-cardiovascular disease, were on medica-
tion that could interfere with the study, were current smokers or had smoked within the last six
months. A family history (parent(s) and/or grandparent(s)) of hypertension and/or T2DM was
recorded and verified where possible with a list of medications. The following were also
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recorded: birth weight (as reported by their parents; low birth weight< 2.5 kg or high birth
weight> 4 kg is linked to an increased risk of insulin resistance later in life) [16], exercise habit
(to be aware of potential confounding beneficial effects of regular aerobic and resistance exer-
cise) [17], and the phase of the menstrual cycle during which female participants undertook
the OGTT (there are contradictions regarding the effect of the menstrual cycle on insulin sensi-
tivity) [18–21].

Study design
Participants made two visits to the laboratory.

Session 1. Heart rate and blood pressure using an automated device (Omron M2) were
measured with the subject seated after 15 minutes of rest (mean of 3 readings). Anthropometric
measurements used standardised techniques. Percent body fat was measured both by skin folds
using the Durnin-Womersley equation [22] validated for Asian Indians [23], and a TANITA
bioelectrical impedance analyser (Model BWB-800). TANITA has been well correlated with
dual-energy X-ray absorptiometry (DEXA) and hydrodensitometry [24].

Session 2. Participants arrived in the morning after an overnight fast since 8 pm; and
abstinence from alcohol, tea, coffee, caffeine-containing foods, and foods high in nitrites/
nitrates in the previous 48 hr. As the act of venepuncture can increase some hormone levels by
more than 50% [25], a stabilization period of 30 min was allowed after a cannula was inserted
into a forearm vein and before blood collection. Fasting blood (33 ml) (for the measurement of
all markers) was collected into vacutainers containing ethylenediamine tetracetic acid (EDTA)
or trisodium citrate between 7–10 am with participants in a semi-inclined position. Following
a 75-g glucose load, blood (each 6 ml) was collected every 15 min over 2 hr for the measure-
ment of glucose, insulin and C-peptide. Glucose, lipids, and HbA1C were measured immedi-
ately. Remaining blood was centrifuged (1560 g, 10 min, Heraeus Megafuge, Germany) and
plasma stored at -86°C for the measurement of other biomarkers. The buffy coat (0.5 ml) from
fasting blood containing the leucocytes was stored at -86°C following stabilization in 1.2 ml of
RNAlater (Ambion, USA) for SNP frequency analysis. Microalbumin and creatinine were mea-
sured on the same day of collection from a mid-stream urine sample, collected upon rising or
immediately prior to cannulation. Participants completed a 3-day food diary, indicating type
and quantity of food consumed during two non-consecutive weekdays and one weekend day.
As participants were requested to abstain from certain foods in the 48 hrs prior to the OGTT,
nutritional intake during this period was not recorded in the food diary. Data were entered
into a nutritional database (Serve Nutrition Systems, Australia).

Biochemical and genetic analysis
Blood glucose (HemoCue, Sweden), lipids (Cholestech LDX, USA), HbA1C, microalbumin
and creatinine (DCA 2000, Bayer HealthCare, USA) were measured by reflectance photometry.
Plasma insulin (BioQuant, USA), C-peptide (Demeditec Diagnostics, Germany), CRP, cortisol,
ACTH, leptin (each DSL, USA), homocysteine (Axis-Shield Diagnostics, UK), t-PA, PAI-1, IL-
6, TNF-α, E-selectin, VCAM-1 (each Bender MedSystems, Austria), von Willebrand Factor
(Corgenix, USA) and adiponectin (R+D Systems, USA) were determined by ELISA with colori-
metric assay at 450 nm. For the indirect determination of NO, 400 ul of each plasma sample
was ultrafiltered through VectaSpin micro-polysulphone 30kDMW cutoff filters (Whatman,
UK) (4620 g, 60 min, 24°C, Hettich Zentrifugen EBA12R, Germany). Plasma nitrite was then
determined at 550 nm using a colorimetric assay based on the Griess method (Cayman Chemi-
cal Company, USA). All colorimetric signals were measured using an Expert Plus Microplate
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reader (Asys Hitech, Austria). Both the extraction of DNA from fasting blood and SNP geno-
typing was performed by the Australian Genome Research Facility Ltd.

Statistical analysis
Biochemistry. Homeostasis model assessment of insulin resistance (HOMA-IR) [26]

assessed insulin sensitivity with the formula: fasting insulin (pmol/l) x fasting glucose (mmol/
l)/22.5. For estimating insulin clearance, the molar ratios of the integrated AUC response of
C-peptide (pmol/l) over insulin (pmol/l) after oral glucose were calculated [27].

Power calculations, based on a previous study [4], determined that 10 participants per
group would be sufficient to detect a significant difference in area under curve (AUC) for glu-
cose and insulin, assuming a 0.05 significance level and 80% power. Actual sample size was 30
per group (or 15 per group when studying gender differences). AUC were calculated using Sig-
maPlot 2001 (SPSS Inc., USA.) using the trapezoidal method. Glucose, insulin and C-peptide
AUC, all other blood/urine biochemistry, physiological characteristics and diet were compared
using one-way ANOVA. Post hoc comparisons were performed using the Tukey HSD test
except for folate consumption when least square difference (LSD) method was used. Correla-
tion was assessed using Pearson correlation. Data are presented as mean ± SEM. All tests were
two-sided, and P<0.05 indicated statistical significance. Analysis was conducted in SPSS (SPSS
Inc., U.S.A).

Genetics. Association analyses between SNPs and insulin AUC were run both ignoring or
including ethnicity as a factor (either C vs SA and SEA or C vs SA vs SEA) using PLINK [28].
Allele frequency distributions in C and SA were compared using Fisher’s exact test in the R
package (v3.0.1).

Results

Study population characteristics
The C, SA and SEA groups, each contained participants whose parent(s) and/or grandparent
(s) were diagnosed as having diabetes (D), hypertension (H), or both diabetes/hypertension
(DH). C consisted of 2D, 14H, 9DH; SA had 5D, 5H and 14DH, and SEA had 2D, 8H, and
13DH. The C, SA and SEA groups each had 5, 6 and 7 participants, respectively, reporting no
family history for either of the conditions.

There was no significant difference in age or birth weight between groups. Of the 90 partici-
pants in the study, 77 participants had a normal birth weight of 2.5–4 kg. The birth weights of
3 C, 4 SA and 1 SEA were 4.2–4.8 kg. A C was 2.3 kg, one SA was 2.2 kg (premature at 32
weeks) and a SEA was 1.7 kg (a twin born at 36 weeks). One SA and SEA recorded their birth
weight as unknown.

Regarding exercise habit, 26% of the group of 90 participants did not engage in physical
activity, with 23 participants (5 C, 6 SA, 12 SEA) reporting by questionnaire that they were sed-
entary or did not participate in regular aerobic exercise or resistance training. A weekly dura-
tion of< 1 hour, 1–2 hours, and> 2hours of aerobic exercise (for example, running, cycling,
rowing or swimming) was recorded for 39 (14 C, 13 SA, 12 SEA), 16 (5 C, 8 SA, 3 SEA) and 4
(3 C, 1 SEA) participants respectively. The 4 participants who indicated that they were engaged
in> 2 hours/week of aerobic exercise had average resting heart rates of 77–89 bpm. Resistance
training of< 1 hour, 1–2 hours, and> 2 hours per week was recorded for 14 (8 C, 3 SA, 3
SEA), 1 (SEA) and 2 (1 SA, 1 SEA) participants respectively. The participants who reported
more than 2 hours of resistance training rated it as being of light-moderate intensity.
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There was no difference in the average length of the menstrual cycle, or the day of the men-
strual cycle on which the OGTT occurred between the three female groups. Of the total num-
ber of 45 women, 10 participants (7 C, 2 SA and 1 SEA) were taking the contraceptive pill.

Cardiovascular and anthropometric measurements
Groups were similar in their cardiovascular parameters and all participants were normotensive
(Table 1). The Asians were shorter and lighter than C, but there was no difference in BMI
which was below the value of 25 for C or around 23 for Asians, and is regarded as ‘normal`
[29]. There was no difference in waist circumferences which in all groups were well below the
classification for central obesity [29]. The waist-hip ratio was higher in female SEA compared
with female C, however it was still well below the WHO classification of> 0.85 for central obe-
sity [29]. In females, the percent body fat as measured by bioelectrical impedance (but not by
skinfolds) was lower in the SEA (P = .000). For males, subscapular skinfolds were higher in SA
and SEA (P = .002) and abdominal skinfolds higher in SA, compared to C (P = .032). Though
not significant, suprailliac skinfolds were also higher in SA. However, percent body fat as mea-
sured by skinfolds or bioelectrical impedance was not significantly different between the male
groups.

Table 1. Cardiovascular, anthropometric and body composition characteristics.

C SA SEA P value

Age (yr) 21 ± 0.4 21 ± 0.4 20 ± 0.3 .320

Birthweight (kg) 3.4 ± 0.1 3.2 ± 0.2 3.3 ± 0.1 .287

RHR (bpm) 72 ± 2 74 ± 2 74 ± 2 .707

SBP (mmHg) 111 ± 2 109 ± 2 105 ± 2 .123

DBP (mmHg) 69 ± 1 69 ± 1 66 ± 1 .158

MAP (mmHg) 83 ± 1 83 ± 1 79 ± 1 .089

Height (cm) 181 ± 2(M)167 ± 2 (F) 174 ± 2*(M)162 ± 2* (F) 172 ± 2*(M)160 ± 1* (F) .001.005

Weight (kg) 76 ± 2(M)59 ± 1(F) 69 ± 2(M)56 ± 2(F) 66 ± 2* (M) 52 ± 1*(F) .006.004

BMI (kg/m2) 23 ± 0.6(M)21 ± 0.5(F) 23 ± 0.4(M)21 ± 0.7(F) 22 ± 0.4(M)20 ± 0.4(F) .593.206

Waist (cm) 77 ± 1(M)69 ± 1(F) 75 ± 1(M)68 ± 2(F) 74 ± 1(M)66 ± 1(F) .211.199

Hip (cm) 95 ± 2(M)98 ± 1(F) 93 ± 2(M)95 ± 2(F) 91 ± 2(M)88 ± 1*#(F) .238.000

Waist-hip ratio 0.8 ± 0.01(M)0.7 ± 0.01(F) 0.8 ± 0.01(M)0.72 ± 0.01(F) 0.81 ± 0.01(M)0.74 ± 0.01*(F) .891.016

Waist-height ratio 0.42 ± 0.01(M)0.41 ± 0.007(F) 0.43 ± 0.01(M) 0.42 ± 0.008(F) 0.43 ± 0.005(M)0.41 ± 0.005(F) .732.419

Biceps (mm) 6 ± 1(M)12 ± 2(F) 5 ± 0.5(M)13 ± 1(F) 7 ± 1(M)9 ± 1(F) .136.111

Triceps (mm) 9 ± 1(M)18 ± 1(F) 11 ± 1(M)20 ± 1(F) 13 ± 1(M) 17 ± 1(F) .090.296

Subscapular (mm) 11 ± 1(M)12 ± 1(F) 16 ± 1* (M)15 ± 1(F) 15 ± 1* (M)14 ± 1(F) .002.184

Suprailliac (mm) 17 ± 3(M)15 ± 1(F) 24 ± 3(M) 16 ± 1(F) 18 ± 1(M)16 ± 1(F) .083.797

Abdominal (mm) 15 ± 2(M)18 ± 1(F) 23 ± 2* (M)20 ± 2(F) 17 ± 2(M)18 ± 1(F) .032.373

% BF (skinfolds) 16 ± 1(M) 28 ± 1(F) 22 ± 3(M)30 ± 1(F) 19 ± 1(M)28 ± 0.6(F) .078.416

% BF (Tanita) 15± 1(M)27 ± 1(F) 17 ± 1(M)27 ± 2(F) 15 ± 1(M)18 ± 1*#(F) .276.000

Day of cycle 17 ± 2 14 ± 2 16 ± 2 .712

Length of cycle (days) 30 ± 1 31 ± 2 33 ± 2 .615

Data are mean ± standard error of the mean (SEM).

* is significantly different from C

# is significantly different from SA, P�.05, ANOVA, Tukey (post-hoc). RHR: resting heart rate; SBP: systolic blood pressure; DBP: diastolic blood

pressure; MAP: mean arterial pressure; BMI: body mass index; %BF: percent body fat; M: male; F: female.

doi:10.1371/journal.pone.0133611.t001
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Nutritional intake
The majority of macronutrient and micronutrient intake of SA and SEA did not differ signifi-
cantly from C (Table 2). All groups consumed most micronutrients at a higher than recom-
mended daily intake (RDI), with sodium intake amongst the highest, especially for SEA. The
percentage RDI of fibre and folate in the diet of SA and SEA, zinc in the diet of SA and calcium
in the diet of SEA was significantly lower when compared with that of C. The percentage con-
tribution of monounsaturated fat to the diet of SA was also significantly lower when compared
with that of C. The percentage consumption of the macronutrients carbohydrate, fat and pro-
tein was as recommended in the three groups.

Table 2. Dietary analysis of a 3-day food intake.

C SA SEA P value

Total energy(kJ) 9441 ± 570 8328 ± 468 9285 ± 773 .389

Carbohydrate (% cont) 48 ± 1 53 ± 2 50 ± 2 .102

Fat (% cont) 33 ± 1 29 ± 1 33 ± 2 .118

Monounsaturated fat (% cont) 13 ± 1 10 ± 0.5* 13 ± 1# .023

Polyunsaturated fat (% cont) 5 ± 0.3 5 ± 0.3 5 ± 0.4 .382

Saturated fat (% cont) 13 ± 1 12 ± 1 12 ± 1 .608

Protein (% cont) 17 ± 0.6 17 ± 0.8 17 ± 0.6 .968

Alcohol (% cont) 1.9 ± 0.7 0.6 ± 0.3 0.3 ± 0.2* .030

Energy (% RDI) 104 ± 11 90 ± 8 93 ± 6 .485

Carbohydrate (% RDI) 89 ± 9 86 ± 8 84 ± 7 .889

Fat (% RDI) 114 ± 13 87 ± 9 103 ± 10 .185

Monounsaturated fat (% RDI) 130 ± 15 90 ± 9 120 ± 12 .063

Polyunsaturated fat (% RDI) 49 ± 6 40 ± 4 48 ± 5 .363

Saturated fat (% RDI) 135 ± 16 106 ± 13 114 ± 13 .325

Protein (% RDI) 194 ± 11 192 ± 20 214 ± 16 .558

Fibre (% RDI) 96 ± 7 73± 5* 76 ± 6* .014

Sodium (% RDI) 344 ± 30 368 ± 37 540 ± 65*# .007

Calcium (% RDI) 128 ± 8 108 ± 8 94 ± 10* .031

Folate (% RDI) 191 ± 18 148 ± 10* 143 ± 16* .049

Iron (% RDI) 185 ± 23 148 ± 17 160 ± 21 .437

Magnesium (% RDI) 129 ± 7 109 ± 8 121 ± 13 .319

Niacin (% RDI) 319± 41 273 ± 43 276 ± 21 .607

Phosphorus (% RDI) 178 ± 14 150 ± 13 168 ± 23 .517

Potassium (% RDI) 180 ± 9 143 ± 11 162 ± 14 .091

Riboflavin (% RDI) 203± 32 150 ± 16 132 ± 14 .075

Thiamin (% RDI) 275 ± 47 194 ± 22 184 ± 21 .101

Retinol (% RDI) 160± 12 121 ± 12 163 ± 42 .449

Vitamin C (% RDI) 501 ± 54 392 ± 42 448 ± 66 .378

Zinc (% RDI) 107 ± 8 78 ± 4* 102 ± 11 .035

Data are mean ±standard error of the mean (SEM).

*is significantly different from C

# is significantly different from SA, P�.05, ANOVA, Tukey (post-hoc). LSD (post-hoc used to define differences between groups for folate only). % cont:

percent contribution; % RDI: percent recommended daily intake.

doi:10.1371/journal.pone.0133611.t002
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Biochemistry
There was no difference between groups in the average time of collection of the fasting blood
sample. Fasting glucose was not significantly different between groups, with all groups display-
ing normal fasting glucose (Fig 1A) defined as<5.6 mmol/L before meals [30]. Despite this,
when compared to C, glucose at 15 min during the OGTT was higher in SA (P = .024). The glu-
cose AUC, however, was not different (Table 3). In addition, blood glucose at 2 hr was well
below the impaired glucose tolerance level of> 7.8 mmol/L for all groups (Fig 1A). Fasting
insulin, though slightly higher in SA, was also not significantly different (Fig 1B), however,
insulin during the OGTT and insulin AUC, was higher in SA and SEA (P< .05, Fig 1B,
Table 3). Though not statistically significant, HOMA-IR was also higher in SA (Table 3). There
was no correlation between insulin at any time point measured during the OGTT or insulin
AUC with height, weight or BMI, when examined for the entire group or separately in the
males or females. Fasting C-peptide was not different between groups however C peptide dur-
ing the glucose challenge rose significantly in the Asian groups compared with C, resulting in a
significantly higher C-peptide AUC (Table 3). C-peptide correlated with insulin collected at
the same time points of 30 and 120 min (r = .43 and .50, respectively, P< .01). C-peptide AUC
also correlated with insulin AUC (r = .46, P< .01). The molar ratio of integrated concentra-
tions of C-peptide to integrated concentrations of insulin were significantly lower in SA, com-
pared with C, indicating a possible decreased hepatic insulin clearance in SA (Table 3). Total
cholesterol, triglyceride and LDL-C, while well below the ‘borderline risk’ levels of 5.1, 1.7 and
3.3 mmol/L, respectively, were nevertheless higher in SA (P< .05, Table 3) [30]. Adiponectin
was lower in SA (P< .05, Table 3) and a correlation was found between adiponectin and
HDL-C (r = .55, P< .01). E selectin was lower in SEA when compared with C (P< .05,
Table 3) but no difference was found for any of the other biomarkers studied.

All data were also analysed separately for the male and female groups to examine for gender
differences. Adiponectin levels remained lower in the male and female SA, though this was not
significant when compared with their respective C counterparts. However, a correlation
remained between adiponectin and HDL in the female group (r = .53, P< .01). E-selectin
remained lower in the SEA of both males and females, but this was significant in the males
only with E-selectin levels of 42 ± 7, 29 ± 2, and 21 ± 3 ng/ml in male C, SA and SEA, respec-
tively (P = .011). A correlation was found in the men between total cholesterol and HOMA-IR
(r = .51, P< .01), and also for both abdominal (r = .56, P< .01) and suprailliac (r = .58, P<

.01) skinfold thickness with fasting insulin.
In females, the leptin levels were higher in SA with 8 ± 1, 16 ± 3, and 10 ± 1 ng/ml in C, SA

and SEA, respectively (P = .011). A correlation was found for the women, between leptin and
the triceps skinfold (r = .56, P< .01). Leptin also correlated less strongly with the sum of skin-
fold thicknesss (r = .48), BMI (r = .48), post-meal insulin at 45, 60 and 75 min (r = .46, .45 and
.45, respectively) and insulin AUC (r = .41), (each P< .05).

Genetics
A total of 22 SNPs in 14 genes selected from the literature as being associated with T2DM [31–
47] were tested in 22 C (8 Male (M); 14 Female (F)), 19 SA (9 M, 10 F) and 15 SEA (7 M, 8 F).
As this was not an original study aim of the project the sample numbers were restricted by sub-
sequent further ethical approval from the participants following completion of the initial bio-
chemical analysis. This subgroup demonstrated no significant difference in fasting glucose
(4.8 ± 0.08, 4.8 ± .09, 4.8 ± .12 mmol/L) and glucose AUC (707 ± 24, 736 ± 34, 734 ± 40 mmol/
L) between C, SA and SEA respectively. However insulin following the glucose challenge
remained significantly higher throughout the 2 hr period in SA when compared with C (Fig 2).
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Fig 1. Plasma glucose (A), insulin (B) and C-peptide (C) at baseline and for 2 hrs following an oral
glucose challenge in (●) C, (�) SA and (▼) SEA.Data is mean ± standard error of the mean (SEM). * is
significantly different from C at same given time point. P�.05, ANOVA, Tukey (post-hoc).

doi:10.1371/journal.pone.0133611.g001
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In addition insulin AUC and HOMA–IR were both significantly higher in SA (3892 ± 312,
8758 ± 1260, 6729 ± 840 mIU/L, P = .000, and 1.01 ± 0.16, 1.73 ± 0.19, 0.96 ± 0.21, P = .008, for
C, SA and SEA respectively). Association analyses between SNPs and insulin AUC ignoring or
including ethnicity, suggested rs7903146, rs12255372 and rs2237892 may be SNPs of interest
(Table 4). However allele frequency distributions in C compared with SA indicated a signifi-
cant difference only in theMTNR1B gene for SNPs rs2166706 and rs10830963 (Table 5).

Table 3. Biochemical characteristics.

C SA SEA P value

Glucose AUC(mmol/L) 722 ± 20 765 ± 27 757 ± 29 .447

Insulin AUC(mIU/L) 3988 ± 265 8877 ± 1093* 7002 ± 568* .000

C-peptide AUC(ng/ml) 836 ± 67 1124 ± 53* 1180 ± 53* .000

C-peptide/Insulin (AUC) 11.0 ± 1.0 7.7 ± 0.6* 9.4 ± 0.9 .045

HOMA-IR 1.2 ± 0.1 2.3 ± 0.7 1.1 ± 0.1 .093

TC (mmol/l) 3.0 ± 0.2 4.0 ± 0.1* 4.0 ± 0.1* .000

Triglyceride (mmol/l) 0.5 ± .07 0.8 ± 0.1* 0.6 ± 0.1 .050

HDL (mmol/l)) 1.2 ± 0.05 1.1 ± 0.05 1.4 ± 0.06# .016

LDL (mmol/l) 1.6 ± 0.16 2.3 ± 0.17* 1.6 ± 0.2# .009

TC/HDL 2.4 ± 0.2 3.7 ± 0.2* 2.9 ± 0.1# .000

HbA1C (%) 4.7 ± 0.07 4.9 ± 0.06 5.0 ± 0.06* .036

Microalbumin (mg/l) 11.1 ± 4.0 13.5 ± 5.2 6.0 ± 1.4 .387

Creatinine (mmol/l) 13.6 ± 1.3 13.4 ± 1.5 17.2 ± 4.3 .552

Albumin/Creatinine 0.7 ± 0.3 2.8 ± 1.8 0.4 ± 0.1 .219

Adiponectin (μg/ml) 7.7 ± 0.75 5.4 ± 0.4* 6.0 ± 0.6 .037

Leptin (ng/ml) 6.6 ± 1.3 10.8 ± 1.8 7.4 ± 0.8 .086

Cortisol (nmol/l) 1790 ± 32 1778 ± 37 1829 ± 32 .540

ACTH (pmol/l) 6.3 ± 1.6 3.7 ± 0.7 3.2 ± 0.4 .091

NOx (μmol/l) 6.4 ± 1.0 5.5 ± 0.7 5.9 ± 1.0 .812

t-PA (ng/ml) 1.1 ± 0.1 1.3 ± 0.1 1.2 ± 0.1 .631

PAI-1 (ng/ml) 11.9 ± 3.6 12.3 ± 2.4 9.0 ± 1.5 .638

vWF activity (%) 59 ± 5 58 ± 5 50 ± 3 .367

CRP (mg/l) 8.8 ± 4.0 4.0 ± 1.8 3.8 ± 1.3 .332

Homocysteine (μmol/l) 8.9 ± 0.3 10.0 ± 0.6 9.5 ± 0.4 .250

TNF-α (pg/ml) 2.3 ± 0.5 1.4 ± 0.3 3.9 ± 1.1 .062

IL-6 (pg/ml) 2.4 ± 0.3 2.3 ± 0.3 2.7 ± 0.3 .654

VCAM-1 (ng/ml) 904 ± 46 784 ± 50 806 ± 36 .129

E-selectin (ng/ml) 37 ± 4 33 ± 6 21 ± 2* .025

Creatinine and albumin are in urine, all other measurements are in plasma. Data are mean ± standard error of the mean (SEM).

* is significantly different from C

# is significantly different from SA, P < .05, ANOVA, Tukey (post-hoc). AUC: area under curve; C-peptide/insulin AUC: Molar ratio of C-peptide AUC(pmol/

L) to Insulin AUC(pmol/L); HOMA-IR: homeostasis model assessment of insulin resistance; TC: total cholesterol; HDL: high density lipoprotein cholesterol;

LDL: low density lipoprotein cholesterol; TC/HDL: total cholesterol/high density lipoprotein cholesterol ratio; HbA1C: glycosylated haemoglobin; ACTH:

adrenocorticotropic hormone; NOx: nitric oxide metabolites; t-PA: tissue plasminogen activator; PAI-1: plasminogen activator inhibitor-1; vWF: von

Willebrand Factor activity; CRP: C-reactive protein; TNF-α: tumor necrosis factor-alpha; IL-6: Interleukin-6; VCAM-1: vascular cell adhesion molecule-1; E

selectin: endothelial leukocyte adhesion molecule-1.

doi:10.1371/journal.pone.0133611.t003
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Fig 2. Plasma insulin at baseline and for 2 hrs following an oral glucose challenge in (●) C, (�) SA and (▼) SEA. Data is mean ± standard error of the
mean (SEM). * is significantly different from C at same given time point. P�.05, ANOVA, Tukey (post-hoc).

doi:10.1371/journal.pone.0133611.g002

Table 4. Association between SNPs and Insulin Area Under Curve (AUC) for 22 Caucasians (C), 19
South Asians (SA) and 15 South East–East Asians (SEA). Analyses were run (1) using a simple associa-
tion test, ignoring ethnicity, and comparing the entire data set (1 group) with insulin AUC; (2) using an associa-
tion test including ethnicity as a factor, comparing the 3 different groups (3 levels; C vs SA vs SEA), with
insulin AUC; and (3) using an association test including ethnicity as a factor, comparing 2 different groups (2
levels; C vs SA and SEA), with insulin AUC. The data below shows the SNPs for which significance was
found. Association analyses were performed using PLINK, P�.05 indicates significance.

1

Gene SNP P value

TCF7L2 rs7903146 0.04

TCF7L2 rs12255372 0.04

KCNQ1 rs2237892 0.09

2

Gene SNP P value

TCF7L2 rs7903146 0.08

TCF7L2 rs12255372 0.24

KCNQ1 rs2237892 0.15

3

Gene SNP P value

TCF7L2 rs7903146 0.21

TCF7L2 rs12255372 0.39

KCNQ1 rs2237892 0.05

doi:10.1371/journal.pone.0133611.t004
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Discussion
This study found that the increase in insulin following an oral glucose load was highest in SA
compared with C. The relative IR of SA was also reflected by a higher HOMA-IR and non-fast-
ing glucose. These results support a previous finding [4], despite a narrower age range (18–25
years, compared with 18–35 years) and do not appear to be attributed to differences in gender,
age, birth weight, BMI, percent body fat, waist circumferences and waist-height ratios, as these
variables were similar among the groups. Recently, some researchers have highlighted a con-
founding factor in the OGTT of a smaller body mass receiving the same 0.75 g bolus dose of

Table 5. Allele frequency distributions in Caucasians and South Asians. P�.05 indicates significant difference, Fisher’s exact test. A significant differ-
ence was obtained only in theMTNR1B gene for both SNPs studied.

Gene SNP Chromosome Position on
Chromosome

Allele frequency Caucasian Allele frequency South Asian P
value

PPARG2 rs1801282 3 12351626 CC: 19 (86%)CG: 3 (14%) CC: 15 (79%)CG: 4 (21%) 0.68

PPARG2 rs3892175 3 12326539 AG: 6 (27%)GG: 16 (73%) AG: 1 (5%)GG: 18 (95%) 0.1

TCF7L2 rs4918789 10 113062048 GG: 2 (9%)GT: 12 (55%)TT: 8
(36%)

GG: 2 (10%)GT: 11 (58%)TT: 6
(32%)

1.0

TCF7L2 rs10885409 10 113048313 CC: 2 (9%)CT: 13 (59%)TT: 7
(32%)

CC: 1 (5%)CT: 10 (53%)TT: 8
(42%)

0.89

TCF7L2 rs7903146 10 112998590 CC: 11 (50%)CT: 10 (45%)TT: 1
(5%)

CC: 14 (74%)CT: 3 (16%)TT: 2
(10%)

0.12

TCF7L2 rs12255372 10 113049143 GG: 12 (54%)GT: 9 (41%)TT: 1
(5%)

GG: 15 (79%)GT: 4 (21%)TT: 0
(0%)

0.19

TCF7L2 rs11196205 10 113047288 CC: 2 (9%)GC: 13 (59%)GG: 7
(32%)

CC: 1 (5%)GC: 11 (58%)GG: 7
(37%)

1.0

TCF7L2 rs290487 10 113149972 CC: 14 (64%)TC: 8 (36%)TT: 0
(0%)

CC: 10 (53%)TC: 8 (42%)TT: 1
(5%)

0.63

KCNJ11 rs5219 11 17388025 CC: 8 (36%)CT: 11 (50%)TT: 3
(14%)

CC: 5 (26%)CT: 13 (69%)TT:1
(5%)

0.53

FTO rs9939609 16 53786615 AA: 4 (18%)AT: 12 (55%)TT: 6
(27%)

AA: 1 (6%)AT: 9 (47%)TT: 9
(47%)

0.34

CDKAL1 rs7756992 6 20679478 AA: 11 (50%)AG: 9 (41%)GG: 2
(9%)

AA: 14 (74%)AG: 5 (26%)GG: 0
(0%)

0.25

HHEX rs1111875 10 92703125 AA: 3 (14%)AG: 8 (36%)GG: 11
(50%)

AA: 7 (37%)AG: 9 (47%)GG: 3
(16%)

0.055

KCNJ153 rs3746876 21 38299525 CC: 22 (100%)CT: 0 (0%) CC: 19 (100%)CT: 0 (0%) 1.0

KCNQ1 rs2237892 11 2818521 CC: 19 (86%)CT: 1 (5%)TT: 2
(9%)

CC: 19 (100%)CT: 0 (0%)TT: 0
(0%)

0.49

RAPGEF1 rs11243444 9 131597867 CC:0 (0%)CT: 3 (14%)TT: 19
(86%)

CC:0 (0%)CT: 6 (32%)TT: 13
(68%)

0.26

ADIPOQ rs182052 3 186842993 AA: 2 (9%)GA: 11 (50%)GG: 9
(41%)

AA: 5 (26%)GA: 6 (32%)GG:8
(42%)

0.29

ADIPOQ rs7649121 3 186850996 AA: 17 (77%)AT: 4 (18%)TT: 1
(5%)

AA: 12 (63%)AT: 4 (21%)TT: 3
(16%)

0.42

MTNR1B rs2166706 11 92958366 CC: 0 (0%)TC: 10 (45%)TT:12
(55%)

CC: 3 (16%)TC: 12 (63%)TT: 4
(21%)

0.02

MTNR1B rs10830963 11 92975544 CC: 15 (68%)GC:7 (32%)GG:0
(0%)

CC: 5 (26%)GC:12 (63%)GG:2
(11%)

0.009

GCK rs4607517 7 44196069 AG: 4 (18%)GG:18 (82%) AG: 3 (16%)GG:16 (84%) 1.0

G6PC2 rs560887 2 168906638 AA: 2 (9%)GA: 9 (41%)GG: 11
(50%)

AA: 0 (0%)GA: 4 (21%)GG: 15
(79%)

0.13

PCK1 rs2071023 20 57560878 CC: 5 (23%)GC: 9 (41%)GG: 8
(36%)

CC: 9 (47%)GC: 8 (42%)GG: 2
(11%)

0.098

doi:10.1371/journal.pone.0133611.t005
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glucose as a larger person [48, 49]. However, though the Asians were shorter and lighter than C
in the current study, there was no correlation of height, weight and BMI with insulin at any
time point during the OGTT, or with insulin AUC. It appears therefore, that the smaller body
size of the Asians in the current study did not influence the results obtained. The current study
also employed an extensive search for differences in a range of biochemical markers of ED, and
found lower levels of adiponectin in the SA group. Increased levels of leptin were also evident
in female but not male SA. However the lack of other significant biochemical differences in the
markers of ED suggests that higher non-fasting insulin, which is indicative of a reduced insulin
sensitivity and carbohydrate tolerance, may precede the development of ED and other features
of the metabolic syndrome. It is not surprising perhaps, as these men and women are still quite
young and ‘healthy’. Although this is an important first study, further research incorporating a
direct measure of ED would be of value.

C-peptide is co-secreted with insulin from pancreatic β-cells, and is considered a reliable
marker of pancreatic β-cell function [50]. In the current study, an increase in C-peptide corre-
lated with an increase in insulin. Post meal circulating levels of C-peptide and C-peptide AUC
were significantly higher in the two Asian groups suggesting a β-cell hypersecretion of insulin
and C-peptide in SA and SEA compared to C. Hepatic clearance of insulin can be estimated
with the C-peptide to insulin molar ratio [50]. This study employed integrated AUC responses
of C-peptide and insulin to compute the molar ratio instead of the using the more problematic
C-peptide to insulin ratio obtained at individual sampling points [51]. The molar ratio was sig-
nificantly lower in SA compared to C indicating a decreased insulin clearance by the liver in
this Asian group. This suggests an additional mechanism for the observed increased circulating
post meal insulin in SA and SEA. Further research using more direct methods to examine insu-
lin and C-peptide kinetics is necessary to validate this observation.

A reduced hepatic clearance of insulin has previously been observed in Asian Indians of
similar BMI to the SA in the current study [52]. WHO has recommended a lower BMI as desir-
able in Asians compared with C, with overweight in Asians classified as a BMI higher than 23
[29]. Under this definition, the average BMI for the male SA in this study is borderline ‘nor-
mal’. However, it is not the total amount of fat but differences in regional fat distribution that
is thought to influence IR [53]. It is believed that upper body and central obesity may expose
the liver to higher free fatty acid concentrations, reducing liver clearance of insulin [52, 54]. In
the current study, waist circumferences, which are viewed as a more valid measure than BMI
for defining central obesity and disease risk, were well below the ethnic specific cut off points
in C (� 102 cm males,� 88 cm females), and in SA and SEA (� 90 cm males,� 80 cm
females) as defined by the National Cholesterol Education Program, or in C (� 94 cm males,
� 80 cm females), and in SA (� 90 cm males,� 80 cm females) as defined by the International
Diabetes Federation [55]. WHO defines obesity as having a waist-hip ratio> 0.9 but the ratio
observed was lower for each group. In addition, there was also no difference in waist-height
ratio between the three groups within each gender.

More visceral fat is thought to be an important contributor to the development of T2DM,
however a higher subcutaneous abdominal fat in males may also be associated with IR [53]. In
the current study, the thicker abdominal (in male SA) and subscapular skinfolds (in male SA
and SEA) may have contributed to a reduction in insulin clearance and therefore a higher insu-
lin response following glucose intake. A correlation was found between abdominal and suprail-
liac skinfolds and fasting insulin in the group of forty-five men. Future studies using DEXA
may show further truncal differences in fat deposition.

Leptin is an adipokine, and thought to be involved in the regulation of glucose and fat
metabolism; stimulating glucose uptake into skeletal muscle and fatty acid oxidation [26]. Lev-
els in the circulation are known to correlate with body fat and higher leptin levels in obesity
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seem to be accompanied by leptin resistance [56]. Leptin levels, which reportedly correlate in
particular with subcutaneous fat [26], were correlated with the triceps skinfold in the current
study. Though not significantly different, this skinfold thickness was nevertheless slightly
higher in female SA. A higher level of circulating leptin was also found in SA females which
was double of that in C; and there was also a moderate positive correlation between leptin and
insulin AUC. The female SA in the current study are considered to be quite lean. It may be that
increased leptin in these young SA females is indicative of either sensitivity to slight increases
in regional subcutaneous fat, or alternatively, a very early gender-specific abnormality of adi-
pose tissue as a possible contributor to IR which is independent of body fat content. This may
only become more apparent in males at a much later stage as higher circulating levels of plasma
leptin have been identified in older SA males (average age = 30 years), with a higher BMI (aver-
age = 24 kg/m2) who were insulin-resistant but in whom T2DM had not yet developed [57]. In
that study levels of the adipokine, adiponectin were also reportedly lower in the men, as there
is an inverse relationship between plasma concentrations of leptin and adiponectin.

The current study found significantly lower adiponectin levels in the entire group of male
and female SA. Lower adiponectin levels have been reported in T2DM, though the reason for
this is unclear and are suggested to predict the development of insulin resistance and T2DM in
healthy individuals [58]. Adiponectin improves insulin sensitivity and concentrations are also
related to lipid metabolism, with circulating levels negatively correlated with triglycerides and
LDL-C, and positively correlated with HDL-C [58]. Adiponectin is believed to affect the catab-
olism rather than the synthesis of HDL-C. In the current study adiponectin was positively cor-
related with HDL-C and this relationship was maintained within the female group. Additional
studies are necessary to examine the metabolic significance of lower levels of adiponectin, its
relationship with ED and its possible use as a diagnostic tool to predict the future development
of insulin resistance. The only other marker associated with dysfunction of the endothelium to
achieve significant difference between groups in the current study was E-selectin. Increased lev-
els may predict the onset of T2DM in people at risk [59]. Surprisingly, it was C which had the
highest circulating levels, however the reason for this is unclear.

Interestingly a trend has been recently identified in females (which does not appear to be
present in males) for higher levels of not only E-selectin, but also ICAM-1 and PAI-1 in
women prior to the development of prediabetes [60]. This was not found in the females of the
current study. There was also no evidence of increased C reactive protein or IL-6 at this stage,
both of which are considered to be more strongly associated with an increased risk of T2DM in
women rather than men [61].

There have been contradictory findings regarding the impact of the menstrual cycle on glu-
cose regulation in normal healthy women, with some studies suggesting a decrease in insulin
sensitivity in the luteal phase [19, 21] and other studies suggesting no difference in the men-
strual, follicular, midcycle or luteal phases [18, 20]. In the current study, the OGTT was sched-
uled after the menstrual phase, as a urine sample for the testing of HbA1C was required on the
morning of testing. There was no difference between the three ethnic groups in the length of
cycle and the day in the cycle on which the OGTT occurred, therefore a change in insulin sensi-
tivity amongst the women due to the menstrual cycle was not a variable in the current study. In
addition, a recent systematic review concluded that hormonal contraceptives appear to have no
effect on carbohydrate metabolism in healthy, normal weight women who do not have T2DM
[62]. Therefore women using oral contraceptives were not excluded as this was not considered
to be a confounding factor.

Asian Indians living in rural areas have a 2–3% prevalence of T2DM, while a fourfold
increase is experienced in those living in urban areas or who have migrated to Western coun-
tries [63] where they have adopted a diet higher in fat and refined carbohydrate, together with
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a sedentary lifestyle. Regular resistance training increases muscle mass whereas aerobic physi-
cal activity uses large muscle groups and promotes the uptake of glucose and fat into the mus-
cle. As a result, both aerobic exercise and/or resistance training improve glycemic control and
reduce the risk of T2DM [17, 64, 65]. However, two-thirds (69%) of participants in the current
study were sedentary, or participating in less than 1 hour per week of aerobic exercise. The four
participants who reported that they participated in> 2 hours of aerobic activity per week dem-
onstrated average resting heart rates rather than lower resting heart rates which are more indic-
ative of aerobic fitness. In addition, only 18% of the participants were engaging in regular
resistance training. The two participants in the study who reported training more than 2 hours
weekly, described their training intensity as light-moderate. Therefore it is not believed that
there are any confounding effects due to exercise on the results of the current study. It is not
currently known whether the absence of regular aerobic exercise and/or resistance training
might have a greater unfavourable impact on SA and SEA, compared to C. This is an important
question and warrants investigation.

The macronutrient intake among the three groups was similar. This is surprising given that
differences within groups included length of time spent living in Sydney, residing on- or off-
campus with either family or friends, and religious background, each of which may be expected
to significantly impact on dietary intake. However all individuals were attending the same large
urban university where a Westernised diet is prevalent. However a lower intake of fibre and
monounsaturated fat in the diets of SA occurred, which is consistent with a previous report
[66]. The intake of fibre in the current study was also significantly lower in the Asian diets. A
limitation is that the individual glycemic loads of the meals were not able to be calculated.
Despite no significant difference in percentage fat intake, percentage intake of monounsatu-
rated fat was significantly lower in the SA group and may have contributed to the higher circu-
lating total cholesterol, triglycerides and LDL-cholesterol. Total cholesterol correlated
positively with HOMA-IR in the males, indicating that a link between the development of dys-
lipidemia and hyperinsulinemia leading to T2DM and the metabolic syndrome is already evi-
dent. Protein intake for all groups was twice the RDI, while sodium intake was five and a half
times higher than recommended in SEA, and three and a half times higher than recommended
in SA and C. It has recently been reported that diets high in protein are associated with an
increased risk of T2DM [67], while most patients with T2DM have a dietary salt-induced
exacerbation of hypertension [68]. Zinc was also lower in the SA diets. It is unknown whether a
higher than recommended protein or salt intake, or lower intake of trace elements has a greater
adverse effect on Asian compared to Caucasian populations. Ethnic specific dietary guidelines
regarding nutritional intake for populations which are more ‘at risk’ of T2DM need to be
established.

However, while dietary factors and sedentary lifestyle are thought to have a key influence on
insulin resistance and T2DM in SA, genetic factors are also thought to be important [69].
Genome-wide association studies have identified common genetic variation around a number
of genes which are thought to influence glucose levels. Of the twenty-two SNPs examined in
the current study, it is interesting that only two SNPs, rs10830963 and rs2166706, had a signifi-
cant difference in allele frequency distribution in C and SA. These SNPs are both near the mel-
atonin receptor MTNR1B. The results of the current study support previous studies that have
documented an association of rs10830963 and rs2166706 with an increased risk of T2D among
SA [32, 70].

Circulating melatonin is produced by the pineal gland in the brain and is an important sig-
nalling molecule in the entrainment of biological rhythms in the body. The main control is the
brain’s suprachiasmatic nucleus (SCN), however peripheral clocks are believed to influence
and are also influenced by the SCN [71, 72, 73]. Peripheral clocks are found in many organs
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throughout the body, including the pancreas, liver, adipose tissue and skeletal muscle, all of
which are of particular relevance to T2D. A disturbance in the biological clock is present in
shift workers or those who suffer from sleep apnoea, and these populations have been identi-
fied to be at an increased risk for T2D, with a disturbance in the circadian rhythm affecting glu-
cose homeostasis [71, 72, 73].

In humans there are two functional melatonin G protein coupled receptors,MTNR1A
(MT1) andMTNR1B (MT2), though a third possible melatonin receptor has been identified
[74]. MT2 receptors are in various tissues including adipocytes, liver, skeletal muscle and pan-
creatic β-cells [73, 75, 76]. In pancreatic β-cells melatonin appears to alter insulin concentra-
tions via three separate pathways. The predominant action of melatonin at the MT2 receptor is
to lower cyclic adenosine monophosphate (cAMP), which subsequently decreases insulin
secretion [73, 76]. Melatonin at the MT2 receptor can also inhibit cyclic guanosine monophos-
phate (cGMP) which also inhibits insulin secretion. In contrast, melatonin can induce insulin
secretion by stimulating the IP3-signalling pathway [73, 76]. However, as the predominant
action of melatonin appears to be to decrease insulin release from the pancreas, it has been sug-
gested that melatonin protects β-cells from functional overstrain and exhaustion [74, 77].
Reduced melatonin is linked to an increased risk of T2D, and indeed nocturnal melatonin lev-
els are lower in T2D patients and in diabetic rat animal models [78, 79]. Catecholamines have
been implicated as key to explaining the insulin-melatonin balance as they trigger melatonin
synthesis and inhibit insulin secretion [80]. Indeed in the early stage of T2D, rats exhibit
increased circulating insulin together with diminished catecholamine and melatonin levels.

Additional research supporting the involvement of melatonin in glucose homeostasis
includes the observation that melatonin increases glucose uptake into skeletal muscle and adi-
pose tissue, and decreases nocturnal glucose production by the liver [81]. Insulinemia in dia-
betic rat strains is reversed with melatonin treatment [77]. Removal of melatonin in rats by
pinealectomy decreases GLUT4 in adipose tissue and muscle leading to glucose intolerance
and insulin resistance which is restored by administration of melatonin [77]. Receptor knock-
out mice for the MT2 receptor exhibit disturbances in circadian rhythm, higher levels of insulin
and impaired glucose homeostasis [75]. The vast majority of research has been carried out in
mice and rats, which are nocturnal animals and care needs to be taken when extrapolating data
to humans. However recent human genome-wide association studies have provided further
insight into the relationship between the MT2 receptor and T2D.

To date, various authors have identified seven SNPs located near or inside the gene encod-
ingMTNR1B with an association with T2D in Asian (Indian, Sri Lankan, Chinese, Korean, Jap-
anese) and European ethnicities [32, 70, 75, 82, 83, 84]. Of the seven SNPs, rs10830963 appears
to be the most strongly associated with an increase in fasting plasma glucose, glucose AUC and
HbA1C; and a decrease in pancreatic β-cell function, basal insulin secretion and plasma insulin
[75, 85]. It appears to affect β-cell function directly and is associated with a defective early insu-
lin response and a decreased β-cell glucose sensitivity [44, 86, 87, 88].

The rs10830963 G-allele appears to have a greater risk on the transition from normal glu-
cose tolerance to prediabetes than on prediabetes to T2D and is thought to be an important
influence on glucose levels from childhood onwards [89]. It has been reported that each G allele
in rs10830963 is associated with an increase of 0.07 mmol per litre in fasting glucose levels
[90]. This allele is also associated with gestational diabetes [75]. Individuals older than 45 years
of age who are carrying the rs10830963 G allele, show a higher expression ofMTNR1B in pan-
creatic islets [87]. This has been reported in diabetic rats as well as diabetic humans [75]. It is
not known whether this is a physiological adaptive response to reduced melatonin levels or
whether it is part of the pathology of T2D. It has been proposed that an increase in MT2
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receptor expression could increase the inhibitory downstream signalling leading to an overall
decrease in insulin release in T2D [75, 87].

The rs2166706 variant has also been associated with an increase in fasting plasma glucose
and HbA1C and a decrease in pancreatic β-cell function [75]. At a molecular level, it is not
known what functional relevance rs10830963 or rs2166706 have on the receptor protein with
rs10830963 located inside the only intron ofMTNR1B, and rs21667016 in the 11kb region
upstream of the gene. The rs10830963 variant does not appear to disrupt consensus transcrip-
tion factor binding or cryptic alternative splice sites [90]. Recently, a large-scale exon resequen-
cing of two exons ofMTNR1B has examined 40 rare mutants and demonstrated impairment in
melatonin binding and signalling, establishing a functional link between this receptor and T2D
risk [91]. Further research on rs10830963 and rs2166706, and other gene variants is required
to determine their effect on the expression of, or the function of the MT2 receptor. Addition-
ally, clinical trials examining the therapeutic benefit of melatonin in human T2D needs to be
investigated, particularly in ethnicities such as SA where T2D is prevalent.

The investigation of SNPs was not an original study aim of the current project. As a result, a
limitation of the current study is that no data exist on the cohort’s sleep habits; for example,
duration of sleep, exposure to light immediately prior to and during sleep, awakening during
the night, and work habits such as night shifts. It is anticipated that the cohort of young univer-
sity students would have quite varied sleep patterns and certainly future studies in a similar
group should include this information.

In summary, it is evident that young SA and SEA are at a greater risk of developing T2DM,
cardiovascular disease and the metabolic syndrome. This study confirms that early identifica-
tion of young non-obese ‘at risk’ individuals through the employment of the OGTT and the
measurement of non-fasting insulin is more effective than fasting glucose alone. A decreased
hepatic clearance of insulin may be contributing to the hyperinsulinemia following an oral glu-
cose load. Higher non fasting insulin appears to precede the development of ED and other fea-
tures of the metabolic syndrome. Further research regarding specific dietary and exercise
intervention which may modify the OGTT response in these young Asians to more closely
mimic their C counterparts is required. In addition to environmental influences, one possible
genetic contribution in SA may be variation near the melatonin receptorMTNR1B. The cur-
rent study provides further impetus for future research in the role of circadian rhythms and
melatonin signalling in the development of T2DM.
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