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The Gram-positive bacterium Listeria monocytogenes (Lm) is an emerging platform for
cancer immunotherapy. To date, over 30 clinical trials have been initiated testing Lm
cancer vaccines across a wide variety of cancers, including lung, cervical, colorectal, and
pancreatic. Here, we assessed the immunogenicity of an Lm vaccine against the
colorectal tumor antigen GUCY2C (Lm-GUCY2C). Surprisingly, Lm-GUCY2C
vaccination did not prime naïve GUCY2C-specific CD8+ T-cell responses towards the
dominant H-2Kd-restricted epitope, GUCY2C254-262. However, Lm-GUCY2C produced
robust CD8+ T-cell responses towards Lm-derived peptides suggesting that GUCY2C254-

262 peptide may be subdominant to Lm-derived peptides. Indeed, incorporating
immunogenic Lm peptides into an adenovirus-based GUCY2C vaccine previously
shown to induce robust GUCY2C254-262 immunity completely suppressed GUCY2C254-

262 responses. Comparison of immunogenic Lm-derived peptides to GUCY2C254-262

revealed that Lm-derived peptides form highly stable peptide-MHC complexes with H-
2Kd compared to GUCY2C254-262 peptide. Moreover, amino acid substitution at a critical
anchoring residue for H-2Kd binding, producing GUCY2CF255Y, significantly improved
stability with H-2Kd and rescued GUCY2C254-262 immunogenicity in the context of Lm
vaccination. Collectively, these studies suggest that Lm antigens may compete with and
suppress the immunogenicity of target vaccine antigens and that use of altered peptide
ligands with enhanced peptide-MHC stability may be necessary to elicit robust immune
responses. These studies suggest that optimizing target antigen competitiveness with Lm
antigens or alternative immunization regimen strategies, such as prime-boost, may be
required to maximize the clinical utility of Lm-based vaccines.
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INTRODUCTION

Due to the unprecedented success of immune checkpoint
inhibitors (ICIs) and adoptive cell therapy, immunotherapy
has established itself as a pillar of cancer management
alongside chemotherapy, surgery, targeted therapies, and
radiotherapy (1, 2). While ICIs have been practice-changing,
only 20% of patients respond to ICI therapy (3, 4). Notably,
responsiveness to ICI therapy is associated with immunologically
“hot” tumors characterized by significant immune cell
infiltration (5, 6). In this context, there has been renewed
interest in utilizing cancer vaccines as agents that expand
tumor-specific T cells and promote T-cell infiltration into
tumor microenvironments, working synergistically with ICI
therapy (3, 4, 7). However, methods of cancer vaccination are
highly variable, including peptide, nucleic acid, microbial-based,
and others, with no consensus on optimal vaccine platforms (8).
Therefore, a greater understanding of vaccine vector biology is
urgently needed.

The Gram-positive bacterium Listeria monocytogenes (Lm) is
an emerging platform for cancer immunotherapy. Lm is an
attractive vector due to its tropism for antigen-presenting cells,
leading to potent CD8+ T-cell immunity (9) and its ability to
engage multiple aspects of the innate immune system and
remodel immunosuppressive microenvironments (10, 11).
Thus, multiple recombinant Lm vaccines secreting tumor
antigens capable of inducing antitumor immunity have been
explored (12). Moreover, attenuated Lm strains with favorable
safety profiles have been developed for clinical testing. To date,
over 30 clinical trials have been initiated testing attenuated Lm-
based vaccines for cancers (13), originating from lung (14),
cervix (15), colorectum (16), pancreas (17), and others.

Here, we examined the immunogenicity of an Lm-based
vaccine expressing the colorectal cancer antigen guanylyl cyclase
C (Lm-GUCY2C). Surprisingly, Lm-GUCY2C failed to prime
GUCY2C-specific immune responses in mice, despite generating
robust Lm-specific immunity. Studies revealed competition with
immunodominant Lm-derived CD8+ T-cell epitopes as the
underlying mechanism, which could be reversed by enhancing
the MHC-binding affinity of GUCY2C-derived CD8+ T-cell
epitopes. These studies reveal important mechanisms restricting
the efficacy of Lm-based vaccines and novel approaches to Lm
design and use to enhance that efficacy, particularly in the context
of self/tumor-associated antigens.
MATERIALS AND METHODS

Vaccines and Peptides
The live-attenuated double-deleted (LADD) strain of Listeria
monocytogenes (Lm) containing deletions in virulence factors
internalin B and actA (DactADinlB) (18) was obtained from
ATCC and served as the parental strain for all Lm vaccines in
this study. Recombinant Lm-GUCY2C and Lm-LacZ were
generated by gene synthesis of the codon-optimized mouse
GUCY2C extracellular domain (GUCY2C23-429) or b-
galactosidase618-1024, respectively, in-frame with a modified
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version of the first 100 amino acids of actA protein (called
ActAN100* throughout) and the Syn18x5 enhancer sequence
under control of the actA promoter (19). All other Lm constructs
were similarly cloned. The genetic sequence was cloned into the
pPL2 plasmid (kindly provided by Richard Calendar, UC Berkeley)
and integrated into the Lm chromosome as previously described
(20). Successful integration was confirmed by DNA sanger
sequencing. Recombinant Lm was grown in brain-heart infusion
(BHI) broth (Fisher Scientific) to OD600 of about 1.0 and stored as
aliquots at -80°C until the day of vaccination (21). For in vitro
validation studies, the mouse macrophage cell line J774A.1 cultured
in DMEM supplemented with 10% FBS was infected at a 10:1
multiplicity of infection with control or GUCY2C Lm. After a 1 h
incubation at 37°C, cells were washed 2x in PBS, resuspended in
media containing 10 ug/mL gentamicin to eliminate free
extracellular bacteria, and incubated an additional 5 h at 37°C.
For immunofluorescence studies, Lm was labeled prior to infection
by incubating with 2mMCellTracker Red CMPTPX dye for 10min
at 37°C, and GUCY2C protein was stained using the anti-GUCY2C
monoclonal antibody MS20 (22) followed by incubation with a
peroxidase-conjugated 2° antibody for subsequent tyramide-FITC
amplification. For western blot studies, protein was extracted from
cells using M-PER reagent (Pierce) supplemented with protease
inhibitors. GUCY2C protein was stained using MS20 (22) and p60
was stained using the anti-p60 monoclonal antibody
p6017 (AdipoGen).

Replication-deficient adenovirus serotype 5 (Ad5) expressing
mouse GUCY2C1-429 fused to the influenza HA107-119 CD4

+ T-
cell epitope known as S1 (Ad5-GUCY2C) was used as a positive
control for generating GUCY2C-specific CD8+ T-cell responses
(23). The adenoviral vaccine used in this study was produced by
the Baylor College of Medicine in the Cell and Gene Therapy
Vector Development Lab and certified to be negative for
replication-competent adenovirus, mycoplasma, and host cell
DNA contamination. All peptides used for experiments were
custom synthesized by ThermoFisher Scientific and purified by
HPLC to >95% purity.

Mice and Immunizations
Studies employed BALB/cJ mice (Jackson Laboratories). For Lm
vaccinations, Lm aliquots were thawed on the day of use,
incubated at 37°C for 60 min in BHI broth, washed 2x in PBS,
and resuspended to a concentration of 5x107 colony-forming
units (CFU)/mL in PBS. Mice were immunized intraperitoneally
(i.p.) with 107 CFU of recombinant Lm vaccine. For Ad5
vaccinations, mice were immunized intramuscularly (i.m.) with
1010 vp of Ad5-GUCY2C delivered as two 50 uL injections, one
in each hind limb. All studies employed a single administration
of Lm or Ad5 priming followed by Lm boosting (prime-boost
studies indicated in Figure 2). For priming experiments, mice
were sacrificed 7 d following Lm vaccination. For prime-boost
immunizations, Ad5 and Lm vaccines were administered 21 d
apart, and animals were euthanized 6 d after final vaccination.

IFNg ELISpot Assay
Enzyme-Linked Immunospot Assay (ELISpot) was performed
using a mouse interferon-g (IFNg) single color ELISpot kit
March 2022 | Volume 13 | Article 855759
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(Cellular Technology Limited) according to the manufacturer’s
protocol. The evening before an experiment, 96-well plates were
coated and incubated overnight at 4°C with IFNg capture
antibody. After splenocytes were isolated from immunized mice
on the following day, plates were washed with PBS. Splenocytes
were then plated in triplicate in a 0.1% DMSO solution of CTL-
TEST medium (Cellular Technology Limited) with 10 ug/mL of
peptide and incubated at 37°C for 24 h. For TCR avidity studies,
splenocytes were pulsed with decreasing concentrations of
GUCY2C254-262 peptide (10 ug/mL to 3 pg/mL) (23–25). The
next day, splenocytes were removed, and development reagents
were added to detect IFNg-producing spot-forming cells (SFCs).
The number of SFCs/well was determined using the SmartCount
and Autogate functions of an ImmunoSpot S6 Universal Analyzer
(Cellular Technology Limited). Peptide-specific responses were
calculated by subtracting mean spot counts of 0.1% DMSO wells
from peptide-pulsed wells.

MHC Class I Stability Assay
The TAP-deficient cell line RMA-S expressing the MHC class I
molecule H-2Kd (26) was kindly provided by Dr. Sean Murphy
(University ofWashington) and was used for peptide-MHC stability
experiments. As previously described (27), RMA-S-H-2Kd cells were
incubated overnight at 26°C with 30 ug/mL of each peptide. In the
morning, cells were incubated 2 h at 37°C, washed 3x with PBS to
remove unbound peptide, and incubated an additional 2, 4, or 6 h at
37°C. Cells were then stained with anti-H-2Kd-PE antibody
(Invitrogen, Clone SF1-1.1.1), and surface H-2Kd was quantified as
mean fluorescence intensity (MFI) by flow cytometry. The percent
change in surface peptide-H-2Kd complexes was calculated using the
formula, MFIpeptide−MFIno peptide

MFI0 hrs−MFIno peptide
� 100 (28). The t1/2 for the peptide-MHC

complex was calculated by nonlinear regression.

Tumor Studies
The murine CT26 colorectal cancer cell line expressing mouse
GUCY2C and luciferase (23) was used for in vivo tumor studies.
Seven days after final immunizations, mice received 5x105 CT26
cells via i.v. tail vein injection to model metastatic colorectal
cancer recurrence in the lungs. Tumor burden was quantified by
subcutaneous injection of 3.75 mg of D-luciferin potassium salt
(Gold Biotechnologies) in PBS solution. Following an 8 min
incubation, mice were imaged with a ten-second exposure using
a Caliper IVIS Lumina XR imaging station (PerkinElmer). Total
radiance (photons/second) was quantified by Living Image In
Vivo Imaging Software (PerkinElmer).
RESULTS

GUCY2C254-262 Is Subdominant to
Lm-Derived Epitopes
Lm-GUCY2Cwas produced using a construct composed of the actA
promoter, an enhancer, and a fusion protein of amodified version of
thefirst 100 aminoacids of actA (ActAN100*) and residues 23-429of
murine GUCY2C (Figure 1A and Supplementary Figure 1). Lm-
GUCY2C successfully produces GUCY2C protein upon infection of
J744A.1 macrophages, detected in the supernatant (Figure 1A) and
Frontiers in Immunology | www.frontiersin.org 3
in the cells (Figure 1B). However, while Ad5-GUCY2C induced
robust GUCY2C-specific CD8+ T-cell responses, Lm-GUCY2C
vaccination failed to prime CD8+ T cell responses to GUCY2C
(Figure 1C). In contrast, Lm-GUCY2C induced robust Lm-specific
CD8+ T-cell responses against multiple H-2Kd-restricted Lm
epitopes derived from Listeriolysin-O (LLO), p60, and
metalloprotease (Mpl) antigens (Figure 1D). Moreover, Lm-
GUCY2C successfully boosted GUCY2C-specific CD8+ T-cell
responses that were primed 21 days earlier with Ad5-GUCY2C
(Figure 1E). Furthermore, in the context of a multi-epitope Lm
vaccine that included epitopes from GUCY2C, b-galactosidase, and
Ad5, robust responses were produced against the highly
immunogenic foreign antigens b-galactosidase and Ad5, but not
the self-antigen GUCY2C (Figure 1F). Collectively, these data
suggest that the only GUCY2C CD8+ T-cell epitope in BALB/c
mice (GUCY2C254-262) (29) is processed and presented upon Lm-
GUCY2C administration but is unable to prime naive GUCY2C254-

262-specificCD8
+T-cell responses. In the context ofprimarilyT cells

with weak TCR-peptide-MHC interactions escaping self-tolerance
(30, 31), we hypothesized that theGUCY2C254-262 epitopemight be
subdominant in the context of live Lm vaccine vectors. To confirm
thatLmepitopes limitGUCY2C254-262 immunogenicity,weutilized
the Ad5-GUCY2C vaccine template, which produces robust
GUCY2C254-262 responses (29, 32–34), and created an Ad5
vaccine composed of GUCY2C254-262, the S1 CD4+ helper T-cell
epitope used in Ad5-GUCY2C vaccines (35), and immunogenic
epitopes from LLO, p60 and Mpl (Figure 1G). Strikingly, this
construct induced robust responses directed to the S1 CD4+ T-cell
epitope and Lm-derived CD8+ T-cell epitopes but failed to induce
responses to GUCY2C254-262 (Figure 1G).

Enhancing GUCY2C254-262 Quantity,
Degradation, or Processing Does
Not Overcome Immunodominance
During microbial infections, antigens are degraded into short
peptide fragments and loaded onto MHC molecules for
presentation to T cells (36). Interestingly, while a single bacterium
expresses thousands of potentially antigenic proteins (37), the
immune system concentrates T-cell responses towards only a few
“dominant” antigenic sequences. In contrast, sequences that induce
T-cell responses to a lesser, or undetectable, degree are termed
“subdominant.” Because GUCY2C254-262 is subdominant to Lm
epitopes inLm-GUCY2C,wehypothesized that itmight bepossible
to rescue Lm-GUCY2C immunogenicity by increasing the relative
quantity of GUCY2C epitopes and produced a variety of Lm
vaccines expressing GUCY2C in different contexts to test that
hypothesis (Figure 2A). It has been reported that increasing the
degradation rate of an antigen can enhance its immunogenicity
(38–40). Thus, we mutated the N-terminal residue following the
actA signal sequence (A30R) to destabilize the actA-GUCY2C
fusion protein or incorporated ubiquitin into our actA-GUCY2C
fusion protein (Ub-GUCY2C) to promote its degradation (41).We
then cloned these constructs into Lm, generating the vaccines Lm-
GUCY2CA30R and Lm-Ub-GUCY2C, respectively (Figure 2A).
While both constructs resulted in increased degradation and
much lower steady-state levels of GUCY2C (Figure 2A),
vaccination with these constructs did not improve GUCY2C254-
March 2022 | Volume 13 | Article 855759
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262 immunogenicity (Figure 2B). Recently, a group developing an
Lm vaccine against the EGFRvIII variant reported that EGFRvIII
immunogenicity was enhanced when repeating copies of epitope
were encoded and flanked by sequences predicted to facilitate
proteasomal cleavage (42). To similarly increase the copy number
and improve processing of GUCY2C254-262 peptide, we used a
similar design with 5 copies flanked by sequences designed to
facilitate antigen processing (Lm-GUCY2Cx5; Figure 2C).
However, Lm-GUCY2Cx5 similarly failed to induce GUCY2C254-

262-specific CD8
+ T-cell responses (Figure 2C). Finally, we altered

the promoter and fusion protein by which GUCY2C is expressed.
Lm vaccines advanced into clinical trials have predominantly
expressed vaccine antigen under the hly promoter fused to LLO
orunder theactApromoter fused to actA (13). Importantly, antigen
expression kinetics during infection also influences antigen
immunogenicity (43), and hly and actA promoters are distinctly
regulated (44). Moreover, fusion to LLO also has been reported to
enhance subdominant epitope immunogenicity in some cases (45).
Thus, we fused GUCY2C to LLO and expressed it under the hly
promoter (Lm-LLO-GUCY2C; Figure 2D); however, Lm-LLO-
Frontiers in Immunology | www.frontiersin.org 4
GUCY2C also failed to prime GUCY2C-specific CD8+ T-cell
responses (Figure 2D). Notably, while these Lm-GUCY2C
variants were unable to prime responses, all were capable of
boosting GUCY2C-specific memory CD8+ T-cell responses in
mice primed with Ad5-GUCY2C (Figure 2E, F). Finally, recent
studies report that subdominant T-cell clones express high levels of
PD-1 upon activation, resulting in cell death, and that
administration of PD-1-blocking antibody during vaccination
significantly improves the expansion of subdominant T-cell
clones (46, 47). However, treatment with anti-PD-1 antibody
during Lm-GUCY2C immunization did not produce GUCY2C-
specific CD8+ T-cell priming (Supplementary Figure 2).

Lm-Derived Epitopes Exhibit Superior
Peptide-MHC Stability Compared to
GUCY2C254-262
In addition to antigen quantity (48), temporal expression (43), and
degradation (49), competition between immunodominant and
subdominant epitopes may reflect differing affinities for MHC
class I and/or stabilities of the peptide-MHC complex (50). Thus,
A B C

E F G

D

FIGURE 1 | GUCY2C254-262 peptide is subdominant to Lm-derived peptides. (A) Lm-GUCY2C secretes a fusion protein comprised of ActAN100*, an enhancer
sequence, and mouse GUCY2C23-429 under control of the actA promoter. (A, B) J774A.1 macrophages were uninfected or infected with Lm-Control or Lm-GUCY2C
at a 10:1 MOI for 6 h at 37°C. GUCY2C fusion protein was detected by (A) western blot and (B) immunofluorescence. Scale bars in B are 50 um. (C, D) BALB/c mice
(n=3-4/group) were immunized intraperitoneally (i.p.) with 107 colony-forming units (CFU) of recombinant Lm secreting GUCY2C (Lm-GUCY2C) or intramuscularly (i.m.)
with 1010 vp of Ad5-GUCY2C. (E) Animals received 107 CFU of Lm-GUCY2C or Lm-Control 21 d after priming with 1010 vp of Ad5-GUCY2C. (C–E) Fourteen days
after Ad5-GUCY2C immunization or 6-7 d after Lm administrations, mice were euthanized, and splenocytes were collected to quantify GUCY2C254-262 (C, E) or Lm-
specific (D) T-cell responses, quantified by IFNg ELISpot. (F) BALB/c mice (n=3) were immunized with an Lm containing a multi-epitope construct composed of
GUCY2C, b-Gal, and Ad5 DBP epitopes (as depicted), and those responses were quantified 7 d later by IFNg ELISpot. (G) BALB/c mice (n=5/group) were immunized
with Ad5-GUCY2C (left) or a recombinant Ad5 containing S1, GUCY2C254-262, and the H-2Kd-restricted Lm epitopes as depicted (right). Responses were quantified 14
d later by IFNg ELISpot. Statistical comparisons were made by unpaired T test (C, E) or one-way ANOVA with Bonferroni correction for multiple comparisons of
epitope-specific response to control DMSO wells (D, F, G). Error bars indicate mean +/- SEM. Symbols indicate individual animals. *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001; ns, not significant.
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we compared the predicted binding affinity of GUCY2C254-262 for
its cognateMHC class Imolecule, H-2Kd, with that of all knownH-
2Kd-restricted Lm epitopes using NetMHCPan4.0 (Figure 3A).
Notably, the predicted binding affinity of GUCY2C254-262 for H-
2Kd was more than 15x lower than that of all Lm-derived peptides
(Figure3A).Wenext compared the stabilityof theGUCY2C254-262-
H-2Kd complex to that of the Lm epitopes using the TAP-deficient
cell line, RMA-S, stably expressing H-2Kd. In the absence of TAP,
cytosolic peptides are not transported to the endoplasmic
reticulum, resulting in empty MHC molecules that are highly
unstable and rapidly internalized from the cell surface (51).
However, the addition of exogenous peptide stabilizes MHC
molecules on the cell surface, and the stability of different
peptide-MHC complexes can be compared by the decay of the
complex and reduced surface MHC levels (52). Thus, to assess the
stability of the GUCY2C and Lm peptide-MHC complexes, we
quantified the decay of surface peptide-H-2Kd over time
(Figure 3B). As predicted from the in silico affinity algorithms
(Figure 3A), GUCY2C254-262-H-2K

d complexes rapidly decayed
Frontiers in Immunology | www.frontiersin.org 5
from the cell surface compared to complexes formed with Lm
epitopes (Figure 3B). Nonlinear regression analyses estimate the t1/
2 for GUCYC254-262-H-2Kd complexes at 1.8 h, while the t1/2 for H-
2Kd complexes with Lm epitopes ranged from 4.6 to 10.0 h
(Figure 3C). Collectively, these data suggest that the GUCY2C254-

262 epitope forms an unstable complexwith its cognateMHC class I
molecule, H-2Kd, compared to H-2Kd complexes formed with
dominant Lm epitopes.

F255Y Mutation of GUCY2C254-262
Enhances Stability of the
GUCY2C254-262-H-2K

d Complex
The above data demonstrate that the GUCY2C254-262 epitope
interacts weakly with H-2Kd compared to dominant Lm epitopes
in the Lm-GUCY2C vaccine (Figure 3). Notably, the strength of the
peptide-MHC interaction is most significantly impacted by a few
amino acids at specific locations along the peptide (anchoring
residues). At anchoring residues, amino acids from the peptide are
partially or fully buried within the pockets of the MHC molecule,
A C E

B D F

FIGURE 2 | Lm-GUCY2C vaccines designed to enhance antigen processing do not improve GUCY2C254-262 immunogenicity. (A) Lm-GUCY2C used in Figure 1
secretes a fusion protein consisting of ActAN100* combined with an enhancer sequence and GUCY2C. Lm-GUCY2CA30R contains a point mutation at the N-
terminal residue following the signal sequence of actA, and Lm-Ub-GUCY2C contains ubiquitin protein following the signal sequence within ActAN100* to enhance
degradation, confirmed by western blot analysis. (B) BALB/c mice (n=3-4/group) were immunized i.p. with 107 CFU of Lm vaccines or 1010 vp of Ad5-GUCY2C
vaccine and euthanized 7 or 14 d later, respectively, to quantify GUCY2C-specific CD8+ T-cell responses by IFNg ELISpot. (C) To enhance the quantity of
GUCY2C254-262 peptide and improve antigen processing, Lm-GUCY2Cx5 secretes a fusion protein containing five repeating copies of GUCY2C248-268 separated
by sequences predicted to facilitate proteasomal cleavage. BALB/c mice (n=3-4/group) were immunized i.p. with 107 CFU of Lm-GUCY2Cx5 vaccine or 1010 vp of
Ad5-GUCY2C vaccine and euthanized 7 or 14 d later, respectively, to quantify GUCY2C-specific CD8+ T-cell responses by IFNg ELISpot. (D) Lm-LLO-GUCY2C
secretes a fusion protein comprised of a truncated LLO protein fused to GUCY2C under control of the hly promoter. BALB/c mice (n=3/group) were immunized
i.p with 107 CFU of Lm-LLO-GUCY2C or i.m. with 1010 vp of Ad5-GUCY2C and GUCY2C-specific CD8+ T-cell responses were quantified by IFNg ELISpot 7 or
14 d later, respectively. (E, F) BALB/c mice (n=4-5/group) were immunized i.m. with 1010 vp of Ad5-GUCY2C vaccine on day 0 followed by 107 CFU of Lm
vaccines i.p. on day 21, including Lm constructs designed to enhance epitope presentation employed in (A–C) and the LLO-based construct employed in (D). Six
days after Lm boosting, GUCY2C-specific CD8+ T-cell responses were quantified by IFNg ELISpot. Statistical comparisons were made to Lm-GUCY2C using one-
way ANOVA with Bonferroni correction for multiple comparisons (B, C, E) or unpaired T test (D, F). Error bars indicate mean +/- SEM. Symbols indicate individual
animals. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant.
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forcing significant peptide-MHC interactions at these locations (53).
As a result, amino acids at these positions are highly conserved for
eachMHCallele. For theH-2Kd allele, anchoring residues are located
at positions 2, 5, and 9 along the peptide (53). Employing the most
conserved amino acid at each anchoring residue position for
immunogenic H-2Kd epitopes (53), we generated three different
GUCY2C254-262peptidevariants, eachusing thepreferredaminoacid
at a given anchor, resulting in improved predicted affinity for H-2Kd

(Figure 4A). To confirm that amino acid substitution at anchoring
residues did not alter recognition by T-cells specific for the native
GUCY2C254-262 epitope, splenocytes from mice primed against the
native sequence (Ad5-GUCY2C)were employed in anELISpot assay
with native GUCY2C254-262, GUCY2CF255Y, GUCY2CV258S, or
GUCY2CL262I point mutations (Figure 4B). Notably,
GUCY2CV258S was poorly recognized by GUCY2C254-262-specific
T-cells (Figure 4B) and was not explored further. However,
GUCY2CF255Y and GUCY2CL262I peptide recognition by
GUCY2C254-262-specific CD8+ T-cells was equivalent to
recognition of the native GUCY2C254-262 peptide sequence
(Figure 4B). Next, we assessed the stability of the GUCY2C254-262-
H-2Kd complex between native, GUCY2CF255Y, and GUCY2CL262I

sequences (Figures 4C, D). As expected, the GUCY2CF255Y-H-2K
d

complex was significantly more stable than the native GUCY2C
complex and shifted the half-life from 2.1 h to 8.3 h, respectively.
However, the GUCY2CL262I-H-2K

d complex was less stable (1.0 h)
than the native sequence. Thus, the GUCY2CF255Y peptide is
recognized similarly to the native peptide sequence by T cells
primed against native GUCY2C (Figure 4B) but forms
significantly more stable complexes with H-2Kd (Figure 4C, D).

GUCY2CF255Y Mutation Rescues
Lm-GUCY2C Immunogenicity and
Antitumor Efficacy
Having demonstrated that GUCY2C254-262 peptide interacts weakly
with H-2Kd compared to peptides from Lm (Figure 3) and that
GUCY2CF255Ymodification significantly improves the stability of the
peptide-MHC complex (Figure 4), we hypothesized that improved
stability of the GUCY2CF255Y peptide with H-2Kd may elevate
Frontiers in Immunology | www.frontiersin.org 6
GUCY2C254-262 within the Lm immunodominance hierarchy.
Thus, we cloned new Lm vaccines identical to Lm-GUCY2C but
containing theGUCY2CF255Y (Lm-GUCY2CF255Y) orGUCY2CL262I

(Lm-GUCY2CL262I) modifications and assessed their ability to
induce responses recognizing the native GUCY2C254-262 epitope by
IFNy ELISpot (Figure 5A). Indeed, improving the stability of the
GUCY2C254-262-H-2Kd complex with GUCY2CF255Y (Figure 4)
rescued GUCY2C immunogenicity following Lm-GUCY2CF255Y

vaccination (Figure 5A). Similarly, Lm-GUCY2CL262I failed to
rescue responses (Figure 5A), reflecting worsened stability
(Figure 4). Given that altering epitope residues may impact T-cell
recognition (54), we next examined cross-reactivity of responses
elicited to native andmutatedGUCY2CF255Y, as well as the avidity of
the vaccine-inducedT-cell pools for nativeGUCY2C254-262. Notably,
T-cells from mice immunized with native Ad5-GUCY2C or Lm-
GUCY2CF255Y were equally cross-reactive to native and
GUCY2CF255Y peptides (Figure 5B). Moreover, the avidity of T-
cell pools induced by Ad5-GUCY2C and Lm-GUCY2CF255Y

immunization were identical for native GUCY2C254-262 epitope
(Figure 5C). Together, these data suggest that the GUCY2C254-262-
reactive CD8+T-cell pool is similar inmice primed against the native
GUCY2C and GUCY2CF255Y sequences. Finally, we confirmed that
Lm-GUCY2CF255Y induces antitumor immunity against colorectal
cancer cells expressing native GUCY2C (Figures 5D–F). Mice were
immunized with Lm-Control, Lm-GUCY2C, Lm-GUCY2CL262I, or
Lm-GUCY2CF255Y in a model of recurrent, metastatic colorectal
cancer using the CT26 cell line expressing GUCY2C and firefly
luciferase. As expected, the priming of GUCY2C254-262-specific CD8

+

TcellsbyLm-GUCY2CF255Yreducedmetastatic tumorburden(Figures
5D, E) and improved survival (Figure 5F), in striking contrast to Lm-
GUCY2C and Lm-GUCY2CL262I, reflecting the immunodominance of
Lm epitopes in those vaccines.
DISCUSSION

The broader vaccine field, as well as cancer vaccines specifically,
employs a wide variety of vaccination platforms. Indeed, a recent
A B C

FIGURE 3 | The GUCY2C254-262-H-2K
d complex is less stable than peptide-H-2Kd complexes derived from Lm epitopes. (A) The predicted binding affinity of

GUCY2C254-262 peptide for H-2Kd was compared to that of all known Lm-specific H-2Kd-restricted epitopes using NetMHCPan4.0. (B, C) The stability of peptide-H-
2Kd complexes was measured using the TAP-deficient cell line, RMA-S H-2Kd. (B) The normalized specific mean fluorescence intensities (MFI) are shown. Error bars
indicate mean +/- SEM of technical replicates. (C) Half-lives (t1/2) were determined by nonlinear regression of (B). Error bars indicate computed t1/2 +/- 95%
confidence intervals. Statistical comparisons were made to GUCY2C254-262 by extra sum-of-squares F Test with Bonferroni correction. Data are representative of
two experiments. *P < 0.05; **P < 0.01.
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review assessing clinical trials testing personalized cancer
vaccines between 2017 and 2020 found that methods of cancer
vaccination are highly variable and noted that a “…lack of
consensus on the best approach to the systematic testing of
antigen and vaccine efficacy was evident” (8). Of 23 trials
analyzed, 6 utilized mRNA, 6 utilized peptide, 5 utilized
Listeria monocytogenes, 3 utilized DNA, 2 utilized mRNA in
combination with a viral vector, and 1 utilized yeast. These
observations underscore the necessity to evaluate current
methods to define optimal methods of cancer vaccination.

In that context, studies here examining a GUCY2C-directed
Lm vaccine reveal a significant limitation of this vaccine platform.
Notably, while Lm-GUCY2C induces robust Lm-specific CD8+ T-
cell responses, it cannot prime GUCY2C-specific CD8+ T-cell
responses (Figure 1B). In contrast, Lm-GUCY2C generates potent
secondary expansion of GUCY2C-specific memory CD8+ T-cells
(Figure 1D), suggesting that the primary GUCY2C254-262 epitope
is immunologically active and presented by MHC but is
subdominant to Lm epitopes, depending on the context
(primary versus secondary GUCY2C exposure). Alternatively,
this may reflect low abundance of GUCY2C254-262 epitope,
falling below levels needed for priming, but above levels needed
for boosting. The lack of priming with Lm-GUCY2C variants that
enhance epitope abundance (Figure 2) suggest that abundance
alone doesn’t explain its failure to prime. Instead, this appears to
reflect the poor stability of the GUCY2C254-262-H-2Kd complex
compared to Lm-derived peptide-H-2Kd complexes (>5-fold faster
Frontiers in Immunology | www.frontiersin.org 7
dissociation from MHC; Figure 3), which can be reversed by an
altered peptide-ligand with enhanced peptide-MHC stability
(Figure 4), Lm-GUCY2CF255Y, rescuing immunogenicity and
antitumor efficacy (Figure 5). Collectively, these findings suggest
that Lm-derived peptides may act as a significant competitive
barrier to target antigen presentation and immunogenicity,
limiting the effectiveness of Lm-based vaccines.

In the context of Lm-based cancer vaccines, there are multiple
reports of limited immunogenicity when using Lm vaccines to
prime CD8+ T-cell responses against cancer antigens. For example,
Lm vaccines against the tumor-associated antigens PAP (55) and
mesothelin (56) had poor immunogenicity alone but were more
effective as booster vaccines in the context of a heterologous prime-
boost immunization regimen, similar to observations with
GUCY2C (Figure 1) (57). However, Lm vaccines alone against
HER2 (58) and PSA (59) tumor antigens induce robust antitumor
immunity. Interestingly, those studies employed foreign antigens
(human HER2 or human PSA) in mice, which are not limited by
self-tolerance mechanisms. Moreover, Lm-based immunization
with HER2 in rat HER2 transgenic mice (60) or immunization
with HPV-16 E7 in HPV16 E6/E7 transgenic mice (61) did
successfully induce responses, despite limitations imposed by self-
tolerance. Collectively, these studies suggest that the
immunogenicity of Lm vaccines is likely dependent on the
vaccine antigen and context and that weak antigens (some self-
antigens like GUCY2C and some foreign antigens) may be more
susceptible to competition with Lm-derived peptides than other
A B

C D

FIGURE 4 | Anchoring residue modification improves the stability of the GUCY2C254-262-H-2K
d complex. (A) Shows the amino acid sequence of native and altered

peptides predicted with NetMHCPan 4.0 to improve H-2Kd binding affinity. (B) Splenocytes from mice immunized against the native GUCY2C254-262 epitope with Ad5-
GUCY2C were incubated overnight with native GUCY2C254-262 peptide or altered GUCY2C peptides, and the number of IFNg-producing T cells were quantified by
ELISpot (relative to recognition of the native GUCY2C254-262 peptide). Normalized spot counts were compared by one-way ANOVA to native GUCY2C254-262 peptide
with Bonferroni correction for multiple comparisons. Error bars indicate mean +/- SEM of technical replicates. (C) The stability of the peptide-H-2Kd complexes was
assessed using RMA-S H-Kd cells, and the normalized specific MFIs are shown. Error bars indicate mean +/- SEM of two experiments. (D) Half-lives (t1/2) were
determined by nonlinear regression of (C). Error bars indicate computed t1/2 +/- 95% confidence intervals. Statistical comparisons were made to native GUCY2C by
extra sum-of-squares F Test with Bonferroni correction. **P < 0.01; ****P < 0.0001; ns, not significant.
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antigens. Notably, a recent clinical trial testing an Lm-derived
vaccine against mesothelin reported that T-cell responses towards
mesothelin were inconsistent and lower in magnitude than LLO
(14). Similarly, Lm expressing 4 prostate cancer antigens induced
significantly lower and inconsistent responses to the prostate
antigens than LLO in patients, resulting in early study
termination (62). Together, these observations suggest that
competition between immunodominant Lm antigens and vaccine
antigens is conserved in humans.

Interestingly, Ad5-based vaccines expressing GUCY2C are
highly capable of priming GUCY2C-specific immunity, despite
containing viral peptides that could theoretically compete with
GUCY2C epitopes for presentation. However, competition
between Ad5 and GUCY2C peptides is likely significantly less
than the competition between Lm and GUCY2C peptides for at
least two reasons. First, the Ad5 genome contains roughly 40
protein-coding genes (63), while the Lm genome encompasses
over 2800 proteins (64), creating significantly more
opportunities for immunodominance over GUCY2C. Second,
despite being attenuated to limit inter-cellular migration and
pathogenicity, Lm vaccines are replication-competent. Thus, the
synthesis and presentation of GUCY2C antigen is concurrent
with the production and presentation of Lm antigens in infected
APCs. In contrast, Ad5 vectors utilized clinically and in the
Frontiers in Immunology | www.frontiersin.org 8
present studies are replication-deficient, and target antigens are
encoded within the episomal Ad5 genomic DNA. Thus, during
the course of infection, the quantity of Ad5 epitope presentation
is predicted to peak at injection and diminish over time as the
administered vector is cleared, while GUCY2C presentation is
initially absent until it is de novo synthesized by the host cell over
a much more extended period. The lag time between Ad5
exposure and the synthesis of target antigen by the host cell
may, therefore, allow for temporal separation between
presentation of GUCY2C and Ad5 epitopes – a working
hypothesis supported by previous studies revealing the ability
of GUCY2C-conjugated, but not Ad5 structural, antigens to
provide CD4+ T-cell help to GUCY2C-specific CD8+ T cells (35).
Thus, a surplus of Lm antigens, in addition to a lack of temporal
separation between Lm and target antigen presentation, may
operate to restrict vaccine-directed immune responses in the
context of Lm vaccines.

This is the first study to demonstrate that Lm-derived peptides
may interfere with the immunogenicity of target vaccine antigens.
These studies carry significant implications for designing and
implementing Lm-based cancer vaccines. Specifically, Lm
vaccines may be inferior at priming vaccine-specific responses
than other vaccine platforms. While use of altered peptide
ligands with enhanced peptide-MHC stability could ameliorate
A B

D F

C E

FIGURE 5 | Lm-GUCY2CF255Y primes GUCY2C-specific CD8+ T-cell responses and antitumor immunity. (A) BALB/c mice (n=4/group) were immunized i.p. with
107 CFU of Lm secreting native GUCY2C or GUCY2C with altered GUCY2C254-262 epitopes, and GUCY2C254-262-specific T-cell responses were quantified 7 d later
by IFNg ELISpot. (B, C) BALB/c mice (n=4/group) were immunized i.p. with 107 CFU of Lm-GUCY2CF255Y or i.m. with 1010 vp of Ad5-GUCY2C and euthanized 7 or
14 d later, respectively. (B) Splenocytes from immunized mice were pulsed with native GUCY2C254-262 peptide or GUCY2CF255Y peptide to assess the magnitude of
responses by IFNg ELISpot. (C) Splenocytes from immunized mice were pulsed with decreasing concentrations of native GUCY2C254-262 peptide to assess
functional TCR avidity. Nonlinear regression (solid line) of GUCY2C-specific CD8+ T-cell avidity is depicted with 95% confidence intervals (dashed lines). Statistical
comparison was made by extra sum-of-squares F Test. (D–F) BALB/c mice (n=10/group) were immunized i.p. with 107 CFU control, GUCY2C, GUCY2CL262I, or
GUCY2CF255Y Lm. Seven days later, mice were challenged with the CT26 colorectal cancer cell line expressing GUCY2C and luciferase. (D) Tumor burden was
monitored by bioluminescence imaging and quantified on day 7 (E). (F) Survival was monitored longitudinally. Data were analyzed by one-way (A, E) or two-way (B)
ANOVA with Bonferroni correction for multiple comparisons to compare 1 or 2 variables, respectively. Error bars indicate mean +/- SEM. Survival (F) was analyzed
by the Mantel-Cox log rank test with all immunized groups compared to control with Bonferroni correction. Symbols indicate individual animals. ***P < 0.001;
****P < 0.0001; ns, not significant.
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this drawback, the identification and validation of altered peptide
ligands for relevant patient HLA alleles is a cumbersome endeavor.
Therefore, using other vaccine vectors for priming immune
responses may be more practical. Alternatively, Lm engineering
approaches, such as episomal plasmid-based transgene expression
(45, 58, 59, 65) may produce higher antigen expression than the
approach used here, in which a single chromosomal copy of
GUCY2C is created (12). Despite the limitation identified here,
Lm vaccines may be particularly useful in a different context.
Specifically, multiple studies have demonstrated the ability of Lm
vaccines to boost memory CD8+ T-cell responses (55, 56).
Additionally, preclinical and clinical studies suggest that Lm
vaccines transform tumor microenvironments by increasing
CD8+ T-cell infiltration (66), decreasing immunosuppressive
regulatory T cells (10, 65) and myeloid-derived suppressor cells
(11, 65), and repolarizing tumor-associated macrophages from M2
to M1 phenotypes (10, 66, 67). While the capabilities of Lm to
boost CD8+ T-cell responses and remodel immunosuppressive
tumor microenvironments may be a unique advantage compared
to other platforms, the clinical significance of these findings and the
extent to which other vaccine platforms compare has yet to be fully
investigated. Moreover, any superiorities of Lm-based vaccines
must also be weighed against the potential risks and toxicities
associated with using a live bacterial platform. Indeed, despite the
numerous successes developing vaccines to elicit protective
antibody responses, often with attenuated or inactivated
pathogens, very few vaccines that elicit protective CD8⁺ T-cell
responses have been clinically successful. Continued investigation
of currently available vaccine vectors and development of novel
vaccine approaches and combinations are necessary to elicit robust
CD8⁺ T-cell responses against cancer and intractable pathogens to
address this unmet need.
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