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Summary: The majority of people in the U.S. have not been infected with SARS-CoV-2.  Reported 

cases continue to be less than estimated infections.  Some statistically significant increases in 

seroprevalence followed spikes in reported cases.  Some statistically significant decreases may be 

indirect evidence of waning of detectable antibodies at the population level.      
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Abstract: 

Background. Monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody 

prevalence can complement case reporting to inform more accurate estimates of SARS-CoV-2 

infection burden, but few studies have undertaken repeated sampling over time on a broad 

geographic scale.   

Methods. We performed serologic testing on a convenience sample of residual sera obtained from 

persons of all ages, at ten sites in the United States from March 23 through August 14, 2020, from 

routine clinical testing at commercial laboratories.  We age-sex-standardized our seroprevalence 

rates using census population projections and adjusted for laboratory assay 

performance.  Confidence intervals were generated with a two-stage bootstrap.  We used Bayesian 

modeling to test whether seroprevalence changes over time were statistically significant. 

Results. Seroprevalence remained below 10% at all sites except New York and Florida, where it 

reached 23.2% and 13.3%, respectively. Statistically significant increases in seroprevalence followed 

peaks in reported cases in New York, South Florida, Utah, Missouri and Louisiana.  In the absence of 

such peaks, some significant decreases were observed over time in New York, Missouri, Utah, and 

Western Washington. The estimated cumulative number of infections with detectable antibody 

response continued to exceed reported cases in all sites.  

Conclusions. Estimated seroprevalence was low in most sites, indicating that most people in the U.S. 

have not been infected with SARS-CoV-2 as of July 2020. The majority of infections are likely not 

reported. Decreases in seroprevalence may be related to changes in healthcare-seeking behavior, or 

evidence of waning of detectable anti-SARS CoV-2 antibody levels at the population level. Thus, 

seroprevalence estimates may underestimate the cumulative incidence of infection. 
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Introduction 

In the United States (U.S.), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection 

causing coronavirus disease 2019 (COVID-19) has resulted in over 12 million reported cases and 

250,000 deaths as of November 25, 2020 [1]. However, the true number of infections is thought to 

be far greater, as an estimated 15–40% of infections are asymptomatic [2-4], and many persons with 

symptoms either do not seek medical care or are not tested. Furthermore, case counts reported by 

state and territorial health departments are affected by changes in testing and reporting capacity 

and practices, all of which can distort the apparent extent of infections and disease in the population 

at a given time.  

Given that the majority of persons that are infected with SARS-CoV-2 develop antibodies following 

infection [5-9], the prevalence of anti-SARS-CoV-2 antibodies has been used as an indicator of 

cumulative infections in a given population since the start of the pandemic [10-14]. Seroprevalence 

estimates can capture mild or asymptomatic infections that may be missed in reported case counts. 

They therefore allow better estimates of the true burden of infection, informing public health 

interventions. In addition, seroprevalence estimates can indicate population-level immunity, and the 

coverage of SARS-CoV-2 vaccines when they become available, both of which have implications for 

future transmission [15, 16]. While seroprevalence rates have been used to estimate the proportion 

of the population that has never been infected, they are not necessarily a perfect indicator. If 

antibody levels wane and become undetectable over time, as has been suggested by recent reports 

[5, 7, 8], this could affect the accuracy of these estimates as the pandemic progresses.  

We and others have reported on seroprevalence estimates throughout in the pandemic [10, 11, 13, 

17, 18], with many seroprevalence studies focused on assessing a narrow time window or single 

geographic location. In this study, the availability of a large number of residual sera collected from 

patients during the course of routine blood tests allowed us to estimate seroprevalence in 10 sites 

across the U.S. at multiple time points. In each of the sites, we compare the seroprevalence 
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trajectories to reported cases for a pandemic that has been heterogeneous with respect to time and 

geography. 

Methods 

Sampling 

The U.S. Centers for Disease Control and Prevention (CDC) partnered with two commercial 

laboratory companies to select a random sample of deidentified sera remnants from a population of 

convenience, as previously described [17]. To be included, specimens must have been from routine 

diagnostic tests, such as metabolic panels or cholesterol levels, blinded to COVID-19 symptoms or 

diagnosis, that were collected from patients between March 23 and August 14, 2020, and, at 

minimum, included demographic information on age, sex, zip code of patient, and date of specimen 

collection.  

Our target sample size was 1,800 specimens per site per round with 450 specimens in each of four 

age groups (0-18, 19-49, 50-64, and 65+ years), based on calculations of statistical power needed to 

estimate a prevalence within +/- 2% in a population with 5% prevalence. The laboratories generated 

de-duplicated, de-identified sample lists from their internal electronic laboratory information 

systems of all specimens with sufficient serum volume. Specimens were sampled by stratified 

random sampling by age group, with the aim of collecting equal numbers of specimens for each of 

the four age groups.  

Each round of specimens covered a one-week period of collections, except for Utah and Minnesota, 

which covered a two-week period, as fewer specimens were available per week. Specimen collection 

rounds were a minimum of three weeks apart for each site, and sites were not synchronized. 

Between three and five specimen collection rounds occurred in ten sites, one from each of the 10 

Health and Human Services regions (Fig e1): New York City Metro Area (NY), Western Washington 

State (WA), South Florida (FL), Missouri (MO), Connecticut (CT), Utah (UT), Louisiana (LA), San 
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Francisco Bay Area (CA), Philadelphia Greater Metro Area (PA), and Minneapolis-St. Paul-St. Cloud 

combined statistical area (MN).  

 

This activity was reviewed by CDC and was conducted consistent with applicable federal law and 

CDC policy.§ Informed consent was waived, as de-identified data were used. The results from 

individual timepoints were previously released on CDC’s website [19]. 

 

Laboratory Assay 

Sera were tested with a CDC assay as previously described [17]. Briefly, sera specimens were tested 

with an enzyme-linked immunosorbent assay (ELISA) against pan-immunoglobin (pan-Ig) to the anti-

spike protein of SARS-CoV-2.  Signal-to-threshold ratios were calculated from optical density results 

with a reactive cutoff of >1.0. A receiver operator curve was created to maximize overall accuracy. 

The pan-Ig assay performed with a sensitivity of 96.0% (CI: 89.98 – 98.89%) and a specificity of 99.3% 

(CI: 98.32 – 99.88%) against a PCR-confirmed test set [20].  

Analysis 

Age-sex-standardized estimates of seroprevalence with confidence intervals that account for 

serology assay performance were generated using a two-stage bootstrap method described 

previously [17].   

For each site and time point, estimated cumulative infections were calculated as age-sex 

standardized seroprevalence multiplied by catchment population. A case ascertainment ratio was 

calculated by dividing estimated infections by cumulative reported cases as of the last day of 

specimen collection for that time period and catchment area. Catchment populations were mostly 

                                                           
§
 See e.g., 45 C.F.R. part 46.102(l)(2), 21 C.F.R. part 56; 42 U.S.C. §241(d);  5 U.S.C. §552a; 44 U.S.C. §3501 et 

seq. 
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consistent over time but were updated from the second timepoint onwards in NY, WA, and PA, 

based on counties that provided the majority of specimens (Supplement). 

To assess the relative magnitude and significance of changes in seroprevalence over time, while 

accounting for uncertainty in sampling and lab assay accuracy, we used Bayesian hierarchical 

modeling to obtain the joint posterior distribution of our parameters, optimized by Gibbs sampling 

[21]. Equations are listed in the statistical Appendix; briefly, we modeled the odds of having 

detectable SARS-CoV-2 antibodies at each site, assuming a binomial distribution for antibody 

detection and using a logit link, as a function of the following parameters: age, sex, county, and time 

period (an indicator variable for change between sequential collection rounds). Relative risks were 

calculated from the posterior probabilities of positivity as described in the appendix. For UT, model 

diagnostics indicated a poor fit, so we instead used a non-parametric permutation method 

(Appendix).   

Estimated cases and catchment populations 

Publicly reported daily case data at the county level were obtained from USAFacts [22]. County-level 

population projections by age and sex were downloaded from the U.S. Census Bureau [23].  

Statistical analyses were programmed in R 3.6.1 and RStudio v1.2.1335 (R Foundation for Statistical 

Computing). 

Results 

Sample characteristics 

A total of 78,990 specimens were collected from patients between March 23 and August 14, 2020 

across ten sites. Of those, 43.7% (34,516) were male. The median age was 55, with 59.0% (46,628) of 

all specimens from patients over 50 years of age. Table 1 shows the demographic characteristics of 

patient specimens at each site. A comparison of demographic and geographic information over each 
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timepoint shows that our samples remained generally consistent within sites for known 

characteristics and are coming from the same source counties except for the first timepoint in NY, 

WA, and PA (Table e1).  

Results by site 

In the northeastern U.S., including NY, PA, and CT, reported cases increased markedly in April 2020, 

around or just before the first time point. New York had the most dynamic changes in 

seroprevalence and the highest seroprevalence, increasing from 6.9% by April 1 to 23.2% by April 16, 

as estimated by the bootstrap analysis (adjusted Risk Ratio (aRR) from Bayesian analysis: 2.3, 95% 

Confidence Interval (CI): 1.4 – 4.9, Table 2 and Figure 1a). Daily reported cases in NY then steadily 

declined; subsequent seroprevalence measurements indicated a small decrease by the first week of 

May (aRR 0.7, CI: 0.6-0.9). In PA and CT, cases also began to decline gradually starting in May (Figure 

e2b-c), and the aRR of detectable antibodies was not statistically different from 1.0 in CT and PA.  

In MN, reported cases first increased in early May, and remained elevated throughout our study 

period without clear peaks or declines. Seroprevalence climbed from 2.4% by May 12 to 6.1% by July 

18. Increases during late June and early July were statistically significant (Figure e2d).  

In the southern U.S. (FL, LA), seroprevalence rose gradually in April and May; FL increased to 2.8% 

and LA to 5.8% by April 23 (Figure e2g). Both sites experienced a marked increase in cases starting in 

late June through late July.  By July 23, seroprevalence in FL rose to 13.3% (aRR 2.5, CI: 1.7 – 3.9), 

and by August 8, seroprevalence in LA rose to 9.8% (aRR 2.4, CI: 1.6 - 3.7) (Figure 1b).  

In the western U.S. (CA, WA), seroprevalence in the study remained low. Western Washington State 

stayed between 1.0% and 2.1%, with a statistically significant decrease between May 4 and June 15 

(aRR 0.3, CI: 0.1 - 0.7) (Figure 1c). The San Francisco Bay Area remained below 1.0% through May 27, 

and increased to 1.7% by July 23 (aRR 1.3, CI: 0.7 – 1.2). 
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In the central U.S., in MO and UT, reported cases were at steady low levels from April through early 

June, then cases in both sites began to increase sharply toward the third and fourth study timepoint.  

Seroprevalence in MO decreased from 2.8% in late May to 0.8% (aRR 0.6, CI: 0.4-0.8) in late June, 

then an increase to 1.4% (aRR 1.6, CI: 1.0 – 2.3) in July (Figure 1d). UT seroprevalence decreased 

from 2.2% in early May to 1.1% in early June (aRR 0.3, CI: 0.1-0.8) then increased to 2.7% in early July 

(aRR 3.3, CI: 1.2 – 12.0) and again to 4.8% in late July (aRR 2.4, CI: 1.3 – 4.6) (Figure e2e).     

In a multivariable model that adjusted for age, sex, county, and time, persons 65 and older had an 

overall lower risk of infection (aRR < 1.0) in MO, CT, PA, and MN, compared to persons 19-49 (table 

3). In FL, persons 50 and older had a higher risk of infection and in LA, persons 50 and older had a 

lower risk of infection. No statistically significant difference in risk of infection was observed 

between males and females (table 3). 

Case ascertainment ratio 

At the first time point, estimated actual infections exceeded reported cases by at least ten-fold in 

seven of 10 sites (range 6 to 24-fold, Table 2); by the fourth time point, the ratio of estimated 

infections to reported cases was between two-fold in Missouri to seven-fold in NY.  

Discussion 

In a large-scale SARS-CoV-2 seroprevalence study, we collected and tested 78,990 specimens from 

ten U.S. sites that experienced different epidemic curves, over multiple timepoints between March 

and August 2020. Our use of convenience samples of commercial laboratory residual sera allowed 

serial measurements of seroprevalence from a large number of specimens drawn from similar 

sampling frames. During this period, less than 10% of the population had detectable antibodies to 

SARS-CoV-2 in all sites except NY and FL.  Through Bayesian modeling, we determined that 

seroprevalence increases in NY, FL, UT, and MO,  which were observed following an increase in 

reported cases, were statistically significant. We also observed statistically significant declines in 
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seroprevalence in MO, UT, NY, and WA, following periods of stable, low numbers of cases. This 

decrease in seroprevalence, even in settings with ongoing transmission, may suggest that waning of 

assay-detectable antibodies may be occurring; the effects of waning antibodies on overall 

seroprevalence may be more apparent during periods with fewer new cases, possibly in combination 

with changes in healthcare-seeking behaviors and changing adherence to stay-at-home orders.   

Since the beginning of the COVID-19 pandemic, seroprevalence estimates have been used to 

estimate cumulative incidence of infection [10-14, 18]. These studies can capture a broader range of 

infections than case reporting, including mild or asymptomatic cases that may go undetected and 

unreported. Our seroprevalence estimates at specific time points are similar to those of other 

studies undertaken in similar locations, including in San Francisco, Utah, and Miami-Dade [24-26]. In 

New York, seroprevalence in a state-wide survey of grocery store patrons was 14% in late March 

[12], and serial samples in a health care setting found a peak of seroprevalence of 19.3% by mid-

April [27], both approximating our estimates. In a representative survey in Connecticut, 

seroprevalence was 3.1%, lower than our estimate of 6.2% at a comparable timepoint, although 

lower assay sensitivity and different sampling methods may explain some of the difference in results 

[28].  

At all ten sites, across all time periods during the study, the estimated number of infections was 

much higher than the number of reported cases. This case ascertainment ratio changed over the 

course of the study, from at least 10-fold in seven sites [17], to between two- to seven-fold. This 

decrease may be due to several factors, including improved testing availability, changing testing 

patterns [29] and increased contact tracing, thus potentially resulting in the detection and reporting 

of a larger proportion of infections. Changes in healthcare-seeking behavior may also have affected 

both case reporting and seroprevalence estimates in unpredictable ways.  The case ascertainment 

ratio based on seroprevalence is a conservative estimate, however, as some individuals infected 

near the end of our specimen collection period may have not yet developed antibodies and not all 
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infected persons develop antibodies. We would also be unable to detect antibodies lost due to 

waning in previously infected persons, which would underestimate the population that has been 

infected.  

The observation that seroprevalence stayed flat, or even decreased, in some sites, while cumulative 

case counts increased at all ten sites, offers indirect evidence of waning levels of assay-detectable 

antibodies in a certain proportion of the population. In the absence of waning, repeated serological 

testing of similar samples from a population in which the virus continues to circulate should find that 

the number of persons with past infection increases monotonically. Reports on humoral response 

and antibody kinetics found waning anti-SARS-CoV-2 antibody levels among a subset of recovered 

patients along timelines that our study would have captured, with declines 40-60 days after the 

onset of symptoms [7, 8, 14]. IgG antibodies typically have a half-life of 7-21 days [30], but IgG to the 

SARS-CoV-2 spike protein, which our ELISA assay can detect, may persist longer [5, 31]. Antibody 

levels following infection also appear positively correlated with disease severity [5, 7]. Many 

infections identified through seroprevalence studies likely had mild or asymptomatic disease, and 

thus potentially lower initial antibody titers than reported cases. These persons may be more likely 

to have antibody levels that fall below detectable levels when sampled at later timepoints. If the rate 

of new seroconversion from new infections falls below the rate of antibody waning in previously 

infected individuals, seroprevalence may decrease, possibly explaining the observed seroprevalence 

changes in New York following the spring surge of new infections.   

The implications of seroprevalence estimates for herd immunity are not fully known, since the 

presence of antibodies at levels detectable in most ELISAs does not necessarily correlate with 

protection against reinfection and disease [32]. Conversely, there may be residual immune 

protection from past infections even if antibodies fall below the threshold of detection, and 

immunity may be conferred by T-cell mediated mechanisms independently of antibody levels [33, 

34].  
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Limitations 

Our study has several limitations. While use of residual clinical specimens allows for large sample 

sizes spanning multiple timepoints, the population from whom these are drawn could differ from 

the population in multiple ways discussed previously [17]. Although the laboratory sera were 

sampled from routine tests not directly associated with COVID-19, increases in symptomatic 

infections may have driven a disproportionate number of COVID-19-infected patients to clinical 

settings, and the clinical specimens could have been taken as part of their acute or follow-up care. 

Pediatric specimens sometimes did not meet our sample size targets in some sites, especially Utah, 

likely because healthy children infrequently have blood drawn.  

In some instances, there was geographic variability within a site over time, with variability especially 

in suburban counties at some sites. Given local geographic variation in SARS-CoV-2 clusters, this may 

have affected our seroprevalence estimates, although our multivariable model for relative odds of 

seropositivity controlled for county. In addition, as noted above, healthcare-seeking behavior likely 

also changed over time for the general population [35]. This could potentially affect the study 

population from whom residual clinical samples are available, potentially biasing these 

seroprevalence estimates in unpredictable ways. Since our data were drawn from serial independent 

samples and not cohorts, the effects of antibody waning and potential sampling biases are 

inextricable. In addition, not all persons infected with SARS-CoV-2 mount an antibody response [5-9].  

Conclusions 

This study shows that as of August 2020, most of the predominantly adult population sampled from 

clinical laboratories in the 10 sites studied had no evidence of having past infection with SARS-CoV-2. 

Moreover, among people who become infected, a majority—many of whom likely had mild or 

asymptomatic infections—are not captured through case reporting, although the gap between 

estimated infections based on seroprevalence and reported case has decreased over time. Our 
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findings also suggest that antibodies may wane over time.  Thus, both seroprevalence rates 

themselves, and the estimated number of infections based on seroprevalence, are likely most 

accurate during the early months of each site’s epidemic, whereas by summer 2020 and later, 

seroprevalence estimates likely underestimate cumulative infections until appropriate methods are 

identified to account for waning.  

Despite potential limitations, large-scale geographic seroprevalence surveys will continue to be an 

important tool in our understanding of potential herd immunity and may be useful for 

understanding the changing epidemiology of SARS-CoV-2 as vaccines or other pharmaceutical or 

non-pharmaceutical interventions are introduced.  

SARS-CoV-2 continues to circulate across the U.S., and our study suggests both that the vast majority 

of the population do not have evidence of previous SARS-CoV-2 infection and that many people 

likely do not know when they are infected and able to transmit the virus to others. These findings 

reinforce the critical importance of continued precautions at the individual and population level, 

such as wearing cloth face masks, avoiding large gatherings, handwashing, and maintaining social 

distancing when possible.  
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Figure 1. Changes in seroprevalence point estimates and 95% CI from age-sex standardized two-stage 

bootstrapping method described previously
17

, measured at sequential time points from March – July 2020 

(left axis, line graph), at four of ten sites in the United States. Overlay: daily reported cases per 10,000 

population (right axis, area graph). * = adjusted relative risk of infection compared to the preceding 

timepoint was statistically different from 1.0, based on model coefficients and 95% credible intervals of 

Bayesian hierarchical modeling that adjusts for sex, age group, and county.  Figures for remaining six 

sites are in the online supplement, figure e2. 
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Table 1. Demographic characteristics of total patient specimens selected for commercial laboratory seroprevalence survey across up to five time points at ten 

sites in the United States from March – July 2020.  

  WA NY FL PA MO UT CA CT MN LA 

Age group 

(yrs) 

0-18 342 (4.5%) 1435 (18.5%) 313 (4.6%) 1392 (16.1%) 920 (9.8%) 244 (2.8%) 159 (3.2%) 1068 (12.4%) 386 (4.9%) 103 (3.6%) 

19-49 2100 (27.8%) 2393 (30.9%) 1692 (25%) 2222 (25.7%) 2633 (28.1%) 3637 (41.5%) 1782 (35.8%) 2433 (28.2%) 3155 (39.7%) 1306 (45.8%) 

50-64 2097 (27.8%) 1827 (23.6%) 1349 (19.9%) 2480 (28.6%) 2638 (28.2%) 2558 (29.2%) 1223 (24.6%) 2424 (28.1%) 2377 (29.9%) 784 (27.5%) 

65+ 3005 (39.8%) 2091 (27%) 3424 (50.5%) 2563 (29.6%) 3165 (33.8%) 2330 (26.6%) 1816 (36.5%) 2704 (31.3%) 2026 (25.5%) 656 (23%) 

Sex Female 4268 (56.6%) 4341 (56%) 3746 (55.3%) 4852 (56%) 5289 (56.5%) 5050 (57.6%) 2747 (55.2%) 4795 (55.6%) 4379 (55.1%) 1747 (61.3%) 

Male 3276 (43.4%) 3405 (44%) 3032 (44.7%) 3805 (44%) 4067 (43.5%) 3719 (42.4%) 2233 (44.8%) 3834 (44.4%) 3565 (44.9%) 1102 (38.7%) 

Serology 

result1 

non-reactive 7396 (98%) 6414 (82.8%) 6455 (95.2%) 8286 (95.7%) 9123 (97.5%) 8528 (97.3%) 4887 (98.1%) 8136 (94.3%) 7552 (95.1%) 2630 (92.3%) 

Reactive 148 (2%) 1332 (17.2%) 323 (4.8%) 371 (4.3%) 233 (2.5%) 241 (2.7%) 93 (1.9%) 493 (5.7%) 392 (4.9%) 219 (7.7%) 

N=total numbers (% = percent within each subgroup at the same site). 
1
 Sera specimens were tested with an enzyme-linked immunosorbent assay (ELISA) against pan-

immunoglobin (pan-Ig) to the anti-spike protein of SARS-CoV-2.  Signal-to-threshold ratios were calculated from optical density results with a reactive cutoff of >1.0. A 

receiver operator curve was created to maximize overall accuracy. The pan-Ig assay performed with a sensitivity of 96.0% (CI: 89.98 – 98.89%) and a specificity of 

99.3% (CI: 98.32 – 99.88%) against a PCR-confirmed test set
19

. 

  



Acc
ep

ted
 M

an
us

cri
pt

 

 

 

 

 

Table 2. Seroprevalence estimates, infection estimates, and case reporting ascertainment ratios from sampling over multiple serial cross-sectional time points at 

ten sites in the United States.  

Site Timepoint Last date of collection Seroprevalence* (Point estimate, 95% CI) Cases Reported† Estimated infections (N, upper – lower range) Ratio of estimated to reported cases** 

CA 
2 5/27/2020 0.7% (0.4-1.8) 11913 46637 (26650 - 119924) 4 

3 7/23/2020 1.8% (1.2-3)  38603 119924 (79949 - 199874) 3 

CT 

2 5/26/2020 5.2% (3.9-6.6) 41234 185275 (138957 - 235157) 4 

3 6/17/2020 6.3% (5.0-7.8) 45347 224468 (178149 - 277913) 5 

4 7/6/2020 5.2% (4-6.7) 46975 185275 (142520 - 238720) 4 

5 7/27/2020 6.7% (5.3-8.4) 48983 238720 (188838 - 299291) 5 

FL 

2 4/27/2020 2.8% (1.9-4.3) 19310 177670 (120562 - 272850) 9 

3 5/27/2020 4.2% (2.8-6.2) 30055 266504 (177670 - 393411) 9 

4 7/23/2020 13.3% (10.5-16.2)  171659 843931 (666261 - 1027946) 5 

LA 
2 4/27/2020 6.7% (3.2-12.4)  27068 312219 (149119 - 577837)  12 

3 8/14/2020 9.8% (7.4-12.7) 136735 455517 (343962 - 590313) 3 

MN 

2 6/6/2020 2.2% (1.4-3.3) 21066 84865 (54005 - 127297) 4 

3 6/27/2020 4.3% (3.4-5.8) 26528 165872 (131154 - 223734) 6 

4 7/18/2020 6.1% (4.4-8.3) 34379 235306 (169729 - 320171) 7 

5 8/8/2020 8.8% (6.6-11.2) 46045 339458 (254594 - 432038) 7 

MO 

2 5/30/2020 2.8% (1.7-4.1) 12956 171102 (103884 - 250543) 13 

3 6/20/2020 0.8% (0.6-1.8) 17588 48886 (36665 - 109994) 3 

4 7/9/2020 1.4% (0.9-2.5) 25762 85551 (54997 - 152770) 3 

5 7/30/2020 3.2% (2.2-4.5) 48816 195546 (134438 - 274986) 4 

NY 

2 4/16/2020 20.9 % (16.5 -25.9) 196928 2551011 (2013956 - 3161301) 13 

3 5/6/2020 23.2% (20-26.3) 281670 2831745 (2441159 – 3210124) 10 

4 6/21/2020 19.5% (17.2-21.9) 329418 2380130 (2099397 – 2673069) 7 

5 7/11/2020 17.6% (15.5-20) 338224 2148220 (1891898 – 2441159) 6 

6 7/30/2020 18.4% (16.1-20.7) 347104 2245866 (1965133 - 2526600) 6 

PA 

2 5/30/2020 3.6% (2.5-5.1) 56318 242681 (168529 – 343798) 4 

3 6/20/2020 3.8% (2.8-5.1) 64095 256163 (188752 – 343798) 4 

4 7/11/2020 5% (3.8-6.5) 71746 337057 (256163 – 438174) 5 

5 8/1/2020 6.1% (4.8-7.6) 81832 411210 (323575 - 512327) 5 

UT‡ 
2 6/5/2020 1.1% (0.6-2.1) 10310 24013 (13098 - 45844) 2 

3 6/27/2020 1.5% (0.9-2.6) 18836 32745 (19647 - 56759) 2 
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4 7/15/2020 2.7% (1.8-3.9) 28303 58942 (39295 - 85138) 2 

5 8/6/2020 4.8% (3.7-6.2) 39061 104308 (80404 - 134731) 3 

WA 

2 5/11/2020 2.1% (1.2-3.5) 13098 124063 (70893 – 206772) 9 

3 6/20/2020 1.7% (0.9-3.2) 17185 100432 (53170 – 189049) 6 

4 7/7/2020 1.3% (0.8-2.4) 21299 76801 (47262 – 141787) 4 

 5 7/31/2020 1.3% (0.9-2.4) 30416 76801 (53170 - 141787) 3 

* = seroprevalence point estimates calculated using bootstrap methods described previously
17

. † = publicly reported cases by county and date were compiled by 

USAFacts, a non-profit consortium including University of Pennsylvania and Stanford University. ‡ = insufficient samples received from pediatric strata from Utah, 

estimates refer to seroprevalence among adults >=19 and assumes publicly reported cases were 91% adult based on CDC case surveillance inquiries. **These estimates 

compare the estimated infections based on the proportion of the population with antibodies to SARS-CoV-2 and compare it to the number of reported cases as of the last 

date of specimen collection. These numbers are conservative, as some persons who are recently infected may not have developed detectable antibodies at the time of 

specimen collection, or antibodies could wane over time.  

 



Acc
ep

ted
 M

an
us

cri
ptTable 3. Coefficients from Bayesian hierarchical models for adjusted relative risk of SARS CoV-2 infection at ten sites.  

 NY WA MO CT PA MN CA LA FL UT 

Sex           

Female Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref 

Male  1.1 (1.0, 1.1) 1.4 (0.8, 2.1) 1.0 (0.7, 1.3) 1.0 (0.9, 1.2) 0.9 (0.6, 1.1) 0.9, (0.7, 1.1) 1.5 (0.7, 2.7) 1.1 (0.9, 1.5) 1.0 (0.8, 1.1) 0.9 (0.5, 1.5) 

Age group (yrs)           

0-18 1.0 (1.0, 1.0) 0.5 (0.1, 1.7) 1.1 (0.5, 1.7) 0.5 (0.3, 0.8) 1.0 (0.7, 1.6) 1.0 (0.5, 1.7) 0.3 (0.8, 1.2) 0.7 (0.4, 1.5) 1.1 (0.8, 1.4) 0.8 (0.1, 2.2) 

19-49 Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref 

50-64 1.0 (1.0, 1.1) 0.7 (0.4, 1.3) 0.7 (0.4, 1.0) 0.8 (0.6, 1.1) 0.7 (0.5, 1.1) 0.6 (0.4, 0.8) 1.0 (0.9, 1.3) 0.7 (0.5, 0.9) 1.1 (1.0, 1.4) 0.7 (0.4, 1.1) 

65+ 1.0 (1.0, 1.1) 0.6 (0.3, 1.1) 0.7 (0.5, 1.1) 0.4 (0.3, 0.5) 0.2 (0.1, 0.5) 0.3 (0.2, 0.5) 1.1 (0.3, 3.1) 0.5 (0.3, 0.7) 1.5 (1.2, 2.0) 0.6 (0.3, 1.1) 

Timepoint            

1 Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref 

2 vs 1 2.3 (1.4, 4.9) 1.7 (0.8, 5.1) 0.7 (0.5, 1.2) 1.0 (0.7, 1.6) 1.1 (0.5, 2.4) 1.2 (0.9, 1.6) 0.9 (0.6, 1.6)  0.7 (0.4, 1.0) 0.9 (0.5, 1.3) 0.3 (0.1, 0.8) 

3 vs 2 1.9 (1.5, 2.6)  0.3 (0.1, 0.7)  0.4 (0.2, 0.7) 1.1 (0.8, 1.5) 1.3 (0.7, 2.4) 2.3 (1.4, 4.3) 1.3 (0.8, 2.2) 2.4 (1.6, 3.7) 1.0 (0.7, 1.6) 1.1 (0.6, 1.9) 

4 vs 3 0.7 (0.6, 0.9) 1.6 (0.6, 4.0) 1.4 (0.6, 3.3) 0.8 (0.5, 1.1) 1.2 (0.8, 2.0) 1.3 (1.0, 1.8)   2.5 (1.7, 3.9) 3.3 (1.2, 12.0) 

5 vs 4 0.9 (0.8, 1.1) 1.3 (0.6, 3.1) 2.8 (1.5, 5.3) 1.3 (0.9, 2.0) 1.2 (0.8, 1.8) 1.0 (0.8, 1.4)    2.4 (1.3, 4.6) 

6 vs 5 1.0 (0.8, 1.2)          

Model estimates the risk ratio of an individual having detectable anti-SARS-CoV-2 antibodies, as a function of sex, age group, and timepoint of collection as categorical variables, 

adjusted for county. Ref = reference category.  *For Utah only, convergence and resulting posterior distributions were highly dependent upon the priors and the starting values for 

the chains.  Because of this, we have little confidence in the estimates of model parameters.  However, for completeness, we report the results using non-informative priors 

[Normal (0, 0.0001)] for the model coefficients and randomly generated starting values and emphasize the sensitive nature of the model fit. 
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Figure 1 

 


