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Human cytomegalovirus (HCMV) is a widespread pathogen establishing a latent infection
in its host. HCMV reactivation is a major health burden in immunocompromised
individuals, and is a major cause of morbidity and mortality following hematopoietic
stem cell transplantation (HSCT). Here we determined HCMV genomic levels using droplet
digital PCR in different peripheral blood mononuclear cell (PBMC) populations in HCMV
reactivating HSCT patients. This high sensitivity approach revealed that all PBMC
populations harbored extremely low levels of viral DNA at the peak of HCMV DNAemia.
Transcriptomic analysis of PBMCs from high-DNAemia samples revealed elevated
expression of genes typical of HCMV specific T cells, while regulatory T cell enhancers
as well as additional genes related to immune response were downregulated. Viral
transcript levels in these samples were extremely low, but remarkably, the detected
transcripts were mainly immediate early viral genes. Overall, our data indicate that HCMV
DNAemia is associated with distinct signatures of immune response in the blood
compartment, however it is not necessarily accompanied by substantial infection of
PBMCs and the residual infected PBMCs are not productively infected.

Keywords: human cytomegalovirus, blood compartment, hematopoietic stem cell transplantation, reactivation,
peripheral blood mononuclear cell
INTRODUCTION

Human cytomegalovirus (HCMV) is a widespread pathogen infecting most of the population
worldwide. Like other herpesviruses, following primary infection, HCMV establishes a latent
infection that persists for the lifetime of the host. Although HCMV infection in healthy individuals
is mostly asymptomatic, reactivation from latency in immunocompromised individuals constitutes
a serious health burden. For hematopoietic stem cell transplantation (HSCT) patients HCMV
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reactivation is a major risk factor (Stern et al., 2019). Reactivation
in these patients can lead to HCMV disease that manifests in
diverse symptoms, from gastroenteritis to respiratory symptoms,
hepatitis and retinitis, and is also associated with graft versus
host disease (Cantoni et al., 2010; Ljungman et al., 2017). Overall,
HCMV reactivation is a leading infectious cause of morbidity
and mortality in HSCT patients (Broers et al., 2000). Since
HCMV reactivation is associated with DNAemia, i.e. the
detection of viral DNA in the blood, HSCT patients undergo
routine surveillance of HCMV DNA levels in the blood during
the post-transplant period; most commonly by qPCR analysis of
blood samples (Emery et al., 2000). Pre-transplant HCMV
serostatus of the donor and recipient is the major risk factor
for HCMV reactivation and disease following HSCT, with
HCMV seropositivity of the recipient conferring the highest
risk (George et al., 2010; Webb et al., 2018). HCMV
reactivation develops in more than 50% of the cases where the
recipient was HCMV seropositive and the donor was
seronegative (R+/D-), while in cases where the recipient was
HCMV seronegative and the donor was HCMV seropositive (R-/
D+) there is a ~10% risk.

Hematopoietic progenitor cells and monocytes are considered
major reservoirs of HCMV latency in humans (Hahn et al., 1998;
Slobedman and Mocarski, 1999; Goodrum, 2016) however, the
specific source of HCMV reactivation in these patients remains
elusive. Understanding the blood cell subsets that are infected
with HCMV during reactivation, as well as the effect of HCMV
reactivation on the blood compartment, is important in order to
elucidate the role of the blood compartment in progression and
control of infection and in dissemination. Previous analyses of
viral load in primary blood mononuclear cells (PBMCs) relied on
relative measurements using quantitative PCR or in-situ
hybridization and provided a wide range of results (Saltzman
et al., 1988; Boivin et al., 1999; Hassan-Walker et al., 2001), and
detailed transcriptomic analyses were not performed in
such samples.

In order to systematically and accurately characterize the
infection of the blood compartment during HCMV reactivation
in HSCT recipients, we analyzed PBMCs fromHSCT patients that
exhibited HCMV DNAemia. We used digital droplet PCR
(ddPCR), which allows specific and highly sensitive absolute
quantification of DNA even at low amounts, to determine
infection of specific cell types in blood samples from patients
exhibiting HCMV DNAemia. RNA sequencing was further
applied to study the host transcriptome in PBMCs as well as to
characterize the viral expression pattern in PBMCs from HCMV
reactivating HSCT patients. We found that althoughHCMVDNA
was detected in the plasma at high levels, PBMCs harbored
extremely low levels of viral DNA, with monocytes generally
exhibiting the highest viral loads. Analysis of the host
transcriptome suggested the development of HCMV-specific T-
cells and the involvement of regulatory T cells (Tregs) and
additional immune pathways during HCMV DNAemia.
Interestingly, viral transcript levels were very low, in line with
low viral loads found in the different PBMC subsets, however the
gene expression pattern that was detected resembled that of early
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
stages of productive infection, indicating that these cells do not go
through a full productive cycle. Taken together, our findings
indicate that DNAemia in HCMV reactivating HSCT patients is
not necessarily accompanied by substantial infection of PBMCs,
but is nevertheless associated with evident immune
response signatures.
MATERIALS AND METHODS

Cells and Virus Stocks
Peripheral Blood Monouclear Cells (PBMC) were isolated from
fresh venous blood, obtained from healthy donors, using
Lymphoprep (Stemcell Technologies) density gradient. The cells
were cultured in RPMImedia (Beit-Haemek, Israel) supplemented
with 10% fetal bovine serum (FBS), 2 mM L-glutamine and 100
units/ml penicillin and streptomycin (Beit-Haemek, Israel) at 37°C
in 5% CO2. Primary human foreskin fibroblasts (ATCC CRL-
1634) were maintained in DMEM with 10% fetal bovine serum
(FBS), 2 mM L-glutamine, and 100 units/ml penicillin and
streptomycin (Beit-Haemek, Israel).

The TB40/E virus containing an SV40-GFP tag (TB40/E-
GFP) was described previously (Sinzger et al., 2008; O’Connor
and Murphy, 2012). Virus was propagated by electroporation of
infectious bacterial artificial chromosome (BAC) DNA into
fibroblasts using the Amaxa P2 4D-Nucleofector kit (Lonza)
according to the manufacturer’s instructions. Viral stocks were
concentrated by centrifugation at 26000xg, 4°C for 120 min.
Infectious virus yields were assayed on THP-1 cells (ATCC
TIB-202).

Infection Procedures
For experimental infection, PBMCs were infected at a multiplicity
of infection (MOI) of 5 andfibroblastswere infected at anMOI of 1.
Infection was carried out by incubation with the virus for 2 h
followed by two washes to clear out viral particles.

Cell Staining for Flow Cytometry
and Sorting
Cells were counted, and stained in cold MACS buffer (PBS, 5%
BSA, 2 mM EDTA). Cell staining was done using the
following antibodies:

Anti-human-CD45 (Clone: HI-30, Biolegend), anti-human-
HLA-DR, DP, DQ (clone: REA332, Miltenyi Biotec), anti-
human-CD14 (Clone: M5E2, Biolegend), anti-human-CD16
(Clone:3G8, Biolegend), anti-human-CD19 (Clone: SJ25C1,
Biolegend), anti-human-CD3 (Clone: OKT3, Biolegend),
according to manufacturer’s instructions. Cells were analyzed
and sorted on a BD FACSAriaIII.

Detection of Viral Genomes by Digital PCR
Detection of viral DNA was done using the QX200 droplet digital
PCR system (Bio-Rad), using FAM labeled HCMV primer and
probe (Human CMV HHV5 kit for qPCR using a glycoprotein B
target (PrimerDesign) and HEX labeled RPP30 copy number
January 2021 | Volume 10 | Article 607470

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Bernshtein et al. HCMV Reactivation in HSCT Patients
assay for ddPCR (Bio-Rad), as previously described (Shnayder
et al., 2020). Cells were counted, dry pelleted, and stored at −80°C
prior to DNA extraction. DNA was extracted from the cell pellet
in a 1:1 mixture of PCR solutions A (100 mM KCl, 10 mM Tris–
HCl pH 8.3, and 2.5 mM MgCl2) and B (10 mM Tris–HCl pH
8.3, 2.5 mM MgCl2, 0.25% Tween 20, 0.25% Non-idet P-40, and
0.4 mg/ml Proteinase K), for 60 min at 60°C followed by a 10 min
95°C incubation, according to the description in (Roback et al.,
2001). To avoid biases due to small cell numbers, samples with
cell number <1,500 were excluded.

RNA Library Construction
RNA libraries were generated from samples of ~100,000 cells
according to the MARS-seq protocol (Jaitin et al., 2014; Keren-
Shaul et al., 2019).
Sequencing and Data Analysis
RNA-Seq libraries (pooled at equimolar concentration) were
sequenced using NextSeq 500 (Illumina), with read parameters:
Read1: 72 cycles and Read2: 15 cycles.

Analysis of bulk MARS-seq was done as described previously
(Shnayder et al., 2018). The number of Unique Molecular
Identifiers (UMIs) were:

Low DNAemia High DNAemia

patient 6 1890938 5301580
patient 7 1324199 2925446
patient 8 4780993 5068593
Frontiers in Cellular and Infec
tion Microbiology | www.frontiersin.
Correlation Analysis
Pearson correlation between viral gene expression profiles was
calculated using Morpheus (https://software.broadinstitute.org/
morpheus/).
Differential Expression and Enrichment
Analysis
The differential expression analysis was done with DESeq2
(version 1.22.2) (Love et al., 2014) using default parameters,
with the number of reads in each of the samples as an input.
RESULTS

PBMC From Healthy Individuals Harbor
HCMV Genomes Following Experimental
Infection
FollowingHSCT,patients aremonitored forHCMVreactivationby
means of measuring viral DNA loads either in whole blood or in
plasma, however it is unclear what is the source of the detected viral
DNA and which cells in the blood carry HCMV. To unbiasedly
assess the abilityofPBMCs tobeefficiently infectedwithHCMV,we
org 3
first purifiedPBMCs fromthebloodof a healthydonor and infected
them at high MOI with an HCMV strain TB40/E-GFP, which
expresses GFP from an SV40 promoter. Twenty-four hours post
infection, cells were FACS sorted based on standard cell markers to
distinct blood cell types: CD14+CD16- cells which are mainly
classical monocytes, CD16+CD14- cells which include non-
classical monocytes (Guilliams et al., 2018), a subset of NK cells
(Lanier et al., 1989), and dendritic cells (Fromm et al., 2020), and T
and B cells according to cell surface markers CD3 and CD19,
respectively (Figure 1A). The remainingCD14-CD16-CD3-CD19-
cells that were not sorted are most likely subsets of NK cells and
dendritic cells. Flowcytometry analysis revealed thatHCMVinfects
all cell types, as evident by appearance of GFP positive cells;
however, CD14+ monocytes exhibited significantly higher
percentage of GFP positive cells as well as much higher GFP
intensity (Figure 1B), suggesting that they are most efficiently
infected. It is noteworthy that none of these cell types are
considered to support productive infection, and specifically
monocytes, despite having a clear GFP signal, are latently infected
(Shnayder et al., 2018).

Droplet digital PCR (ddPCR) is a relatively recent technology in
which PCR amplification of a specific amplicon is partitioned into a
large number of discrete reactions, allowing greater precision and
reproducibility compared to conventional PCR based
methodologies, and highly sensitive absolute quantification of
nucleic acids (Hindson et al., 2013; Taylor et al., 2017). We used
ddPCR to directly assess the viral load in these different cell
populations. In agreement with GFP levels, all cell types harbored
some HCMV genomes, while CD14+ monocytes exhibited the
highest levels of HCMV genomes per cell (Figure 1C), indicating
that CD14+ monocytes are much more permissive to HCMV
experimental infection compared to the other blood cell types
tested, which exhibited low level of infection.
Low Levels of Viral DNA in Peripheral
Blood Mononuclear Cells During Human
Cytomegalovirus DNaemia
To define HCMV infection of different cell types in the blood
during DNAemia, we analyzed PBMCs from HSCT recipients
that exhibited HCMV reactivation, as defined by detectable levels
of HCMV genomic DNA in the blood. These patients were
periodically monitored for HCMV DNAemia following HSCT
and none exhibited HCMV organ disease. PBMCs were purified
from blood samples of five HSCT recipients taken at the peak of
DNAemia, as measured by HCMV DNA levels in the plasma
(Figure 2A). PBMCs were sorted to distinct cell populations as
described in Figure 1A and viral load in these cells was measured
by ddPCR. We set a cut-off of at least two positive events, which
was determined according to analysis of samples from healthy
sero-negative donors (Supplementary Figure 1). PBMCs from
four of the patients exhibited extremely low (<15 genomes/
10,000 cells) to undetectable HCMV genomic levels in all cell
types, indicating an extremely low level of infected PBMCs in
their blood (Figure 2B, patients 2–5). In one DNAemic sample
January 2021 | Volume 10 | Article 607470
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(patient 1) there were relatively higher levels of HCMV genomic
DNA, yet still very low, that reached ~50 genomes/10,000 CD14+
monocytes, ~150 genomes/10,000 CD16+ cells, ~35 genomes/
10,000 T cells and undetected levels in B cells (Figures 2B, C).
Although higher viral loads were detected in this patient compared
to the other four patients, and there was a preference towards the
infection of CD16+ cells and CD14+ which include most of the
monocytes, the viral loads were still very low and far from the viral
load that could be achieved in experimental infection (Figure 1C).
These results suggest that although PBMCs are permissive to
experimental infection, infection levels are extremely low in the
context of reactivation in-vivo following HSCT, and cannot
explain the high HCMV DNA levels detected in the plasma.

Transcriptional Changes During Human
Cytomegalovirus DNAemia
To characterize the changes in PBMCs from HCMV reactivating
HSCT patients during DNAemia and to examine the viral gene
expression profile, we analyzed the transcriptome of PBMCs
from three patients following HSCT by RNA-seq, at two time
points: no detection or very low level of viral DNA in the blood
and during measurable DNAemia (Figure 3A). These patients
are at the stage of reconstitution of their immune system, which
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
likely has a substantial impact on the transcriptional profile of
their blood cells. Nevertheless, Principle Component Analysis
(PCA) of RNA-seq data indicated that the high-DNAemic
samples clustered separately from low-DNAemic samples of
the same patient (Figure 3B).

Differential expression analysis revealed differences between
high-DNAemic and low-DNAemic PBMCs that were shared
between all three patients. 25 genes were significantly
differentially expressed between the two sample types (adjusted p-
value<0.05, fold change>2, Figures 3C, D, Table S1); two were
upregulated and 23 were downregulated in high-DNAemic
samples. The two upregulated genes in high-DNAemia were
CX3CR1 and EGR1, both of which are expressed by HCMV
specific T cells following HSCT (Hertoghs et al., 2010; Hardy
et al., 2018). Among downregulated genes were several genes
related to inflammatory responses, including two genes belonging
to the TNF-receptor superfamily (RELT, TNFRSF12a), as well as
genes related to innate immune responses (LCN2, ITGA2B).
Interestingly, two downregulated genes, HIC1 and ID1, are
known as transcription factors that enhance Treg function and
differentiation (Liu et al., 2014; Ullah et al., 2018). Thus, we were
able to readily detect a response of blood cells toHCMVDNAemia,
which was captured by reproducible transcriptional changes.
A
B

C

FIGURE 1 | PBMCs from healthy individuals are efficiently infected with HCMV following experimental infection. (A) HCMV infected PBMCs were FACS sorted to four distinct
cell populations. (B) Flow cytometry analysis of GFP expression levels in PBMCs experimentally infected with HCMV strain TB40/E-GFP at 22 h post infection. Uninfected
control cells and infected cells are shown in grey and green lines, respectively. (C) Quantification of viral genomes by ddPCR in indicated PBMCs populations presented as
copies per 10,000 cells. Graph reflects mean and 95% CV of Poisson distribution, calculated from two technical replicates per sample.
January 2021 | Volume 10 | Article 607470
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Although these genes are potentially related toHCMVreactivation,
they may also be related to immune reconstitution or other
processes in the immune system of these patients.

In line with the extremely low viral DNA level found in these
cells, analysis of viral gene expression indicated very low to
undetectable viral transcript levels even in the high DNAemic
samples (Figure 3E, Table S2). In two high-DNAemia samples,
we found 55 and 66 unique viral reads in ~ 5 million total reads,
while in the third patient therewere only two viral reads (Figure 3E,
Table S2). Surprisingly, the viral transcripts detected in these
samples were mainly of genes that are expressed at an immediate
early time point such as UL123 and UL36, while the level of
transcripts that are abundant at the late stages of productive
infection was much lower (Figure 3F). Indeed, although the
number of viral reads we obtained is low, comparison of viral
gene expression pattern of these samples to the expression pattern
of early and late stages of productive infection, based on RNA-seq
analysis of infected fibroblasts at 8 and 72 hpi, revealed high
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
correlation with early stage of infection (R=0.71, Figure 3G). The
absence of late transcripts indicates that the cells from which these
viral transcripts originate are not productively infected and thus are
unlikely to produce infectious virus. Overall, the transcriptome
analysis of PBMCs from HSCT patients reveals host response to
HCMV infection and low viral gene expression, which resembles
early stages of productive infection without clear evidence of a full
replicative cycle.
DISCUSSION

HCMV reactivation constitutes a major clinical burden following
bone-marrow as well as solid organ transplantation. Reactivation
is detected in patients by measurement of HCMV DNA in the
blood. Despite the importance of understanding the role of the
blood compartment in HCMV infection and dissemination
following reactivation of the virus, the nature of this infection
A B

C

FIGURE 2 | Low levels of HCMV DNA detected in PBMCs from HCMV reactivating HSCT patients during HCMV DNAemia. (A) Description of samples from five
HCMV reactivating HSCT patients. HCMV copy number was measured by RT-qPCR. PBMCs from HSCT patients were sorted to four distinct cell populations as
described in Figure 1A. (B) Quantification of viral genomes in the indicated PBMC populations from individual HSCT patients, presented as copies per 10,000 cells.
Graph reflects mean and 95% CV of Poisson distribution, calculated from at least 2 technical replicates per sample. NA, not available; ND, not detected; i.e. positive
event number in the sample is <=2. (C) ddPCR results of PBMC populations from patient 1, technical replicates separated by yellow vertical lines. The magenta line
marks the threshold.
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A B

D

E

F

G

C

FIGURE 3 | RNA sequencing analysis of PBMCs from HCMV reactivating HSCT patients reveals low viral transcript levels and a discernible host response to active
HCMV infection. (A) Description of samples from three HCMV reactivating HSCT patients. HCMV copy number was measured by RT-qPCR. (B) Principal
component analysis of the transcriptional profile of PBMCs from three HSCT patients at two time points. (C) Heat map of 25 host genes significantly differentially
expressed (fold change>2 and FDR<0.05) in all three HSCT patients comparing samples of low and high DNAemia. (D) Volcano plot of statistical significance (-log10
p-value) against log 2 ratio of host transcript levels between low and high DNAemic samples of PBMCs from three HCMV reactivating HSCT patients, based on
RNA-seq data. Blue dots mark significantly up or down regulated genes (fold change>2, adj-p value<0.05). (E) Total number of viral reads in PBMCs from low and
high DNAemic samples of three HCMV reactivating HSCT patients. (F) Heat map showing the expression level of representative immediate early stage and late stage
viral genes in PBMCs of HSCT patients or experimental lytically infected fibroblasts at 8 or 72 h post infection. (G) Heat map showing Pearson’s correlation between
viral gene expression program in PBMCs from HSCT patients and experimental lytically infected fibroblasts at 8 or 72 h post infection.
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is not well characterized. Depicting the blood cell types that are
infected, portraying the nature of viral infection in these cells and
its impact on the host will provide insight on these issues.

Quantitative assessments of viral load during HCMV
reactivation in different blood cell types were done in the past but
relied on less quantitative methodologies than the ones currently
available (Saltzman et al., 1988; Boivin et al., 1999; Hassan-Walker
et al., 2001). ddPCR is a relatively recent technique allowing
absolute measurements of nucleic acids with superb precision and
reproducibility (Hindson et al., 2013; Taylor et al., 2017). To
delineate the levels of HCMV infection in different PBMC
populations, we used this highly sensitive tool to measure the
absolute level of HCMV genomes in the different cell types. We
show thatCD14+monocytes aremarkedly the preferential target of
HCMV infection following experimental infection of PBMCs.
CD14+ monocytes are considered sites of HCMV latency, which
may reactivate in response to differentiation (Goodrum, 2016).
These cellswere indeedvery efficiently infectedasapparent fromthe
level of the GFP reporter as well as from the amount of viral
genomes that were detected in these cells, however this infection is
not productive as viral gene expression is repressed and infectious
virus is not produced (Shnayder et al., 2018). In comparison,
CD16+ cells, B cells, and T cells, are much less efficiently infected.
This is in linewith the prevalent viewofmonocytes as themain cell
type in the blood to be infected by HCMV.

ddPCR measurements in samples from HSCT recipients with
HCMV reactivation, at the peak of DNAemia, also supported the
notion that monocytes are generally the most efficiently infected cell
type among PBMCs, although as CD16+ cells showed higher viral
DNA levels in some of the patients, thismay implicate additional cell
types. However the levels of infection in all blood cell types tested are
extremely low in these settings. This suggests that much of the DNA
measured in the plasmadoes not originate frommononuclear cells in
the blood, and perhaps does not reflect infectious virus in the blood.
Thedifference in viral loadbetween experimental infection and in the
context of reactivation in-vivo after HSCT probably stems from
several factors that greatly differ between natural and experimental
systems including the highMOI that is used in experimental settings,
the viral strain and changes in the environment of the cells.

In light ofprevious studies, showingmuchhigher levels ofHCMV
DNA in mononuclear blood cells, the extremely low infection levels
we find are surprising. This difference may represent variability
between patients or may be related to the more precise
measurement method. It is noteworthy that our analysis includes
patients with very high DNAemia, negating the possibility that we
screened only patients with low levels of HCMV reactivation. We
cannot rule out the possibility that in other patients there may be
higher levels of HCMV genomes in PBMCs during DNAemia,
however in a previous study we found extremely low levels of
HCMV genomes in monocytes of additional HCMV reactivating
HSCT patients (Shnayder et al., 2020). Further research will be
required to delineate the source of HCMV genomes in the blood of
patients with low PBMC infection during DNAemia. A possible
target is polymorphonuclear cells which were shown to be infected
during HCMV reactivation (Saltzman et al., 1988; Hassan-Walker
et al., 2001). Interestingly, circulating cytomegalic endothelial cells
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
have been identified in the blood of solid organ transplant patients,
AIDS patients, and HSCT patients (Salzberger et al.; Grefte et al.,
1993; Percivalle et al., 1993; Gerna et al., 1998).

Analysis of viral transcripts in PBMCs from DNAemic samples
supports the notion that these cells are hardly infected with HCMV,
as the levels of viral mRNAs were extremely low. Intriguingly, the
dominant viral genes that were expressed were immediate early (IE)
genes. We previously examined HCMV gene expression in diverse
human tissues by analyzing RNA-seq samples from the Genotype-
Tissue Expression (GTEx) Consortium. Interestingly, this analysis
also uncovered samples with a restrictive gene expression pattern
that includes mainly IE transcripts and these were specifically found
in blood samples (Shnayder et al., 2018). This appearance of the
same pattern implies that there are blood cells with limited viral
gene expression that might reflect a threshold that needs to be
crossed before the virus can accomplish the complete infection
cycle. This specific pattern also suggests that the PBMCs that are
infected in these DNAemic samples are not productively infected.

The viral genome levels we find in PBMCs from DNAemic
samples are very similar to the levels that were estimated for
PBMCs during latency (Slobedman and Mocarski, 1999; Jackson
et al., 2017), whichmay suggest that these could be latent cells which
are not related to reactivation. However, several lines of evidence
suggest that they are related to reactivation. First, someof the samples
used in the study are from R+/D- cases, where latent blood cells are
not expected. Second, although the transcript levels are extremely
low, the transcription profile is very distinct fromwhatwas described
for latentmonocytes (Cheng et al., 2017; Shnayder et al., 2018).Third,
beside patient 5, there is an association between the levels of
DNAemia in the patient and the levels of viral genome copies that
were measures in PBMCs by ddPCR. Thus although the infection is
low, we suspect that it is related to the reactivation of HCMV.

Despite the extreme changes in the blood compartment during
reconstitution of the immune system following HSCT, the gene
expression profile of high-DNAemic samples clustered away from
low-DNAemic samples from the same patient and there were
reproducible transcriptional changes. This suggests that these
genes are associated with HCMV reactivation although it possible
that they are related to other immune processes, e.g. immune
reconstitution. HCMV is known to elicit a robust CD8+ T cell
response. One of the upregulated genes in high-DNAemic samples,
CX3CR1, is upregulated in HCMV specific T-cells following
HCMV infection (Hertoghs et al., 2010). The expression of EGR1,
whichwas also upregulated in our data, was characteristic of CMV-
specific T-cells in non-immune reactive HSCT patients, which are
associated with poor CMV control (Hardy et al., 2018). These
results suggest that an immune cellular response to HCMV
reactivation has developed in these patients. Regulatory T cells
(Tregs) are essential for regulating the function of effector T cells.
The proportion of Tregs within CD4+ T-cell population was found
to decrease during HCMV reactivation in HSCT patients (Velaga
et al., 2013). Notably, two out of the 23 down-regulated genes in
samples with HCMV DNAemia, Hic1 and ID1, were shown to
promoteTregdifferentiation, expansion and suppression functions,
supporting decrease of Treg functions during HCMV reactivation
(Liu et al., 2014; Ullah et al., 2018). In addition, several genes related
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to TNF signaling and NF-kappa-b activation, or associated with
innate immune response, as well as antiviral processes were also
downregulated. Further studies will need to establish the
importance and function of these changes during HCMV
reactivation in HSCT patients.

Overall, our data suggest that DNAemia in HCMV reactivating
HSCT patients is not necessarily accompanied by substantial
infection of PBMCs, and that the infected PBMCs are not
productively infected. Nevertheless, high DNAemia in these
patients is associated with transcriptional changes that indicate an
active immune response. Our findings elucidate the nature of
HCMV infection in PBMCs during HCMV reactivation in HSCT
patients and shed light on the role of the blood compartment in
progression and control of HCMV infection.
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