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Abstract

Background: Wearable sensors have the potential to provide clinicians with access to motor performance of people
with movement disorder as they undergo intervention. However, sensor data often have to be manually classified
and segmented before they can be processed into clinical metrics. This process can be time consuming. We recently
proposed detection and segmentation algorithms based on peak detection using Inertial Measurement Units (IMUs) to
automatically identify and isolate common activities during daily living such as standing up, walking, turning, and sitting
down. These algorithms were developed using a homogenous population of healthy older adults. The aim of this study
was to investigate the transferability of these algorithms in people with Parkinson’s disease (PD).

Methods: A modified Timed Up And Go task was used since it is comprised of these activities, all performed
in a continuous fashion. Twelve older adults diagnosed with early PD (Hoehn & Yahr ≤ 2) were recruited for
the study and performed three trials of a 10 and 5-m TUG during OFF state. They were outfitted with 17
IMUs covering each body segment. Raw data from IMUs were detrended, normalized and filtered to reveal kinematics
peaks that corresponded to different activities. Segmentation was accomplished by identifying the first minimum or
maximum to the right and the left of these peaks. Segmentation times were compared to results from two examiners
who visually segmented the activities. Specificity and sensitivity were used to evaluate the accuracy of the detection
algorithms.

Results: Using the same IMUs and algorithms developed in the previous study, we were able to detect these
activities with 97.6% sensitivity and 92.7% specificity (n = 432) in PD population. However, with modifications
to the IMUs selection, we were able to detect these activities with 100% accuracy. Similarly, applying the
same segmentation to PD population, we were able to isolate these activities within ~500ms of the visual
segmentation. Re-optimizing the filtering frequencies, we were able to reduce this difference to ~400ms.

Conclusions: This study demonstrates the agility and transferability of using a system of IMUs to accurately
detect and segment activities in daily living in people with movement disorders.
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Background
People suffering from movement disorders often experience
limited mobility, which could lead to loss of independence
and a decrease in the quality of life [1, 2]. Recently, much
attention has been given to the use of body-worn sensors
to monitor mobility [3–6] in an effort to improve patient
care through real-time feedback of rehabilitation [7, 8] and
pharmaceutical intervention [9], particularly in patients
with Parkinson’s diseases (PD). These sensors are ubiqui-
tous in the detection of physical activities such as walking,
sitting and standing during the course of daily living in clin-
ical setting [10–13] as well as in free-living environment
[14–18].The automation of the detection and segmentation
of these activities could precipitate the analysis of the qual-
ity of the movement, which will provide clinicians with
real-time motor function behavior to adapt their treatment
strategies to improve patient cares and ultimately increase
the quality of life for people with movement disorders.
Inertial Measurement Unit (IMU), which are com-

prised of a 3D accelerometer, a gyroscope and a mag-
netometer, is widely used in many applications. These
sensors have the potential to provide continuous re-
mote monitoring in natural environments, and there-
fore, are more practical to deploy than laboratory-
based optical motion capture systems. More than ever,
one of the emerging uses for IMUs is to detect daily liv-
ing activities and assess the quality of the movement
during these activities. For example, a system combin-
ing inertial and barometric sensors on different ana-
tomical locations was used to detect activities such as
drinking and writing [10]. Postural transitions espe-
cially during sit-to-stand and stand-to-sit have also
been detected with high accuracy using a single chest
mounted gyroscope [19] and a tri-axial accelerometer
[20, 21] in clinical settings to evaluate mobility. How-
ever, the emphasis of these types of system has been on
the detection of activity. In addition, the scope of these
postural transition detections has been limited to static
transition and the range of the activity that can be de-
tected is limited by the amount of sensor information
available. Many studies have also focused on the use of
sensors to characterize the quality of the movement in
people with PD. Zijlstra [22] showed that patients with
PD displayed a lower angular velocity during the exten-
sion phase of standing up using an inertial sensor on
the hip. Similarly, parameters such as trunk angle [23],
freezing of gait, [24–26]and gait parameters [27–29]
(stride time, cadence, range of motion, etc.) have been
shown to change significantly in people with PD when
compared to healthy older adults during common daily
living activities. Furthermore, turning step [30] and
speed [31] have been extracted from inertial sensors to
evaluate the motor quality of people with PD during
turning task.

However, for remote monitoring of patients in their
natural environment using IMUs to be efficient, there
need to be a systematic approach for the development
of such tool. First, one must be able to detect what the
person is doing (e.g., walking, sitting, etc.), as well as
detect transitions between tasks (e.g., initiation of gait).
Also, within those segments, a proper detection of
symptoms can be done (e.g., tremor, bradykinesia,
freezing, etc.). To be clinically relevant, it must be de-
termined whether the detected symptom had an effect
on motor performance. This is evaluated using a signal-
to-noise approach [32] where the signal is the voluntary
movement and the noise is the symptom detected. If
the signal-to-noise is high, then the symptom is irrele-
vant to the performance of the person tested. This
process is illustrated in Fig. 1. The present study fo-
cuses on the Activity Detection highlighted in gray.
We recently proposed detection and segmentation

algorithms based on peak detection of IMUs data to
automatically isolate common activities in daily living
in healthy older adults [14, 15, 33]. Using multiple
IMUs positioned on different limb segments on the
body, we were able to accurately segment and detect
activities of daily living in a homogenous healthy aging
population using kinematics and orientation data ob-
tained from these IMUs. However, people with PD
often exhibited altered gaits, reduced strength, and
limited mobility due to neurological damages caused
by the disease, which could affect the generalizability
and application of the detection and segmentation al-
gorithms developed in healthy older adults. Specific-
ally, tremor, rigidity, and bradykinesia can manifest in
patients with PD, which can also cause difficulties per-
forming simple movements (e.g. standing up from a
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Fig. 1 The challenge of detecting, segmenting and analyzing ADL in
patients with movement disorder. The focus of this study is on the
activity detection, indicated in gray
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chair). These conditions can magnify the challenges
these patients face in simple tasks such as turning,
where they adopt “en block” movement to overcome
these physical limitations. PD patients can also de-
velop abnormal gait during walking such as shuffling
feet and freezing of gait. The physical limitations of
PD can alter the sensor markers used to accurately
detect and segment activities common in daily living.
Further compounding the challenges, PD affects each
patient very differently, thus making it difficult to de-
velop a universal algorithm based on IMUs to capture
and segment these activities. The aim of this study
was to investigate the transferability of these algo-
rithms in detecting and segmenting these common ac-
tivities in people with PD during OFF state. Similar to
previous study, we used a modified Timed Up And Go
(TUG) task because it contains four common activities
such as standing up, walking, turning and sitting down
performed in a continuous fashion.

Methods
Participants
Twelve community dwelling older adults (4 females; 67.8
± 10.4 years old, height = 1.66 ± 0.04 m, weight = 54.0 ±
7.8 kg, BMI = 19.8 ± 3.6 kg/m2; 8 males, 66.6 ± 3.6 years
old, height = 1.77 ± 0.04 m weight = 79.9 ± 17.3 kg, BMI =
25.7 ± 6.1 kg/m2) who are diagnosed with early stages PD
were recruited for the study. Patients were recruited
through the Centre de Recherche de l’Institut Universi-
taire de Gériatrie de Montréal (CRIUGM) in collaboration
with Quebec Parkinson Network(QPN). Participants were

screened for cognitive deficits using the Montreal Cogni-
tive Assessment (MOCA) test (mean = 27.7 ± std = 2.3)
[34]. None of the participants exhibited any physical limi-
tations or pain that could affect their ability to perform
the task. The Nottingham Activity of Daily Living Scale
was used to ensure that the participants were independent
in their living environments. All participants involved in
the study were rated less than or equal to 2 on the Hoehn
and Yahr [35] scale (1.4 ± 0.8) to form a homogeneous
motor symptom of early PD and avoid the more severe
motor symptoms during the later state of PD. Other sub-
scores from the motor examination portion of the MDS-
UPDRS assessment such as arising from the chair, gait
and posture were also recorded. While only early PD par-
ticipants were recruited, some participants exhibited
motor symptoms such as rigidity, tremor, and bradykine-
sia. The physical and motor characteristics of the partici-
pants are summarized in Table 1. The institutional
research ethics review board of the CRIUGM approved
this research and each participant read and signed an in-
formed consent form.

Experiment protocol
Participant were tested in the morning during their
OFF state or at least 10 h after their last medication.
Participants performed two TUG tasks, one having
length of 10 m, the other 5 m. Participants performed
three trials of each TUG task. Data recording started
with participants in a standing position to initialize the
IMUs. Participants then sat down in a armed-chair to
perform the task. Participants were asked to stand up

Table 1 Motor symptoms and mobility characteristic of the participants

Motor symptoms MDS-UPDRS motor examination sub-score

Part. Age Height (cm) Year First symptom Rigidity Tremor Brady. Arising from
chair

Hoehn & Yahr Gait Posture MOCA

1 61 171 8 Tremor ✓ 0 2.0 0 0 27

2 64 183 7 N/A ✓ 0 2.0 0 0 30

3 79 163 9 Tremor ✓ ✓ 1 1.5 1 0 23

4 68 173 3 N/A ✓ 1 1.5 0 0 26

5 73 178 15 Rigidity 0 1.0 0 0 24

6 62 173 3 Tremor 0 1.0 0 2 25

7 67 180 3 Rigidity 0 1.0 0 0 27

8 74 163 5 Tremor 1 1.0 0 0 29

9 70 178 4 N/A ✓ 1 2.0 0 0 26

10 65 178 3 N/A ✓ 0 1 0 0 29

11 64 172 0 N/A ✓ 0 2.0 0 0 30

12 57 166 4 Brady. 0 2.0 0 1 26

Mean ± Std 67 ± 6 173 ± 7 5 ± 4 0.33. ± 0.49 1.4 ± 0.8 0.08 ± 0.29 0.18 ± 0.40 27 ± 2

Sub-scores from the motor examination portion of the MDS –UPDRS and the motor symptom of PD participants are tabulated. Cognitive assessment was
evaluated using the Montreal Cognitive Assessment test (MOCA). MOCA scores are scaled out of a possible 30. Year indicates how long participants have been
diagnosed with PD
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without using their arms, walk to a marker on the floor
(5 m and 10 m), turn around, walk back to the chair
and finally sit down (Fig. 2a). Participants were asked to
perform these tasks at their own pace and no instruc-
tions were given on how sit, walk, or turn.
Participants performed these TUG tasks while wear-

ing an IGS-180 motion capture suit (Synertial UK Ltd,
Brighton, UK). The IGS-180 (Fig. 2b-d) is equipped
with 17 IMU modules (OS3D, Inertial Lab, VA, USA)
positioned on each limb segment in order to capture
the full-body 3D movement. Each IMU module is
comprised of 3-axis linear acceleration (accelerom-
eter), angular velocity (gyroscope) and magnetic north
heading (magnetometer). Raw data (acceleration, an-
gular velocity) and 3D orientation (estimated from a
proprietary fusion algorithm developed by Inertial
Lab) from each IMU were acquired at 60 Hz. Since
there was no a priori expectation as to which IMUs
were suitable markers for detection and segmentation,
all 17 IMUs were active during the recording. This
allowed us to identify the best set of IMU to detect
and segment movement during the TUG.

Detection and segmentation
The algorithms developed to detect and segment activ-
ities during TUG are described in detail elsewhere [33]
(Fig. 3a). In brief, selected IMUs were identified and
processed using a band pass filter at optimal frequencies
to reveal kinematics peaks that corresponded to different
activities. For activity detection, multiple IMUs were be
used to provide complementary sensor information to
distinctively identify different activities. For example, the
peak of the trunk acceleration (az) could indicate both
sitting down and standing up, however; augmenting that
information with the derivative of the acceleration ( _αy ),
we were able to differentiate between these two activities
(Fig. 3b). For most IMUs, the directional axis refers to
the local reference frame of the IMU with the y-axis
aligned along the limb segment, except for the head,
where the x-axis was aligned with the axial rotation of
the head. Once these activities were detected, the transi-
tions (beginning and end) of these activities were identi-
fied by locating the minimum or maximum to the left or
right of the activity peaks. This process essentially calcu-
lated the width or duration of the activity. In more
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Fig. 2 Schematic of the TUG task and motion capture system based on IMU. a Spatial schematic of a TUG path and different transition points. Seven
transitions were identified among the activities performed during a TUG. These transitions are: 1) sit-to-stand 2) stand-to-walk out 3) walk out-to-turn 4)
turn-to-walk in 5) walk in-to-turn 6) turn-to-stand 7) stand-to-sit. b Diagram of the 17 IMUs and their locations on the suit. c A close-up view of the IMU on
the shoulders, trunk, and hip. d Using the right-hand Cartesian coordinate system, the y-axis is aligned along the length of the IMU while the x-axis is
aligned along the width of the IMU. Most IMU were positioned on the body with the y-axis aligned along the limb segment, except for the IMU on the
head, where the x-axis was aligned with the rotation of the head
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dynamics transitions, multiple IMUs were used to esti-
mate the transition point by averaging the times marked
by these IMUs (Fig. 3c). This is due to the asynchronous
movement of the limb segments and the variability in
how participants strategized their movements to transi-
tion from one activity to the next.
Two independent examiners also segmented the ac-

tivities during the TUG using the visual full body avatar
generated from IGS-180 motion capture software to
measure the accuracy of the segmentation algorithm.
These two examiners were given instruction on how to
visually mark the beginning and end of the different ac-
tivities during a TUG, but no specific markers were im-
posed to prevent bias on the algorithm. Examiners were
instructed to mark the transition from sit-to-stand by
identify the upward movement of the body from the sit-
ting position, but no specific body movements was

stipulated. Participants were instructed to perform the
task at their own volition to mimic their natural move-
ment; therefore, a general guideline was needed to ac-
count for the variability in how participants transition
from one activity to the next. For example, during the
transition from stand-to-walk, some participants made
discretize movements from stand up to walking while
some transitioned to walking immediately from sitting
position. Thus the examiners must use their judgments
to identify these differences among participants. Given
the general guideline, the intra-rater reliability between
the examiners was excellent (ICC = 0.99).
The algorithms that were previously developed based

on a population of healthy older adults were first used
to detect and segment activities in PD participants to
determine their accuracy and transferability. Subse-
quently, the algorithms were re-optimized to adapt to
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PD participants and to improve their accuracy. They
were modified in participants with PD using the data
from the 10 m trials; however, the algorithms were
applied to the 5 m trials without any modifications or
re-optimization. While this does not addressed the
transferability of the algorithms to all patients with PD,
regardless of stage or type of disease, it highlights the
need for adapting the number of IMUs and algorithms
to the tested population.
IMU and signal optimization were performed to im-

prove the accuracy of the detection and segmentation
of these activities that might have been affected by the
motor differences between healthy older adults and
people with PD. Additional IMUs or sensor signals
were needed to develop a more robust redundant sys-
tem that was capable of capturing the natural move-
ment of the participants as they performed these tasks
in an unimpeded and continuous motion.
Sensitivity and specificity [36] were used to evaluate

the performance of the algorithm to detect the activities
performed during a TUG in comparison with the visu-
ally segmented ground truth. Sensitivity measures the
proportion of actual positive activities detected (true
positive) while specificity measures the proportion of
the negative activities that were detected (true nega-
tive). The timestamp differences (ΔT = TSensor–TVisual)
between the transition times segmented visually by two
examiners and the IMUs were used to evaluate the
performance of the algorithm across twelve participants
at each transition.

Results
Activities detection
Using the same detection algorithms that were developed
using a population of healthy adults to PD population, we
analyzed 12 participants performing 3 trials of a 5 m and
10 m TUG that yielded 432 (12 participants x 6 activities
x 3 trials x 2 tasks) instances of activities such as standing
up, sitting down, walking, and turning. The results show
that during standing up, the detection sensitivity was
100% for both the 10 m and 5 m TUG (n = 72) while spe-
cificity was 94.7% and 97.3%, respectively. Similarly, dur-
ing sitting down, the sensitivity was 100% for the 10 m
and 5 m TUG and specificity was 97.3% and 92.3%, re-
spectively (n = 36). During the 10 m TUG, walking was
detected with sensitivity of 91.6% while specificity was
87.5% (n = 72). In the 5 m TUG, walking sensitivity was
88.9% and specificity was 72.2% (n = 72). Turning was de-
tected with 100% sensitivity and specificity during both
TUG tasks (n = 144).

Modifications for patients with PD
Several modifications to the algorithms and IMU selection
were made to improve the detection of activities in PD

patients (Table 2). These changes were made to enhance
the detection algorithms by taking into account the
biomechanics and movement strategies adopted by PD
patients that were absent in healthy older adults. For
example, during standing up and sitting down (Fig. 4), the
angle of the hip (θhip) was added to further distinguished
these activities from extraneous trunk and hip move-
ments. θhip was calculated using the fused quaternion data
of the sacrum and thigh. Furthermore, the band pass filter
frequency of the trunk, which was re-optimized using the
10 m TUG data, was reduced from 1.57 Hz to 0.9 Hz to
compensate for noise that might have been amplified by
the tremors and postural instability. For walking, the
sacrum IMU was replaced by the shin IMU while a new
adaptive thresholding based on the histogram (numbers of
bin = 20) of the signal amplitude (ay, Fig. 5b) was used to
set the limit for task detection. This process is similar to
Otsu’s thresholding [37] The threshold is defined as:

Threshold ¼ binmax�ðbinmin�binwidth � αÞ ð1Þ

Where binmax and binmin define the maximum and
minimum value of the bin of the histogram and α =
0.01. The generalize idea of the methodology is to en-
sure all viable signals are captured, independent of
the strength of the signal, which can often be weak in
PD population. With these modifications, the specifi-
city and sensitivity of all the activities were 100% for
both tasks (n = 432, see Table 3).
Modifications in the algorithms and IMU selection used

to detect activities in people with PD are presented. The
original methodology was developed using a homogenous
population of healthy older adults. The accuracy of the
algorithms was enhanced in the detection of standing up,
sitting down, and walking by concisely redefining the
description each activity using the angle of the hip (θhip).
The band pass filter frequency was reduced during sitting

Table 2 Comparison between the modified and original
algorithm and IMU selection

Activity Original methodology Modified methodology

Standing up • Trunk az • Trunk az

• Thigh ay • Thigh ay

• θhip

Sitting down • Trunk az • Trunk az

• Thigh ay • Thigh ay

• fcutoff = 1.58 Hz • θhip

• fcutoff = 0.9 Hz

Turning • Trunk ωy • Trunk ωy

Walking • Sacrum ωy • Shin ay

• Normalize thresholding • θhip

• Adaptive thresholding
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down to compensate for tremor in people with PD and a
new adaptive thresholding method was used in the modi-
fied algorithm to automatically adapt to each patient and
mitigate low signal-to-noise ratio in some participants.

Segmentation
The segmentation times marked by the algorithms were
evaluated using the visual times marked by two inde-
pendent examiners. A two-way random inter-rater reli-
ability measure was calculated using an intra-class
correlation coefficient (ICC). The ICC is scaled from 0
to 1 with the high value indicating excellent reliability.
For all transitions segmentation within the TUG, the
ICC = 0.99. The differences (mean ± std) of the transition
times between the two examiners are summarized in
Table 4 (Visual ΔT). On average, the examiners were dif-
fered by 175 (±113) ms and 156 (±73) ms during 10 m
and 5 m TUG, respectively.
Org. ΔT indicates the time differences obtained in the

5 m and 10 m TUG in PD participants using the algo-
rithms that were previously developed based on a popu-
lation of healthy old adults (Table 4). Across the seven
transitions, the average difference between the

timestamp obtained using the algorithm and the visual
segmentation was 522 (±160) ms and 490 (±200) ms
during the 5 m and 10 m TUG, respectively. The largest
difference was during the more dynamics turn-to-stand
transition for both tasks, while the smallest was during
the more static sit-to-stand transition. The high cut off
frequencies (fcutoff ) were re-optimized during these dy-
namics transitions using the trials from the 10 m TUG
data and applied them to the 5 m TUG (Table 5). The
process was previously described [33] in a study using
healthy older adults. Using the re-optimized algorithms,
the average time difference between the time segmented
using the sensors and the examiners across all seven
transitions was 453 (±135) ms and 345 (±157) ms for the
5 m and 10 m TUG, respectively (Table 4, Opt. ΔT,
Figs. 6 and 7).

Discussion
The aims of this work were to determine the transfer-
ability of the detection and segmentation algorithms that
were developed based on healthy older adults on people
with PD and to adapt the IMU selection and algorithms

A

B

Fig. 4 Comparison between the original and modified algorithms for the standing up and sitting down. a Using the original algorithms that were previously
developed using healthy older adults, we were able to achieve high specificity and sensitivity during both the 5 and 10 m TUG. However, the trunk and
thigh IMU were prone to false positive (FP) due to sway in the trunk and thigh while participants were sitting in the chair or during pre-posturing by PD par-
ticipants to gain leverage before standing up. b The modified algorithms used the orientation data from the thigh and sacrum modules to calculate the
angle of the hip(θhip) to eliminate the FPs detected using the original algorithms. The angle was superimposed on the previous algorithms to eliminate the
FPs and increase its accuracy to detect standing up and sitting down
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to the variability in the kinematics patterns of people
with PD. While the original algorithms and selected set
of IMU from our study in healthy aged individuals [33]
performed well during the detection of activities, modifi-
cation were made to the IMU selection to improve their

accuracy in people with PD, especially during walking.
The same set of IMUs and algorithms were used for seg-
mentation of the activities within the TUG; however,
filtering frequencies were re-optimized to improve the
segmentation during more dynamic transitions.
Using the original set of IMUs and detection algo-

rithms, we were able to detect the activity such as stand-
ing up, sitting down, and turning with an average of
100% sensitivity and 96.7% specificity across the two
tasks with only 7 false positives. These false positives
were triggered by participants swaying their trunks to
gain momentum to stand up from the chair without
using their arm or bending their trunk to watch their
foot placement before sitting down, which were absent
in healthy older adults. This in an inherent problem
when only one IMU on the trunk is used and only
movements of the upper limbs are captured [20, 38, 39].
Even though the number of false positives was minute
when compared to the total number of instances
detected, it still represents a potential flaw of the

A

B C

Fig. 5 Comparison between the original and modified algorithms during walking. The original algorithms used to detect walking were based on the
gyroscope of the sacrum (ωy) and the modified algorithms were based on the acceleration of the shin (ay) and hip angle (θhip). The original algorithms
were prone to false positive during sitting down (a). Furthermore, due to minimal hip movement in the y-direction in some participants who exhibited shuf-
fling gait, detection was more prone to false negative since the signal dropped below the normalized threshold. To remedy this problem, an adaptive
threshold was used to set the limit of detection based on the distribution of the amplitude of the signal. This approach adaptively changes the threshold
based on the participants; therefore, mitigating the variability among participants (b). The acceleration of the shin was adopted to detect walking in PD pa-
tients; however, using this IMU alone also yielded many false positives due to extraneous lower limb movements during sitting down and standing up. To
identify true moment of walking, θhip was used to ensure that the participant was standing upright. Therefore, the movement of the shin coupled the up-
right position of the participant distinguished walking from other tasks with 100% accuracy (n= 72) (c)

Table 3 Sensitivity and specificity of activity detection during
TUG tasks with original and modified detection algorithms

Original Modified

Activity TUG Sens. (%) Spec. (%) Sens. (%) Spec. (%)

Standing up 5 m 100 97.3 100 100

10 m 100 94.7 100 100

Sitting down 5 m 100 92.3 100 100

10 m 100 97.3 100 100

Turning 5 m 100 100 100 100

10 m 100 100 100 100

Walking 5 m 88.9 72.2 100 100

10 m 91.6 87.5 100 100
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automation system under unscripted or semi-scripted
task. Superimposing the angle of the hip onto the previ-
ous algorithm, we were more successful at distinguishing
these movements during sit-to-stand and stand-to-sit
transition. Using additional IMUs, we were able to refine
the description of the task; therefore, achieved better
accuracy.
While the sacrum IMU was sufficient in detecting

walking with 100% accuracy in healthy older adults, its
performance was significantly reduced in the PD popula-
tion. This was mainly attributed to the gait differences
between healthy and PD population. In some patients,
shuffling gaits minimized the angular velocity (ωy) of the
hip; therefore it degraded the signal-to-noise ratio in the
sacrum IMU dropping the signal below the normal-
ized threshold. Previously, we have used the shin
IMU to detect walking in simulated free-living environ-
ment [14, 15] with an adaptive thresholding to mitigate the
gait variability among participants. However, using the shin
IMU alone was not sufficient in isolating walking due to
extraneous movements that participants with PD might
initiate during the TUG. Again, there is a potential for

failure when a process is entirely relied on one IMU. How-
ever, with a full body set of IMUs, we were afforded the
ability to reine the requirements of walking using these
additional IMUs. These auxiliary details allowed us to re-
move unscripted movements during the TUG and increase
the detection accuracy. Such process can have greater im-
plication during unscripted free-living task in clinical set-
ting and home environment. In walking, we used the hip
angle in conjunction with the shin acceleration to ensure
that the shin movements were actuated when the partici-
pants were upright.
Manual segmentation was performed using the visual

full body avatar generated from IGS-180 motion capture
software and that allowed the examiners to cycle
through every frame (60 Hz sampling frequency) to
identify the transition point between each activity during
the TUG. The transition points identified by the two ex-
aminers were within 166ms of each other. However, it
took the examiners an average of 30 min to segment one
participant performing three trials of a modified TUG.
This might be due to the highly subjective nature of
manual segmentation and the variability in how

Table 4 The mean and standard deviation of the manual segmentation times marked by two independent examiners

TUG Transition ΔT

Visual ΔT Org. ΔT Opt. ΔT Org. ΔT Opt. ΔT

5 m 10 m 5 m 10 m

Sit-to-stand 113 ± 35 235 ± 252 162 ± 67 – 264 ± 239 –

Stand-to-walk out 126 ± 84 131 ± 59 345 ± 55 – 309 ± 39 –

Walk out-to-turn 184 ± 81 232 ± 83 516 ± 201 – 455 ± 156 –

Turn-to-walk in 190 ± 74 128 ± 64 748 ± 277 266 ± 148 856 ± 406 259 ± 177

Walk in-to-turn 168 ± 58 204 ± 109 734 ± 143 391 ± 132 469 ± 185 330 ± 188

Turn-to-stand 103 ± 76 93 ± 49 958 ± 254 601 ± 225 894 ± 249 612 ± 175>

Stand-to-sit 208 ± 106 200 ± 171 197 ± 121 – 188 ± 129 –

Table 5 Original and optimal cutoff frequency for each IMU at different transitions during a TUG

Transition IMU 1 fcutoff (Hz) IMU 2 fcutoff (Hz)

Org. Opt. Org. Opt.

Sit-to-stand Trunk az 1.57 – Hip θ 0.69 –

Stand-to-walk
out

Trunk az 2.44 –

Walk out-to-turn Trunk ωy 1.32 – Sacrum
ωy

0.98 —

Turn-to-walk in Sacrum
ωy

0.53 3.0

Walk in-to-turn Trunk ωy 1.00 3.0 Sacrum
ωy

0.59 3.0

Turn-to-stand Trunk ωy 0.81 2.0 Sacrum
ωy

1.00 2.5

Stand-to-sit Trunk az 1.02 –

The high cutoff frequency (fcutoff) of the band pass filter was re-optimized during more dynamic transitions to increase the accuracy of the segmentation. The optimal range
of these cutoff frequencies was between 0.5–3.0 Hz
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participants transition between activities. The automated
algorithm based on a system of IMUs could segment
these activities just as well as the examiners but at sig-
nificantly shorter(30 s). Using IMUs and the algorithms
that were developed in the previous study, we were able
to segment these activities within 500ms of the manual
segmentation. However, the more dynamic transitions
were less precise relative to manual segmentation. For
example, transitions such as turn-to-walk in, walk in-to-
turn and turn-to-stand had an average time difference of
813 and 740ms during the 5 m and 10 m TUG, respect-
ively. However, after re-optimizing the high cutoff fre-
quencies in the band pass filter, the time difference was
significantly reduced. The optimal range of these cutoff
frequencies was between 2-3 Hz. The increase in these
optimal cutoff frequencies were due to the over smooth-
ing of the signals that removed viable peaks in the signal
that corresponded to the initiation and termination of
an activity. The behavior was opposite during activity
detection, where signal were over smoothed to remove
the noise thus enhancing the visualization of the activity
peaks.
Similar studies have demonstrated the viability of using

IMUs to detect common activities in daily living. For

example, Dijkstra [39] used a single tri-axial accelerometer
to measure common physical activity in daily living in
controlled environment using patients with mild to mod-
erate PD and were able to generate moderate result with a
sensitivity of 60.9-85.4% during sitting and standing.
Jalloul [40] deployed a set of six IMUs on different part of
the body to detect common activities such as: walking
(neck), standing (wrist) and sitting (hip). Using that sensor
scheme, Jalloul detected walking, standing and sitting with
92.4%, 91.8%, 88.6% sensitivity, respectively. It is noted
that the algorithm was only tested on 2 patients who were
on Levodopa. Salarian [41], using a system of three IMUs
was able to detect posture transition such as sit-to-stand
and stand-to-sit in 10 PD patients with a sensitivity of
83.8% (N = 272). In classification of common activities
such as walking, standing and sitting, we were able to de-
tect these activities with a sensitivity of 98.5%, 97.8%, and
99.8% respectively. Similarly, Zwartjes [42] using a system
of 4 IMUs were able to detect these activities with 98%
accuracy. As a comparison, our algorithms were able to
detect these common activities with 100% accuracy. Fur-
thermore, we also expanded to the detection of turning,
which can provide important indication of mobility in
people with PD [30, 31, 43–45].

A B C D

E F G H

Fig. 6 Time difference between visual and auto segmentation time during a 10 m TUG. a-g ΔTave defines the time differences between the average
segmentation time obtained using the IMUs and the average times marked by two independent examiners (inmilliseconds) of all twelve participants
during a 10 m TUG. h Shows the average differences in the transition time across the seven transition points during a TUG. Across the seven transitions,
the average difference in the timestamp identified by the IMUs and the visual segmentation was 345 (±157) ms
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While the goal of the study was not to assess
motor performance of patients, it is important to
note that patients tested exhibited signs of limited
mobility and typical symptomatology associated with
PD, such as tremor, bradykinesia, posture instability,
and rigidity. In spite of these factors, the algorithms
developed here were able to detect the activities in
the TUG with 100% accuracy and segmentation was
achieved within ~400ms of the ‘gold-standard’ man-
ual segmentation. The time accuracy represents the
mean segmentation difference of the four primary ac-
tivities within a TUG (stand up,sit down, walk and
turn) in PD participants. However, when one examines
the different activities, the accuracy varies. During sit
down and stand up, the time difference with the man-
ual segmentation was only 192 ms (±139), which was
only a small percentage of the total time during stand
up (1820 ± 160 ms) and sit down (2100 ± 180 ms) [3].
A 400 ms discrepancy during these activities would
be significantly large. For PD participants, it took an
average of 16 s (16,000 ms) to complete a 5 m TUG;
therefore, walking and turning accounted for 75% of
the 5 m TUG time (~12 s) and even more in the 10 m
TUG. Thus, even the 400 ms difference during walking

and turning would not be detrimental to the analysis
of the quality of the movement during ‘steady-state’.
While the participants did exhibit variable symptomol-
ogy of early PD, they were able to complete the task
with relative ease. Thus, applying the algorithm on a
larger PD population with different clinical profiles will
be required to further confirm the robustness and reli-
ability of the algorithms. Nevertheless, our results pro-
vide a foundation to further investigate the suitability
of using IMU to detect and segment daily living activ-
ities of people who are diagnosed with PD, regardless
of symptomatology.

Deploying a suit equipped with 17 IMUS is not the
most economical system to detect activities within a
TUG; however, such system affords us the flexibility to
optimize the best set of IMU (see Fig. 1) to detect,
segment and analyze the quality of the movement for
people with movement disorders. In this study, only 4
IMUs (trunk, sacrum, thigh and shin) were needed to
accurately detect and segment the activities within a
TUG. We anticipate however that the detection, seg-
mentation and analysis of more complex task in free-
living condition might necessitate the need for add-
itional IMUs to distinguish similar activities and

A B C D

E F G H

Fig. 7 Time difference between visual and auto segmentation time during 5 m TUG. a-g ΔTave defines the time differences between
the average segmentation time obtained using the IMUs and the average times marked by two independent examiners (in
milliseconds) of all twelve participants during a 5 m TUG. h Shows the average differences in the transition time across the seven
transition points during a TUG. Across the seven transitions, the average difference in the timestamp identified by the IMUs and the
visual segmentation was 453 (±135) ms
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capture vital motor behavior associate with movement
disorders. This crucial step of activity detection and
segmentation will now allow for the development of
outcome measures to assess performance and to detect
symptomatology within these segments, an important
component for the development of a fully-automated
system to assess motor performance during a TUG in
healthy and diseased populations.

Conclusions
This study demonstrates the transferability of a detec-
tion and segmentation algorithm based on healthy older
adults on people with PD. The results show the agility of
using a system of IMUs to adapt to mobility-impaired
population while maintaining its accuracy in detection
and segmentation of common daily living activities. The
scope of this study is limited to supervised and scripted
activities within the TUG. However, this algorithm is be-
ing applied to detect sit down, stand up, walking and
turning in more simulated free-living environment in
hope of developing a reliable ambulatory system to
evaluate motor performance in people with movement
disorder in their home environment. Additionally, we
continuously work towards improving the use of fusion
data using IMUs [46, 47] to aggregate more valuable
orientation data that would further streamline the detec-
tion and segmentation more complex activities in daily
living. Ultimately, the aim of the development of a highly
accurate detection and segmentation system is to auto-
mate the analysis of task performance in the natural
living environment of people who undergo rehabilitation
intervention.
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