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ABSTRACT: Glycoproteins are biologically significant large molecules
that participate in numerous cellular activities. In order to obtain site-
specific protein glycosylation information, intact glycopeptides, with the
glycan attached to the peptide sequence, are characterized by tandem
mass spectrometry (MS/MS) methods such as collision-induced
dissociation (CID) and electron transfer dissociation (ETD). While
several emerging automated tools are developed, no consensus is
present in the field about the best way to determine the reliability of the
tools and/or provide the false discovery rate (FDR). A common
approach to calculate FDRs for glycopeptide analysis, adopted from the
target-decoy strategy in proteomics, employs a decoy database that is
created based on the target protein sequence database. Nonetheless, this
approach is not optimal in measuring the confidence of N-linked
glycopeptide matches, because the glycopeptide data set is considerably smaller compared to that of peptides, and the
requirement of a consensus sequence for N-glycosylation further limits the number of possible decoy glycopeptides tested in a
database search. To address the need to accurately determine FDRs for automated glycopeptide assignments, we developed
GlycoPep Evaluator (GPE), a tool that helps to measure FDRs in identifying glycopeptides without using a decoy database. GPE
generates decoy glycopeptides de novo for every target glycopeptide, in a 1:20 target-to-decoy ratio. The decoys, along with
target glycopeptides, are scored against the ETD data, from which FDRs can be calculated accurately based on the number of
decoy matches and the ratio of the number of targets to decoys, for small data sets. GPE is freely accessible for download and can
work with any search engine that interprets ETD data of N-linked glycopeptides. The software is provided at https://
desairegroup.ku.edu/research.

Glycosylation is commonly considered the most extensive
post-translational modification on proteins, and it is

estimated that 20%−50% of all proteins are glycoproteins.1,2

Glycosylation is known to impact protein folding and
function;3,4 the interaction between proteins and glycans is a
main route for cellular communications and signaling.5−7 In
addition, changes in glycosylation pattern on certain proteins
are closely related to the pathogenesis of diseases.8,9 Therefore,
protein glycosylation analysis is a vital step toward under-
standing the role that carbohydrates play in various biological
events.
One common method of characterizing the glycosylation on

proteins is to digest the protein and to analyze the resulting
glycopeptides. This strategy allows researchers to correlate the
glycans to their attachment sites in the protein(s).10−12 In
glycopeptide analysis, the correct glycopeptide compositions
usually cannot be determined by high resolution MS data alone,
and MS/MS data are needed for confident glycopeptide
assignments.13 In order to accelerate the analysis workflow for
high-throughput glycopeptide identifications, an increasing
number of bioinformatics tools are developed to analyze MS/
MS data of glycopeptides.14−20 Strum et al. presented a

program called GlycoPeptide Finder that can interpret CID
data of N- and O-linked glycopeptides generated from
nonspecific proteolysis.21 A computational framework was
developed to implement a software tool called GlycoFragwork,
which is capable of scoring N-linked glycopeptide MS/MS data
from multiple fragmentation modes.22 We recently introduced
two web-based utilities, GlycoPep grader23 and GlycoPep
Detector,24 to determine the most likely N-linked glycopeptide
compositions by scoring the CID and ETD data against each of
the possible glycopeptide candidates. In all the applications
described above, the glycopeptide analysis tool returns a best
glycopeptide match for each MS/MS spectrum by selecting the
candidate that receives the highest score under a certain scoring
algorithm. Although these matches are very helpful in guiding
the user, the top match is sometimes incorrect.
While automated analysis tools are helpful for glycopeptide

analysis, users need to know the likelihood that the automated
matches are correct. Therefore, it is important for any tool to
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provide users with a reliable false discovery rate (FDR), which
is the measure of probability that a match is correct, based on
the program’s performance in analyzing the entire data set.25−28

The concept of calculating an FDR has been well established by
the proteomics community, and to determine the FDR value in
proteomics, a composite database is generated by combining
the target protein sequence database and a decoy sequence
database. The decoy database is nonsensical and created based
on the target database such that they contain an equivalent
number of peptide sequences, which is often accomplished by
reversing the protein sequences in the target database.26−30

Subsequently, the MS/MS data are scored against the
composite database, and the numbers of matches made against
the target and decoy sequences are used to calculate FDR.
Following the assumption that the distribution of incorrect
matches to target sequences is the same as that of matches to
decoy sequences, the number of false positive identifications,
which directly translates to FDR, can be calculated by doubling
the number of decoy matches. This target-decoy approach is
simple and works well for peptide identifications based on large
scale proteomics data.31−33

Most of the currently available glycopeptide analysis tools do
not have the capability to calculate FDRs for glycopeptide
assignments, and for those that are enabled with this
functionality, the target-decoy approach is adopted to estimate
FDRs in glycopeptide identifications, where an equal amount of
decoy glycopeptides are generated on the basis of the target
glycoprotein sequences to comprise the decoy database.21,22

However, in a glycoproteomics experiment, the number of CID
or ETD spectra scored is considerably smaller than the number
of spectra scored in a proteomics experiment. This is expected
since glycoproteomics experiments are often conducted on a
single protein, not thousands of proteins. Even when the entire
proteome is evaluated for glycopeptides, the number of CID or
ETD spectra that are verified to be from glycopeptides is
generally much less than 1000. As a result, using the
conventional approach for calculating FDRs, the distribution
of decoy glycopeptide matches may not accurately reflect that
of incorrect matches to target glycopeptides because the
collected glycopeptide data set is not large enough.21,34,35

Furthermore, for N-linked glycopeptides, a consensus sequence
of N-X-S/T (X can be any amino acid except proline) must be
present, which further limits the number of possible decoy
glycopeptides being tested. All these factors lead to inaccurate
FDRs when the target-decoy approach is applied to small to
moderate size glycoproteomics data sets.
In this work, we present a new method to determine FDRs

with high accuracy for N-linked glycopeptide identifications
based on ETD data. Instead of creating a decoy database of the
same size as the target database, we developed a tool called
GlycoPep Evaluator (GPE) to generate decoy glycopeptides de
novo for every target glycopeptide, in a 1:20 target-to-decoy
ratio. The decoys are made under specific rules so that they
contain the consensus sequence for N-linked glycosylation,
while they have distinct glycopeptide sequences and glyco-
sylation sites. To determine the FDR, all the generated decoys
are scored against the ETD data along with target
glycopeptides, and the FDR is calculated accurately based on
the number of decoy glycopeptide matches and the relative
amount of targets to decoys. GPE is freely available for
download and can be used in conjunction with any scoring
schemes for assessing ETD data of glycopeptides. Please visit

https://desairegroup.ku.edu/research for a copy of the
software.

■ EXPERIMENTAL SECTION
Samples and Reagents. Bovine fetuin, RNase B, and

human serum proteins (IgG, AGP, transferrin) were obtained
from Sigma-Aldrich (St. Louis, MO). The HIV envelope
protein, C.97ZA012 gp140, was provided by the Duke Human
Vaccine Research Institute (Durham, NC).36 Sequencing grade
trypsin was purchased from Promega (Madison, WI). All
chemical reagents used were either of analytical grade or better.

Protease Digestion. Glycoproteins of 72−100 μg were
dissolved in 100 mM Tris buffer at pH 8 with a concentration
of 2.4−3.3 μg/μL. Samples were denatured by addition of urea
so that the final urea concentration was 6 M, followed by
addition of 5 mM tris(2-carboxyethyl)-phosphine (TCEP)
solution to reduce the disulfide bonds (the molar ratio of
TCEP to disulfide bond was kept at 6:1), and 10 mM
iodoacetamide (IAM) was subsequently added to alkylate the
free thiol groups using a molar ratio of 8:1. The reaction was
left to proceed for 1 h at room temperature in the dark.
Dithiothreitol (DTT) solution was then added to a final
concentration of 10 mM to quench the alkylation reaction.
Prior to enzymatic digestion, the urea concentration was
decreased to 1 M by diluting the samples with Tris buffer.
Subsequently, trypsin was added at a 1:30 enzyme-to-protein
ratio, followed by 18 h incubation of the samples at 37 °C.
Finally, trypsin digestion was stopped by adding 1 μL of acetic
acid for every 100 μL of glycoprotein solution. The prepared
samples were stored at −20 °C before subjected to LC/MS
analysis.

LC/MS Analysis. Digested glycoprotein samples were
analyzed using a Waters Acquity Ultra Performance Liquid
Chromatography system (Milford, MA) coupled to a LTQ
Velos linear ion trap mass spectrometer (Thermo Scientific,
San Jose, CA). For each run, 5 μL of a sample was injected onto
a capillary C18 column (300 μm i.d. × 5 cm, 100 Å, Micro-Tech
Scientific, Vista, CA). Two mobile phases were employed for
separation: solvent A consists of 99.9% H2O plus 0.1% formic
acid, and solvent B consists of 99.9% acetonitrile with 0.1%
formic acid. The LC separation gradient was as follows: 2%
solvent B for 5 min, followed by a linear increase to 40% B in
50 min, and a ramp to 90% B in 10 min.37,38 The column was
kept at 90% solvent B for an additional 10 min and then re-
equilibrated at 2% B for 10 min. The mass spectrometer was
operated in the positive ion mode, with the ESI source voltage
at 3 kV and the capillary temperature set at 200 °C. For the
data-dependent acquisition, CID and ETD spectra were
collected by selecting the five most intense peaks in the full
scan MS (m/z 500−2000) and the precursor ions were
fragmented in either CID or ETD mode. In the MS/MS
settings, automatic gain control (AGC) function was enabled
with a target value of 2 × 104 for the ion trap; the fluoranthene
anions, employed for ETD fragmentation, was set at a AGC
target value of 2 × 105. The reaction time between anions and
cations in ETD was set at 90 ms, and the supplemental
activation was turned on for ETD so that precursor ions and
charge-reduced species could undergo further dissociation. For
CID, the normalized collision energy was set at 30%, with
activation time of 10 ms.

Glycopeptide MS/MS Data Set. In this study, MS/MS
data were collected on glycoproteins that have been previously
characterized in the literature.36,39−42 In silico trypsin digestion
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was performed on the glycoprotein sequences with up to 2
missed cleavages allowed, and carbamidomethylation was set as
a fixed modification on cysteine residues. Theoretical
monoisotopic masses of potential N-linked glycopeptides
were calculated by adding the site-specific glycan masses to
the masses of the corresponding peptides that contain the
glycosylation sites. The theoretical m/z values of these
glycopeptides were then computed and searched against the
ETD data to see whether precursor ions of these m/z values
were selected for ETD. Manual analysis was then performed on
every identified ETD spectrum that may come from potential
glycopeptides. If a match was found, CID data were employed
to further confirm the glycopeptide assignment. In this way, a
glycopeptide ETD data set with known glycopeptide
compositions was built that includes glycopeptides of diverse
peptide sequences and varying glycan types.
Decoy and Target Candidates Generation. For this

study, all of the glycopeptide assignments were known.
However, to demonstrate our approach, we simulated a case
where the identity of the glycopeptide was not known and the
user had to choose between multiple feasible candidates.
Therefore, we needed mock candidates and decoys to score
against each spectrum. GlycoPep Evaluator (GPE) was used to
generate 20 decoys per candidate. The correct “candidate” for
each spectrum is known, and the additional mock candidates
were generated using GlycoMod.42 To generate the mock
candidates, sequences of the studied glycoproteins were entered
into GlycoMod, along with a polypeptide sequence, Titin,
which contains 50 000 amino acid residues. The mock
candidates contain the consensus motif of N-X-S/T, and their
glycan compositions are biologically relevant. As a result,
multiple glycopeptide compositions were produced by
GlycoMod for every glycopeptide peak that was subjected to
ETD (with a mass tolerance of 200 ppm), and a selection of the
glycopeptides were entered into GPE as (mock) target
glycopeptide candidates. Typically, five candidate glycopeptides
were entered, where one of the candidates was the true
glycopeptide. For each target glycopeptide, GPE is used to
generate 20 decoy glycopeptides of isobaric masses, and these
decoys can be used for evaluating the false discovery rate
(FDR) in automated assignment of glycopeptides by a search
engine. (GPE includes functionality to generate any number of
decoys, but 20 were used here.)
Scoring of Decoy and Target Candidates. GPE is a

freely available software tool that we developed to assist in
determining FDRs in glycopeptide analysis. The function to
generate decoy glycopeptides is the main innovation of this
tool, and the algorithm used to generate the decoys is described
in detail in the Results section. GPE also incorporates an ETD
algorithm that we described previously,24 and it can score each
target and decoy candidate against the ETD spectrum in an
automated manner. The software may be used as a standalone
program simply for generating decoys, or it can be used to
score the input decoys and targets using the embedded scoring
tool. In order to use the scoring functionality of GPE, the user
needs to upload a raw ETD data, specify the MS/MS scan
range and the ion types being scored, and submit the target and
decoy candidates for scoring. GPE then generates the result
page where the candidates are ranked by the scores that they
are assigned.
FDR Study Using GPE. GPE was used to score a set of

ETD spectra from 77 different glycopeptides, which had been
manually assigned, as described above. The software generated

decoy glycopeptides for all the input target glycopeptides, and a
target or a decoy match was made depending on whether a
target or a decoy candidate received the highest score. Using
the number of decoy matches made by GPE in assessing the
glycopeptide data set and the target-to-decoy ratio (1:20 in our
study), the FDRs in glycopeptide analysis could be calculated.

■ RESULTS AND DISCUSSION
Overview of GlycoPep Evaluator. GlycoPep Evaluator

(GPE) is a freely downloadable software tool that can be used
to generate decoy glycopeptides for false discovery rate analysis.
GPE is available for download at https://desairegroup.ku.edu/
research. It has incorporated functionality to score all the
targets and decoys against imported spectra using a previously
published scoring algorithm.24 GPE was written in Java and
developed with Java Development Kit 7 (JDK 7). The program
has been tested to perform successfully under Windows and
Linux systems, and Java Runtime Environment 7 (JRE 7) is
recommended to be installed prior to running GPE.
The graphical user interface (GUI) of GPE is shown in

Figure 1A. To generate decoy glycopeptides, the user needs to
enter the target glycopeptide sequence and to specify the N-
glycosylation site location by entering the Glycosylated Asn
Index (if a default value of 0 is input, the software will
automatically locate the first Asn that meets the N-X-S/T
sequon). Cysteine modifications can be selected by the user as
indicated in the GUI; if there is an additional modification on
any amino acid residue, the user can specify the location and
the mass of the modification as needed. For the glycan portion,
the user can either type in the number of each monosaccharide
unit (Hex, HexNAc, Neu5Ac, etc.) that constitutes the glycan
or input the glycan mass, as shown in Figure 1A. Other
parameters that are necessary to generate decoys include the
precursor ion’s m/z and charge state, mass tolerance (in ppm),
number of maximum missed cleavages, peptide variation (in
Da, see discussion below) and the number of decoys per target.
The mass tolerance is the mass range that the monoisotopic
mass of a decoy glycopeptide, as generated by GPE, is allowed
to deviate from the precursor ion’s mass (as calculated by the
precursor ion’s m/z and charge state). The peptide variation,
on the other hand, is the mass range that the peptide portion of
the decoy (calculated by subtracting the glycan mass from the
monoisotopic mass) is allowed to differ from that of the
peptide in the target glycopeptide. In our experiments, the mass
tolerance for decoys was set at 20 ppm, maximum missed
cleavage number was set to 2, peptide variation was set at 200
Da and the number of decoys per target was set to 20.
Currently, the tool specifically generates tryptic peptides. If
sufficient interest warrants future development, other options
for peptide generation could be included.
Once the required parameters are submitted to generate

decoy glycopeptides, GPE will present the result page where 20
output decoys are listed, as exemplified in Figure 1B. Several
requirements are met by GPE in producing the decoy
glycopeptide candidates: First, the decoy ends with either Arg
or Lys on its C-terminus; second, the missed cleavages on the
decoy sequence must not exceed the number of maximum
missed cleavages specified by the user; third, the decoy contains
a consensus sequence, Asn-X-Ser/Thr (X is any random amino
acid, excluding proline), with the Asn being the glycosylation
site; fourth, the peptide portion of the decoy has a mass that is
within a user-specified range (termed “peptide variation”) from
the peptide mass of the target glycopeptide; finally, the glycan
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portion of the decoy is assigned a mass that makes the m/z of
the entire decoy within the user-specified mass tolerance of the
precursor ion’s m/z, and the glycan mass value is appended to
the glycosylated Asn as a modification of mass in the output of
the decoy glycopeptide (Figure 1B).
Following these rules, the generated decoy glycopeptide can

closely mimic the target glycopeptide in terms of the
glycosylation site, protease specificity, and the approximate
peptide length. On the other hand, 20 decoy glycopeptides of
distinct sequences and varying glycan locations are produced
for every single target glycopeptide, as demonstrated in Figure
1B, thus providing a sufficient number of decoy candidates that
can compete with the target glycopeptides in the scoring by a
software tool.
False Discovery Rate Analysis. The false discovery rate

(FDR) is, by definition, the percentage of accepted peptide-
spectral matches that are incorrect.28 When decoys are included
in database searching, the incorrect matches are comprised of a
proportion of the target matches as well as all the decoy

matches. The latter are used to estimate the number of target
matches that are incorrect. As such, FDR is calculated by the
following equation:

=
+N N

FDR
total assignments

ic d

(1)

In the equation, Nic is the number of incorrect assignments
made to target candidates and Nd is the number of decoy
assignments.
Because both the incorrect target matches and the decoy

matches are made at random, the number of hits for incorrect
target assignments or decoy assignments is proportional to the
number of the corresponding target or decoy candidates scored
by a program. Consequently, the ratio of the number of
incorrect target assignments to decoy assignments is equal to
the ratio of target candidates to decoy candidates in quantity:

=
N
N

number of targets
number of decoys

ic

d (2)

When eqs 1 and 2 are combined, the FDR is determined by eq
3:

= +
⎛
⎝⎜

⎞
⎠⎟

N
FDR

total assignments
1

number of targets
number of decoys

d

(3)

In a conventional workflow, since an equal number of decoy
sequences are scored along with target sequences, Nic/Nd is 1.
Therefore, according to eq 3, the FDR is calculated by doubling
the number of decoy matches divided by the number of total
assignments. In our method, however, the target-to-decoy ratio
is 1:20 rather than 1:1 because 20 decoy candidates are
generated and scored for each target, thus Nic/Nd is 0.05.
Accordingly, FDR is determined by eq 4:

=
N

FDR
total assignments

1.05d

(4)

Consequently, using our method in which 20 decoy
glycopeptides are created and tested for every target
glycopeptide composition, the FDR can be measured accurately
based on the number of decoy matches and the number of total
accepted assignments, as formulated in eq 4.

Target and Decoy Glycopeptides Analysis. Apart from
generating decoy glycopeptide candidates de novo, GPE was
also implemented with an algorithm that we developed to
process and score ETD data of N-linked glycopeptides.24 After
a list of decoy candidates are generated by GPE, the user can
load raw ETD data to the program and specify the MS/MS
scan range; GPE can score all the decoy candidates as well as
the target glycopeptide compositions against the input MS/MS
data. For every glycopeptide composition, GPE evaluates the
match of different ion series (c, z, and y-ions) to the processed
ETD data and assigns a final score to each candidate, as
described in the algorithm published with ref 24. The decoy
glycopeptides can then be sorted from high score to low and be
compared with the scores of target glycopeptides.
To demonstrate the functionality of GPE, we present, below,

a CID and ETD spectrum of a known glycopeptide and show
how the GPE would process the ETD data, score the spectrum,
and then additionally calculate scores for decoy assignments.
Figure 2A is the ETD data of a glycopeptide from HIV gp140
that has a composition of DGGEDNKTEEIFRPGGGNMK +
[Hex]3[HexNAc]4[Fuc]1 (where N is the glycosylation site).

Figure 1. (A) Graphical user interface (GUI) of the GlycoPep
Evaluator (GPE) program. (B) The result of decoy generation
completed by GPE that contains the input target glycopeptide as well
as 20 decoy glycopeptide sequences generated by the program.
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In the ETD spectrum, c-ions (c4-c5) and z-ions (z8-z13) are
observed that can be used to determine the glycopeptide’s
sequence, as shown in the figure. Additionally, the CID data in
Figure 2B further confirms that the precursor ion is a
glycopeptide peak, because glycan oxonium ions are present
at m/z 366 and 528. Moreover, by assigning monosaccharide
losses, including losses of Hex, HexNAc and glycan dissociation
patterns in CID, the glycan portion of the glycopeptide can be
deduced to be [Hex]3[HexNAc]4[Fuc]1. It is noteworthy that,
although CID data are utilized to verify glycopeptide
assignments, in our method, we did not implement CID
fragmentation rules in the scoring function, and only ETD data
should be submitted to GPE for appropriate FDR analysis.
To demonstrate that the glycopeptide composition described

above can be correctly assigned by GPE, the true glycopeptide
composition, along with four isobaric glycopeptide “mock”
candidates, were entered into GPE as potential target
glycopeptide candidates. GPE then generated 20 decoy
glycopeptides per target. The ETD data were subsequently
submitted to the software, and all the candidates (including
decoys) were scored by GPE. A total of 100 decoy glycopeptide

compositions were created by GPE for the 5 target
glycopeptides, and each decoy has its distinct sequence and
glycosylation site. The true glycopeptide composition, its 20
decoys, and the associated scores are shown in Figure 3; the
remaining 4 targets, their 80 decoys, and their scores are shown
in the Supporting Information, Table 1. The correct
glycopeptide composition, labeled as target in Figure 3, receives
the highest score of 61.7, which is significantly higher than the
score of any other candidate, including the other 4 target and
100 decoy glycopeptides. By contrast, none of the other 4 input
target glycopeptides (which are incorrect candidates but still
considered “targets”, for the purposes of this demonstration),
outscore the best decoy glycopeptide sequences generated by
GPE. While at least one of the 20 decoys in each of these sets
outscore the falsely generated “target” candidates, the overall
highest scoring decoy, with a score of 17.8, does not outscore
the true assignment. (Additional data are shown in Supple-
mentary Table 1.) Therefore, the first glycopeptide candidate,
which is also the manually verified correct assignment, is
assigned to the ETD data by GPE, even when four other
incorrect candidates and 100 decoys are scored in parallel. This

Figure 2. (A) ETD-MS/MS data of a HIV gp140 glycopeptide that has a core-fucosylated biantennary complex-type glycan as shown in the figure.
The peptide backbone fragment ions (c- and z-ions) are labeled. (B) CID data of the same glycopeptide in (A). Extensive dissociation at the glycan
portion is observed in CID; product ions containing partially cleaved glycans and intact peptide sequences are present in the data. This figure is an
example of how spectra were manually assigned, prior to testing of GPE. Please note: generally the glycan composition, but not the structure, is
confirmed.
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example shows how to use GPE: Correct and incorrect target
glycopeptides can be readily differentiated by including a
sufficient number of decoy glycopeptides in the scoring process,
which are generated by GPE in an automated fashion.
Is GPE Consistently Able to Identify the Correct

Candidate, When It Is Present? The above example
illustrates that GPE can be used to effectively identify a correct
target candidate among a large list of incorrect glycopeptides.
To determine how consistently GPE could generate these kinds
of successful results, we tested a larger data set. We employed
GPE in analyzing a glycopeptide data set that contains ETD
data of 77 distinct glycopeptides generated from multiple
proteins (fetuin, IgG, HIV gp140, etc.). In these cases, all 77
spectra were manually assigned using the same procedure
described above. After determining the correct assignment for
each spectrum, four other (incorrect) “target” assignments were
also generated. The software assigned 76 of the 77 MS/MS
spectra to the correct glycopeptide compositions, demonstrat-
ing that the approach can consistently return the correct result,
even when 20 decoys per candidate are scored. These results
are expected when a high-quality algorithm is used for scoring
glycopeptides, such as the one used in GPE, and the spectra are
of high enough quality such that manual assignment is possible.
Is GPE Effective at Identifying Misassigned Spectra?

We next tested whether GPE is capable of indicating that the
incorrect target glycopeptides are incorrect when the true
candidates are not present in the target list. The correct
glycoprotein sequences that generated the ETD data were
excluded from the search of target glycopeptide compositions,

so that all the target glycopeptides were incorrect glycopeptide
candidates from Titin. After the incorrect targets were input
into GPE, they were scored along with 20 decoys per target.
Only four out of the 77 ETD spectra were matched to the
target glycopeptides that are incorrect, whereas 73 spectra were
assigned to decoy glycopeptides. Therefore, the ratio of
incorrect target matches to decoy matches, Nic/Nd, is 0.055
(4/73) in this case. This value is very close to the target-to-
decoy ratio of 0.05 (1/20).

Comparison of the Predicted FDR to the True FDR.
Using the data above, we evaluated the true FDR for our data
set of 77 spectra compared to the FDR that would be predicted
by eq 4. When the correct glycopeptide compositions are
included in the test, as mentioned above, 1 out of 77
assignments is a decoy match, and the FDR, according to eq
4, is predicted to be 1.36%. The actual FDR that is observed, on
the other hand, is the number of incorrect assignments divided
by the total assignments. In this case, only the decoy
assignment is incorrect and the other 76 assignments are
correct, so the observed FDR is 1.30% (1/77), which is closely
approximated by the predicted FDR value. On the other hand,
when the correct glycopeptide sequences are excluded from the
target list, 73 of 77 assignments are decoy matches, which leads
to a calculated FDR of 99.55%. (This calculation is done using
eq 4: (73/77) × 1.05 = 0.995.) The actual FDR is 100% since
all the assignments are incorrect. In both circumstances, the
predicted FDRs are very close to the observed FDRs.
To further test if FDR values for small data sets can be

accurately determined by our method, a proportion of the 77
ETD spectra were randomly selected, and for those spectra, the
correct glycoprotein sequences were excluded for generating
target glycopeptide candidates. For the remaining spectra, the
correct glycoproteins were included in the generation of target
compositions. Subsequently, GPE was employed to score each
ETD spectrum against the corresponding target glycopeptides,
and the number of decoy assignments was used to calculate
FDR based on eq 4. The experiment was conducted at 12
different cases such that 0, 3, 5, 10, 20, 30, 40, 50, 60, 70, 73, 77,
out of the 77 correct glycopeptide sequences were randomly
excluded when their respective spectra were being scored. In
this way, different numbers of incorrect assignments for the
ETD data set were generated, and the predicted FDR using our
method can be compared to the observed FDR at different
levels. The comparison of the calculated versus observed FDRs
for the 77 tested ETD spectra is illustrated in Figure 4A, where
a correlation curve is made based on the blue data points. The
least-squares fitting line has a slope that only deviates slightly
from unity, and the curve has good linearity (R2 above 0.99).
These data demonstrate that for glycopeptide data set with a
wide range of FDRs (ranging from 1.3%−100%), the FDR
values can be determined accurately using GPE and the method
that we developed.
In glycopeptide-based identifications, the MS/MS data set is

frequently of a small size, and a robust method needs to be able
to determine the FDRs for these types of data. To build a
smaller glycopeptide data set, we randomly selected 35 ETD
spectra from the entire data set, and performed the same
experiment as described above, to test whether using our
method, the FDRs at different levels can be measured with high
accuracy for this limited size data set. The result is shown in
Figure 4B where the correlation curve is fitted based on the
blue data points; the best-fitting line between the predicted and
observed FDRs has a slope that is close to 1 with R2 still above

Figure 3. For the input glycopeptide composition (labeled as target)
DGGEDNKTEEIFRPGGG- NMK + [Hex]3[HexNAc]4[Fuc]1, 20
decoy glycopeptide compositions were generated by GPE. Sub-
sequently, GPE scored both the target and decoy glycopeptides against
the ETD data, and they were ranked from high to low score as shown
in this figure. The target glycopeptide, which is also the correct
assignment, received the highest score of 61.7, outscoring all the other
candidates. The scoring results of the other four incorrect glycopeptide
candidates are summarized in Supporting Information, Table 1.
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0.99. Therefore, these experiments prove that the developed
method is accurate in measuring the FDRs in glycopeptide
identifications, even for small glycopeptide data sets.
Finally, the accuracy of our method in predicting the FDRs

was compared to that of the common approach where an equal
number of decoy glycopeptides were tested with the target
glycopeptides. For the same two data sets described above,
correlation curves comparing the predicted versus observed
FDRs, when using a 1:1 target-to-decoy ratio, are also shown in
Figure 4. In this experiment, an equal number of decoy
glycopeptides were generated by GPE based on the target
candidates, and both the decoy and target glycopeptides are
analyzed in the same way as described previously. These data
sets are present in red. For the 77 tested ETD spectra, the R2 of
the curve is below 0.99, and the slope of the curve (0.83)
deviates significantly from 1 (Figure 4A). Furthermore, using
the conventional approach, the correlation between the
predicted and observed FDRs becomes much worse when
the size of the data set decreases, as evidenced by the
correlation curve in Figure 4B that has a R2 of only 0.90 and a
flat slope of 0.58. The slope of the curves reflect the ratio of
predicted FDRs to true FDRs, and the values, which are
significantly less than 1, indicate that the number of false
positive assignments would be considerably underestimated
using the conventional approach. By contrast, the FDRs are
predicted accurately using our method, especially under
circumstances where only a small glycopeptide data set is
available.

■ CONCLUSION
False discovery rate (FDR) is an important measurement of the
confidence of glycopeptide assignments when MS/MS data of
glycopeptides are analyzed. In order to accurately determine
the FDR of glycopeptide identifications, we developed a
software program, GlycoPep Evaluator, to generate abundant
decoy glycopeptide compositions and to score the target and
decoy glycopeptide candidates in measuring the FDR. The
target-to-decoy ratio is 1:20 so that, even for a small number of
target glycopeptide sequences, sufficient decoy glycopeptides
are available for scoring; hence, false-positive identifications can
be better contained. Moreover, FDRs can be measured with
high accuracy using GPE for small data sets, which are
commonly seen in glycoproteomics where tens to hundreds of
spectra are scored, as opposed to thousands of spectra scored in
a proteomics experiment. The functionality of GPE in
generation of decoy glycopeptide candidates can be combined
with any other data analysis tools that score ETD data of
glycopeptides, so that FDRs can be accurately determined.
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