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INTRODUCTION

To survive and procreate, a biological organism must 
manage energy resources effectively. When food is abundant, 
animals can maintain a larger body size, produce and care for 
many offspring, and expend energy on recreational activity. 
When food is scarce, calibrating body size, temperature, 
reproduction, activity, and cellular metabolism to the 
available resources becomes essential. Given that different 
mechanisms regulate these functions, a unifi ed control 
system is essential. The brain, and the hypothalamus in 
particular, have evolved to serve this role in mammals.

Study of  the hypothalamic control of  energy balance 
has had a laser-like focus on the arcuate nucleus (ARC), 
largely because of  the early identifi cation of  orexigenic 
neuropeptide Y/agouti-related protein (NPY/AgRP) 
neurons and anorexigenic pro-opiomelancortin/cocaine 
and amphetamine-regulated transcript (POMC/CART) 
neurons in that location. Activating POMC/CART-

expressing neurons suppresses feeding, whereas activating 
NPY/AgRP-expressing neurons stimulates feeding.[1] 
Both of  these neuronal groups respond to the circulating 
adiposity signal leptin, released by fat tissue,[2,3] and ghrelin, 
released by the stomach.[4] By altering ARC neuronal 
activity, leptin powerfully inhibits food intake and energy 
expenditure. In contrast, plasma ghrelin concentrations 
increase under conditions of  negative energy balance to 
stimulate feeding and lower energy expenditure.[5-7] 

However, the function of  the arcuate nucleus must be placed 
in a wider context. The hindbrain, amygdala, and neocortex 
play important roles in the regulation of  energy balance,[8-10] 
as do other hypothalamic nuclei. Sensory information about 
insuffi cient food or nutrients travels from the viscera to the 
pons and medulla in the hindbrain. These areas can trigger 
a change in feeding behavior and metabolism directly. The 
hypothalamus and higher order areas also process this 
sensory information to refi ne behavioral and metabolic 
responses.[11] Finally, the hypothalamus and the more ancient 
hindbrain regions each process humoral input from the 
pancreas, liver, adipose tissue, and other sources.[12] As this 
review will illustrate, the paraventricular nucleus of  the 
hypothalamus (PVH) serves as a linchpin in this system 
for regulating the physiological response to energy scarcity.

The role of the paraventricular nucleus of the hypothalamus
The PVH receives afferent inputs from many centers of  
the hypothalamus including the ARC, lateral hypothalamic 
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A B S T R A C T

Research into the control of energy balance has tended to focus on discrete brain regions, such as the brainstem, medulla, arcuate 
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area, subfornical organ, organum vasculosum of  the 
lamina terminalis, medial septum/diagonal band of  broca, 
medial preoptic area, and suprachiasmatic nucleus.[13,14] 
The hindbrain also communicates with the PVH. For 
instance, the lateral parabrachial nucleus of  the pons 
sends projections to the PVH. From the medulla, the A5 
sympathetic premotor region, nucleus tractus solitarius 
(NTS), dorsal motor nucleus of  the vagus, and the 
ventrolateral medulla project to the PVH as well.[13,14]

As recently determined through anterograde tracing,[15] 
neurons from the PVH project widely throughout the 
brainstem. The rat PVH contains two major sections, the 
parvocellular (“small cell”) and the magnocellular (“large 
cell”) divisions. Parvocellular autonomic neurons project 
to the NTS,[16,17] to the dorsal motor nucleus of  the vagus 
(the origin of  parasympathetic preganglionic cells), and to 
the intermediolateral cell column of  the spinal cord (that 
contains sympathetic preganglionic fi ber cell bodies).[18] 
White adipose tissue,[19,20] pancreas,[21] liver[19] and brown 
adipose tissue[22] are thereby linked multi-synaptically with 
the PVH. Though partly interspersed with parvocellular 
neuroendocrine neurons, these caudally projecting cells 
form an entirely separate subpopulation.[23] Through these 
connections, the PVH directs autonomic systems controlling 
pancreatic secretion, adipose storage, thermogenesis, 
peripheral glucose uptake, and hepatic glucose fl ux.[12,19,24] 
For instance, the PVH tonically inhibits ingestive behavior 
via its massive projections to the NTS and via relay neurons 
to the lateral parabrachial nucleus.[15] These connections also 
transmit viscerosensory feedback to regulate the amount of  
food, water, and salt ingested.[25-27] For example, the PVH 
can reduce feeding by increasing the response of  the NTS 
to vagal signals of  gastric distention from the stomach.[28] 
Therefore, the PVH can perceive and modify a wide variety 
of  autonomic signals related to energy balance.

The PVH also acts as the primary endocrine control center 
of  the brain. Magnocellular neuroendocrine neurons, located 
primarily in the ventrolateral portion of  the PVH, send 
their axons into the posterior pituitary. There they release 
either vasopressin or oxytocin (OXT) into the systemic 
circulation to infl uence fl uid balance or the reproductive 
axis. In addition, medial parvocellular neuroendocrine 
neurons release signaling peptides at the median eminence. 
These peptides pass through the pituitary portal system to 
the anterior pituitary, where they regulate the production 
of  pituitary hormones that control many physiological 
axes. Specifically, corticotrophin-releasing hormone 
(CRH) neurons regulate the adrenal axis, thyrotropin-
releasing hormone (TRH) neurons regulate the thyroid 
axis, dopamine neurons regulate the reproductive axis, and 
somatostatin neurons regulate growth and development.

Neurons within the PVH also communicate with 
each other. Many gamma-aminobutyric acid (GABA) 
interneurons reside in the halo zone surrounding the 
PVH and occasionally inside the nucleus.[29] In addition, 
glutamate interneurons exist within the PVH.[30] The PVH 
uses this connectivity to integrate afferent input and to 
sculpt an integrated response to energy defi cits.

Hindbrain-paraventricular nucleus of the hypothalamus 
communication
Strong physiological stimuli, such as glucoprivation, 
can sometimes trigger responses without input from the 
hypothalamus. Glucoprivation selectively activates subgroups 
of  hindbrain neurons that produce catecholamines (CAs). 
These groups include A1/C1 neurons in the ventrolateral 
medulla, which co-express NPY, C2 and C3 neurons in the 
dorsal medulla, and A6 neurons in the pons.[31] The hindbrain 
induces release of  epinephrine from the adrenal gland in 
response to glucoprivation even if  connections to the forebrain 
have been disrupted.[31] Severe drops in blood glucose levels 
threaten survival; epinephrine-induced release of  glucose stores 
in liver must occur, regardless of  whether an animal possesses 
large adipose tissue depots. Input from leptin-sensitive ARC 
pathways is therefore unnecessary for this response.

However, the PVH is required for glucoprivation to promote 
feeding and corticosterone release while shutting down 
reproduction.[32] These responses require hindbrain NPY 
neurons that project prominently to the parvocellular divisions 
of  the PVH.[33] Interestingly, NPY levels in the PVN increase 
to compensate when brainstem NPY circuits are lesioned.[34] 
Conversely, NPY fi bers and Y1 receptors increase in the 
hypothalamic paraventricular nucleus after denervating the 
Arc.[35] Thus, loss of  hypothalamic NPY circuits may increase 
brainstem NPY projections and PVH sensitivity to NPY.

Other triggers of  refl exive feeding, such as lipoprivic feeding 
can activate different hindbrain pathways. However, any 
urgent physiological need will require a multifaceted response 
organized by a neural control center. Whether responding 
to hypoglycemia or more routine energy needs, the PVH 
has the ability to divert behavior and physiological functions 
toward the goal of  obtaining food. Along with input from 
CA and non-CA fi bers from the spinal cord and brain stem, 
the PVH also receives input from the ARC and other leptin-
sensitive areas of  the hypothalamus. These leptin-responsive 
pathways permit long-term control over body weight by 
subtly changing the daily drive for feeding and energy use.

Formation of arcuate nucleus-paraventricular nucleus of 
the hypothalamus connections
Leptin-sensitive ARC POMC and NPY/AgRP neurons 
project strongly to the PVH in the adult.[36] These 
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connections to the PVH arise at preprogrammed time 
points during postnatal development. Altered development 
of  these connections can have a profound effect on adult 
body weight.[37] During the fi rst 3 weeks of  life, a leptin 
surge occurs in mice.[38] Although leptin promotes a-MSH 
release and suppresses food intake in adults, it apparently 
has no regulatory effect on food intake and neuropeptide 
expression at this age.[39] Instead, during the suckling period, 
leptin promotes growth of  axons from ARC.[40] Indeed, 
leptin-defi cient ob/ob mice show reduced AgRP and α-MSH 
fi ber density in the PVH. Injecting leptin chronically during 
the fi rst week of  life can reverse this effect.[37] In other 
contexts, leptin stimulates synaptogenesis,[41] neurogenesis,[42] 
and dendrite formation.[43] Thus, the neonatal leptin surge 
may also promote neuron differentiation of  progenitor 
cells and their migration.[44]

New data show that environmental factors such as maternal 
nurturing and nutrition can change these connections. 
Manipulating nutrients during gestation or lactation modulates 
the neonatal leptin surge and PVH fi ber density in offspring.[45,46] 
Neonates exposed to maternal obesity in utero display an 
amplifi ed and prolonged surge of  leptin.[47] In addition, leptin 
resistance in the offspring of  obese mothers causes reduced
AgRP-immunoreactivity in the PVH at one month of  
age.[48] Early malnutrition also increases the risk 
for obesity.[49] Whereas the ARC of  growth-restricted 
animals remains leptin-sensitive, a low and delayed plasma 
leptin surge impairs the projection of  a-MSH neurons 
to the PVH.[47,50] Restricting calories during gestation 
and lactation also enlarges the PVH of  offspring by 
increasing the proliferation of  its neurons.[51] Importantly, 
injecting leptin during the suckling period to growth-
restricted rodent neonates prevents adult obesity.[52] 
Thus, it appears that the developmental effects of  an 
excessively large or small neonatal leptin surge can ultimately 
lead to obesity.

Other factors such as insulin may also program long-term 
energy balance. Insulin acts as a neurotrophic factor that 
promotes neurite outgrowth, protein synthesis, and neuronal 
survival.[53-55] Steculorum and Bouret recently demonstrated 
that offspring of  insulin-defi cient diabetic rats have a 
decreased density of  both AgRP and -MSH fi bers in the 
PVH.[56] Reduced cell numbers did not cause these effects, 
as POMC neuron numbers rose in the ARC. Additional 
research is needed to provide a complete understanding of  
the postnatal programming of  PVH connections.

Arcuate nucleus input to the paraventricular nucleus of 
the hypothalamus in the adult
Leptin also plays a well-recognized role in modulating 
excitatory and inhibitory input to the PVH in the adult. 

Both the magnocellular and parvocellular neurons of  the 
PVH express receptors for a-MSH.[57] a-MSH, released 
by POMC neurons originating in the arcuate, promotes 
satiety by binding to these melanocortin 4 receptors 
(MC4Rs). A large number of  inhibitory NPY fi bers also 
directly innervate parvocellular neurons of  the PVH.[58] 
Increased NPY release is seen in the PVHs of  food-deprived 
rats.[59] Likewise, injection of  NPY or AAV-mediated 
overexpression of  NPY in the PVH can induce a strong feeding 
response.[60,61] Conversely, reducing levels of  NPY in the PVH 
with anti-NPY antibodies leads to reduced food intake in rats.
[62] By acting on ARC NPY neurons, leptin suppresses the 
synthesis and release of  their inhibitory products NPY, AgRP, 
and GABA.[63] a-MSH can then maintain an excitatory effect to 
promote satiety. Destroying ARC neurons has been presumed 
to increase energy intake by decreasing this excitatory input to 
the PVH.[64] Indeed, Skibicka and Grill showed recently that 
an MC4R agonist decreases food intake when injected into 
the PVH.[65] Furthermore, selectively re-expressing MC4R in 
the PVH of  globally defi cient mice can prevent hyperphagia 
and obesity from developing.[66]

However, recent analysis adds complexity to this model of  
leptin-sensitive ARC input. Leptin acts directly on the PVH with 
no ARC input necessary.[67,68] In addition, Ghamari-Langroudi 
and colleagues have found that neuronal type and location in the 
PVN alters the effects of  leptin. As expected, fasting suppresses 
and leptin depolarizes anterior PVH MC4R neurons that 
co-express TRH. However, in the midposterior PVH, leptin 
reduces the activity of  parvocellular MC4R-expressing neurons 
that co-express OXT/vasopressin or CRH. In contrast, a-MSH 
appears to increase neuronal activity consistently and oppose 
NPY/AgRP input in both locations. Since in vitro and in vivo 
ip leptin decreases the activity of  MC4R-expressing neurons 
in the midposterior PVH, direct leptin actions dominate over 
leptin’s effects on melanocortin input from the ARC.[67,69] 
These results call into question the importance of  ARC 
melanocortin input to the midposterior PVH in food intake 
control. Alternatively, direct ARC projections to hindbrain 
sites may mediate the profound effect of  a-MSH on food 
intake. Indeed, the NTS receives direct descending α-MSH 
containing projections from POMC neurons in the ARC.[70] 
Additional work is necessary to update the prevailing model 
of  how leptin acts in the PVH.

METABOLIC CONTROL VIA CORTICOTROPHIN-
RELEASING HORMONE, THYROTROPIN-
RELEASING HORMONE, AND OXYTOCIN 
PATHWAYS

CRH, TRH, and OXT circuitry in the PVH has long been 
considered secondary to “dedicated” pathways controlling 
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food intake and energy expenditure. However, new data 
highlight the role of  these circuits in the control of  food 
intake and energy use. These neurons respond to energy 
deficits in two ways. First, they alter neuroendocrine 
outfl ow. Second, they alter activation of  brainstem and 
spinal sympathetic or parasympathetic preganglionic 
neurons. These connections allow them to infl uence energy 
balance by changing white adipose tissue,[19] pancreas,[21] 
liver[19] and brown adipose tissue[22] function.

Corticotrophin-releasing hormone neurons
CRH neurons predominate in the medial parvocellular 
component of  the PVH.[71] These neurosecretory neurons 
control the HPA axis by releasing CRH from the median 
eminence. CRH triggers ACTH production by the pituitary 
and glucocorticoid production by the adrenal gland. In 
addition, subgroups of  CRH immunoreactive neurons in 
the PVH project to autonomic targets in the brainstem 
and spinal cord.[72,73] In turn, CRH neurons receive 
ascending input from the brainstem. CRH neurons in the 
paraventricular nucleus and CRH terminals in the median 
eminence receive extensive excitatory inputs from CA 
nuclei located in the medulla and brainstem.[74] Indeed, 
adrenergic and noradrenergic pathways tonically stimulate 
CRH mRNA expression.[75] In addition, dopaminergic 
NPY fi bers originating from the brain stem extensively 
innervate CRH neurons in the PVH.[76] These brainstem CA 
projections promote the transcription and release of  CRH 
in response to physical stressors, including hypoglycemia.[77]

Along with its actions in response to stress, CRH serves 
an anorexigenic and catabolic role. Intracerebroventricular 
CRH decreases food intake and body weight gain and induces 
locomotor activity, brown adipose tissue thermogenesis, and 
sympathetically-mediated lipolysis.[78,79] Food intake decreases 
both neuroendocrine and autonomic CRH output.[80] 
Conversely, starvation decreases and leptin increases PVH 
CRH gene expression and peptide levels.[81,82] CRH neurons 
also interact with leptin-sensitive melanocortin input from 
the ARC. CRH inhibits NPY/AgRP neurons and NPY 
gene expression directly.[83,84] Thus, in times of  fasting, 
decreased CRH encourages NPY’s orexigenic actions. 
However, CRH does not depend on melanocortin pathways 
to inhibit feeding; CRH can reduce food intake even in 
obese MC4R-defi cient mice.[85] On the contrary, activity of  
CRH neurons may mediate some effects of  ARC POMC 
and NPY circuitry; CRH receptor antagonism partially 
blocks the actions of  the melanocortin agonist MTII on 
food intake, potentially by acting on a small subset of  PVH 
neurons that co-express CRH and MC4R.[86]

Recent evidence indicates that ghrelin may also play a role 
in CRH neuronal activity. Mice with genetic deletion of  

GHSR are unable to respond as wild-type mice to stress-
induced alterations of  mood, feeding and metabolism, 
suggesting that elevated plasma ghrelin participates in 
stress-associated responses.[87-89] Ghrelin is able to activate 
the CRH neurons of  the PVN, and this action is suffi cient 
to acutely increase plasma glucocorticoid levels.[90] However, 
the lack of  detectable CRH and ghrelin receptor co-
expressing neurons suggests that stimulation by ghrelin 
of  the HPA axis occurs via an indirect mechanism.[90] 
Activation of  ARC NPY neurons may mediate the ghrelin-
induced activation of  the CRF neurons. Alternatively, 
ghrelin action on non-CRF-containing PVN neurons 
that synapse onto CRH-neurons also might explain the 
ability of  intra-PVN ghrelin administration to activate the 
HPA axis.

Thyrotropin-releasing hormone neurons
The hypothalamic-pituitary-thyroid axis plays an important 
anorexigenic and catabolic role in energy homeostasis. TRH 
induces release of  thyroid stimulating hormone (TSH) 
from the pituitary and thyroid hormone from the thyroid. 
Thyroid hormone, essential for thermogenesis during cold 
exposure, helps to maintain protein synthesis and metabolic 
activity in peripheral tissues. Given that it determines 
roughly 30% of  resting energy expenditure, TH plays an 
important role in maintaining overall energy balance.

In mice, the TRH neurons that regulate the TSH secretion 
reside in the mid-level of  the PVH.[91] Starvation suppresses 
TRH gene expression and biosynthesis in these parvocellular 
neurons.[92] The resulting drop in thermogenesis conserves 
energy until feeding occurs. Recent studies show that 
NPY reduces TRH expression and release, whereas leptin, 
α-MSH, and CART directly increase its expression.[69,93] 
Other TRH neurons reside in all parts of  the PVH of  
mice except the periventricular zone. Their axons make 
reciprocal contacts with CRH axons.[94] In addition, these 
TRH neurons project to the brain stem and spinal cord.[95] 
This output activates uncoupling protein-1 (UCP-1) in 
brown adipose tissue, which, along with TH, regulates body 
temperature. TRH neurons in the PVH also receive input 
from the brainstem.[96] CA neurons, originating mostly from 
A1/C1 groups in the medulla, contribute around 20% of  
all synapses on these cells. In addition to stimulating TRH 
secretion via these connections in the PVH,[97] NorEpi axon 
terminals form close contacts with TRH axon terminals in 
the median eminence. Additional hindbrain input includes 
dopaminergic NPY neurons, whose activity suppresses 
TRH production.[98,99]

ARC neuropeptides play an essential role in the response 
of  the thyroid axis to both starvation and illness. TRH 
neurons receive robust, inhibitory NPY input from the 
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ARC.[100] In addition, α-MSH nerve terminals innervate 
TRH neurons.[101] Of  the TRH neurons located in the 
medial parvocellular division of  the PVH, 50-60% express 
MC4R mRNA.[102] Administering α-MSH ICV can maintain 
TRH release during fasting.[103] AgRP, an MC4-R antagonist, 
can cause hypothyroidism by down regulating TRH mRNA 
expression in the PVH.[98,104] Recent work suggests that 
TRH neurons also directly sense leptin.[105,106] Leptin 
directly regulates the TRH promoter[107] and stimulates 
TRH peptide biosynthesis and release from dispersed 
hypothalamic neurons and cultured tissue.[106,108] Moreover, 
fasting animals respond to systemic leptin with increased 
TRH mRNA in the PVH and normalized TRH peptide 
and thyroid hormone levels.[109-111] Therefore, leptin may act 
directly on TRH neurons to increase energy expenditure 
independent of  the anorectic drive from the ARC.

OXYTOCIN NEURONS

OXT neurons modulate reproductive processes involved in 
birth, lactation, and maternal behavior. Residing in the PVH 
and supraoptic nucleus (SON) of  the hypothalamus, these 
magnocellular neurons project to the posterior pituitary 
where they release vasopressin and OXT into the general 
circulation. However, a much greater amount of  OXT is 
released from their dendrites and somata.[112-114] This dendritic 
release has paracrine effects that can excite or change the 
excitability of  neighboring parvocellular OXT neurons that 
express OXT receptor.[115,116] Thus, magnocellular OXT 
release may activate parvocellular OXT neurons projecting 
to the brainstem as well as other circuitry.[112,117,118]

A growing body of  data suggests caudally projecting OXT 
neurons respond to energy balance and modulate food 
intake and energy expenditure. Pharmacological studies 
demonstrate that both systemic[119] and ICV OXT[120] dose-
dependently reduce food intake in chow-fed rats, an effect 
prevented in the latter model by ICV pretreatment with 
an OXT-receptor antagonist.[121] Indeed, mice defi cient in 
either OXT or its receptor[122] exhibit late-onset obesity.[123] 
Centrally administering OXT induces weight loss and 
energy expenditure.[124] Furthermore, chronic sucrose intake 
or a high-fat diet blunts activity of  the anorexigenic OXT 
system.[124,125] Increased OXT signaling in Syt4 mice, which 
lack a suppressor of  OXT release, prevents diet-induced 
obesity (DIO).[124] Conversely, overexpression of  Syt4 in 
OXT neurons increases food intake and body weight gain. 
These studies suggest that OXT should be regarded as a 
neuropeptide involved in energy balance regulation as well 
as reproduction.

OXT neurons in the PVH serve as a component in a leptin-
sensitive signaling circuit. An OXT receptor antagonist blocks 

leptin’s suppression of  food intake.[126] Leptin rescues the 
expression of  OXT normally suppressed during fasting[127] 
and activates OXT-producing neurons in the posterior PVH 
that express MC4Rs and leptin receptors.[126,128,129] Like leptin, 
administering -MSH activates OXT neurons in the PVH.[130] 
Furthermore, new data show that pretreatment with an 
OXT receptor antagonist prevents the anorexic effects of  
-MSH.[131] However, OXT may have effects not attributable 
to leptin-sensitive circuitry. New work shows that OXT 
dose-dependently reduces food intake and body weight to a 
similar extent in leptin receptor-defi cient Koletsky (fak/fak) 
rats relative to their lean littermates.[132]

OXT-producing neurons in the posterior PVH project 
to the NTS and area postrema to innervate hindbrain 
areas.[72,126,128,129] These areas reduce meal size by integrating 
gut-derived satiety signals with descending input from 
the neocortex.[133] Indeed, systemic OXT administration 
robustly induces c-Fos in the NTS and area postrema 
and causes weight loss in DIO rats.[132] Furthermore, 
OXT receptor antagonists block the satiety effects of  
cholecystokinin (CCK) and increase food intake and meal 
size.[128] The NTS also provides autonomic innervation to 
the liver and other tissues.[134,135] This pathway allows the 
OXT neurons to control glucose homeostasis. OXT-/-mice 
have higher basal glucose levels, impaired glucose tolerance, 
and insulin resistance.[123]

OXT neurons in the posterior PVH may also alter thermogenic 
energy expenditure by projecting postsynaptically to 
brown adipose tissue via the stellate ganglia.[136] Indeed, 
OXT-expressing neurons in the PVH become active in 
mice following cold exposure.[137] Central OXT induces 
hyperthermia in rabbits and mice.[138,139] Moreover, both 
OXT- and OXT receptor-defi cient mice exhibit an impaired 
thermogenic response to a cold challenge[137] and reduced 
epinephrine levels resulting from a decreased sympathetic 
tone.[123] These data suggest that posterior PVH OXT 
neurons participate in regulating body heat as well as food 
intake; both functions may participate in the control of  
energy reserves.

CONCLUSIONS

The studies we have highlighted clearly demonstrate the 
importance of  the PVH in coordinating the control of  
energy balance. Indeed, one should view the PVH as a 
meeting point for distributed pathways throughout the 
brain regulating energy use. Melanocortin pathways stretch 
from the caudal brainstem to the hypothalamus and beyond. 
Activating any portion of  those circuits can change food 
intake, body weight, heart rate, and body temperature.[140] 
By passing through the PVH, hunger-sensitive pathways 
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can interact with neuron groups that regulate reproduction, 
stress, body temperature, and circadian cycles. Additional 
research into the healthy and pathological interaction of  
these different systems will advance the understanding of  
metabolic disease.

The PVH thus presents a crucial target for treating obesity 
in the future. New techniques allowing targeted silencing 
or activating of  PVH neurons will defi nitively determine 
whether the PVH is unique or serves as one among 
several redundant integrative centers in the hypothalamus. 
Although medicine cannot yet target precise nuclei for 
treating obese patients, clinical researchers have a growing 
interest in using deep brain stimulation as an obesity 
therapy.[141-143] In addition, pharmacological treatments may 
one day target neuron types with engineered agonists or 
antagonists.[144] Given the rising rates of  obesity and related 
diseases around the world, this work may hold the key to 
balancing the diverse infl uences that can promote weight 
gain throughout a lifetime.
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