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Abstract: Biomarkers play a vital role in clinical care. They enable early diagnosis and treatment by
identifying a patient’s condition and disease course and act as an outcome measure that accurately
evaluates the efficacy of a new treatment or drug. Due to the rapid development of digital technolo-
gies, digital biomarkers are expected to grow tremendously. In the era of change, this scoping review
was conducted to see which digital biomarkers are progressing in neuromuscular disorders, a diverse
and broad-range disease group among the neurological diseases, to discover available evidence for
their feasibility and reliability. Thus, a total of 10 studies were examined: 9 observational studies
and 1 animal study. Of the observational studies, studies were conducted with amyotrophic lateral
sclerosis (ALS), Duchenne muscular dystrophy (DMD), and spinal muscular atrophy (SMA) patients.
Non-peer reviewed poster presentations were not considered, as the articles may lead to erroneous
results. The only animal study included in the present review investigated the mice model of ALS for
detecting rest disturbances using a non-invasive digital biomarker.

Keywords: digital biomarker; biomarker; neuromuscular disease; NMD; biosensor

1. Introduction

Reliable biomarkers help to detect disease earlier and help to understand disease
progression, thereby enabling early intervention. It is important to note that finding
reliable biomarkers is arduous in various neurological disorders. Thus, monitoring their
efficacy in clinical trials for developing new therapeutic drugs or treatments ought to be
up-to-date.

Neuromuscular disorders (NMDs) are one of the major neurological disorders, and
they refer to a diverse group, including all disease entities involving motor neurons (e.g.,
amyotrophic lateral sclerosis), peripheral nerves (e.g., diabetic neuropathies, Charcot-Marie-
Tooth disease), muscles (e.g., muscular dystrophies, myositis), and neuromuscular junctions
(e.g., myasthenia gravis) [1]. In general, diseases are distinguished from other neurological
disorders in terms of their heterogeneous etiologies and variable phenotypes [1,2]. As
some diseases have a low prevalence, their pathophysiology has not been completely
understood, and other disorders, such as spinobulbar muscular dystrophy, show a slow
clinical presentation worsening over several decades. These clinical features of NMDs put
much more significant constraints on finding potential biomarkers compared with other
disease groups. Hence, it becomes a substantial obstacle to clinical trials for new treatments
or drugs.

The biomarkers of NMDs that have been developed to date can be broadly classified
as follows: (1) function rating scales or sensory and motor function and/or reflex tests by
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trained neurologists; (2) specific antibody titers or protein levels, or genomic markers in-
cluding DNA or RNA determinants; (3) radiological features through MRI or ultrasonogra-
phy; and (4) neurophysiological values through nerve conduction study/electromyography,
magnetic stimulation, and so on [2]. For example, serum creatine kinase (CK) has been
routinely measured when diagnosing a disease involving muscle since an increase in CK
indicates damage of muscular fibers, and the CK values tend to decrease over time with
progressive loss of muscle fibers [1]. However, CK alone has not been considered a reliable
or specific biomarker since CK values are not closely associated with disease severity in
myopathies.

Since most other biomarkers require a specialized laboratory, including immunoassay,
microarray or gene sequencing, or imaging or neurophysiological facilities, there are
limitations to equipping every hospital or clinic with such technical facilities. Examination
by trained medical staff, such as with a function rating scale, has interrater or intra-rater
variability. In addition, scores may not reflect the patient’s actual condition because function
is measured episodically at the time the patient visits the hospital [3], especially in the
case of diseases worsening rather slowly. Moreover, since numerous NMDs cause muscle
weakness or disability, visiting a hospital is exceptionally time-consuming and labor-
intensive for patients and caregivers, which is also a big hurdle. The biggest advantage
of digital biomarkers could be their ability to compensate for the shortcomings of the
traditional biomarkers.

A digital biomarker can objectively and continuously measure and collect biological,
physiological, and anatomical data through digital biosensors [3]. The biggest attraction
is that it can more accurately reflect the patient’s condition because it enables changes
occurring in patients’ daily lives to be measured in real-time; in other words, it is free
from temporal and spatial constraints. Moreover, in a situation where a pandemic crisis
triggered by infectious diseases such as COVID-19 might be repeated, the development of
digital biomarkers will be indispensable in the medical field.

According to a new market intelligence report by BIS research, “Global Digital
Biomarkers Market—Analysis and Forecast 2019–2025”, the global digital biomarkers
market generated revenue of USD 524.6 million in 2018 and is estimated to grow to over
USD 5.64 billion by the end of 2025 [4].

In the neurology field, efforts to develop a digital biomarker seem to focus on neuro-
generative disorders such as mild cognitive impairment, Alzheimer’s disease, or Parkin-
son’s disease [5–8]. There is still little experience in applying digital biomarkers in actual
clinical practice, but experience is expected to increase explosively in the future in conjunc-
tion with artificial intelligence and telemedicine. With that said, this systematic scoping
review aimed to summarize the available evidence on the current status of research for
digital biomarkers in NMDs to suggest research trends and future directions.

2. Materials and Methods

We conducted a scoping review with regard to the Extended Preferred Reporting
Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-ScR) [9].

2.1. Data Sources and Searching

As it is recommended to search at least two bibliographic databases for conducting a
review [10], we systematically searched utilizing the following three databases: PubMed,
Embase, and Cochrane Library. The NMD search terms were discussed among the authors
and finalized by consulting various neurologists; the three authors (BY, YK, SM) ran several
sample searches to see if the keywords were relevant to finding enough studies. The
complete search keywords are reported in Appendix A. The final search was performed on
24 May 2021, and the search strategies from each database are reported in Appendix B.
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2.2. Eligibility Criteria

As the study objective was to understand the current status with regard to digital
biomarkers for neuromuscular disorders, all types of peer-reviewed publications, such
as, original articles, reviews, clinical trials, editorials, and retrospective and prospective
studies were included. Additionally, only studies in English were considered. Articles
that did not address neuromuscular disorders or digital biomarkers (or biosensors) were
excluded. Moreover, non-peer reviewed studies such as poster and oral presentations were
not considered, as the results may be fallacious.

2.3. Study Selection Process and Data Extraction

After removing the duplicates and non-English articles, three authors (BY, YK, SM)
independently reviewed the rest of studies’ titles and abstracts based on the inclusion and
exclusion criteria. Then, the authors met and selected the articles to assess the full text. The
full text of each study was further reviewed by the aforementioned authors. The references
of the selected articles were also screened for more potential studies. When controversy
arose before making a final decision for selection, another reviewer (JYK), a neurologist,
was involved. Finally, data extraction was completed by the three reviewers (YK, SM, JL)
in the following areas: authors, study design, study setting, sensors, biomarkers, main
results, and outcomes. Using the scoping review methodology, critical appraisal was not
conducted [11,12].

3. Results

The initial search retrieved 195 studies, of which 46 were duplicates. After screening
titles and abstracts, the full texts of 29 articles were obtained and assessed for eligibility.
After reviewing the full text of 29 studies, including the reference lists, 5 more studies were
found to be eligible. Of the 34 studies, 24 did not fulfill the inclusion criteria. The reasons
for studies being ineligible were as follows: (1) non-English language studies (n = 7);
(2) not relevant studies (n = 9); (3) studies without clear information to analyze (n = 1); and
(4) non-peer reviewed articles (n = 7). A total of 10 studies were examined: 9 observational
studies and one animal study (Figure 1).

3.1. Overview of Observational Studies

Of the total nine observational studies, four studies were conducted with amyotrophic
lateral sclerosis (ALS) patients, three with Duchenne muscular dystrophy (DMD) patients,
and the remaining two studies with spinal muscular atrophy (SMA) patients (Table 1).
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Table 1. Summary of findings from retrieved studies.

Authors Study Design Study Setting Sensor Biomarkers Main Results Outcome

Garcia-
Gancedo 2019

[13]

Prospective
Longitudinal,
Cohort Study

(variable length
pilot study and

48-week core
study phase)

ALS patients
diagnosed within

18 months of
symptom onset (n
= 25, mean = 53.1
± 9.93 years)

Home
Monitoring

Sensor

Physical activity,
HRV, digital

speech
characteristics

A reduction in the
patients’ ability to

perform activities of
daily living over

time was observed
across all end

points. Obtained
HRV data were

lower than
expected. No

obvious pattern of
speech change over
time was observed.

There were no
serious side effects.

The novel monitoring
platform tested in

study was successful
in collecting ALS

patient data, which
may be useful in

identifying digital
markers of disease

progression.

Kelly 2020 [14]

Prospective
Longitudinal
Cohort Study

(variable strength
pilot study and

48-week core
study phase)

ALS patients (n =
25, mean age =

53.1 ± 9.93)

Mega Faros
180 ac-

celerometer,
2-lead ECG

sensor,
bespoke

digital speech
capture,

comparing
with

ALSFRS-R
score

Physical activity
(average daytime
active, percentage
of daytime active,

total daytime
activity score,

total 24 h activity
score), HRV, and

speech (jitter,
shimmer, or

speaking rate)

Four physical
endpoints showed
moderate or strong

between patient
correlation with

ALSFRS-R total and
gross motor domain

scores.

Four physical activity
endpoints showed
potential for use as
clinical measures of

ALS disease
progression, using

direct, objective, and
real-life assessment of

physical function.

Stegmann 2020
[15]

Prospective
Observational
Comparative

Study

ALS patients (n =
65, mean age = 61
± 10.2 years) and
healthy controls

(n = 21, mean age
= 55 ± 12.5 years)

Mobile
application

Articulatory
precision (AP),

speaking rate (SR)

AP and SR decline
was detected earlier
than declines on the
ALSFRS-R bulbar
subscale. AP had

significantly
decreased as ALS
progressed. In the
bulbar-onset ALS
group, SR showed
significant decline.

This study
demonstrated that it

is possible to remotely
detect early speech
changes and track

speech progression in
ALS via automated

algorithmic
assessment of speech

collected digitally.

Stegmann 2020
[16]

Prospective
Observational
Comparative

Study

Sample 1 and 2;
ALS patients (n =

72, mean age =
59.8 ± 10.4 years)

and healthy
controls (n = 22,
mean age = 50.1
± 14.7 years);
sample 3; ALS

patients (n = 24,
mean age = 67.4
± 11.3 years)

Open-source
tool kits

(openSMILE,
Talk2me, and

Praat)

6 acoustic
features; energy,

frequency, MFCC,
pitch, spectral,

temporal; 4
language features;
lexical, pragmatic,

semantic,
syntactic

This study
evaluated

repeatability
measures

(within-subjects
coefficient of
variation and

intra-class
correlation) of
acoustic and

language features.
The repeatability of

speech features
extracted using

open-source tool
kits was low.

Researchers should
exercise caution when

developing digital
health models with
open-source speech

features.
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Table 1. Cont.

Authors Study Design Study Setting Sensor Biomarkers Main Results Outcome

Heberer 2016
[17]

Prospective,
Longitudinal
Case-Control

Study (Baseline
and

Post-treatment)

DMD
patients—steroid

group (n = 12,
mean age = 5.7 ±

1.3) vs. naïve
group (n = 9,

mean age = 5.1 ±
1.1)

Three-
dimensional
gait analysis

Peak hip extensor
moment during
stance, duration

of the hip
extensor moment
through stance,
peak hip power

generation during
hip extension

Significant
between-group

differences favoring
the Steroid group

were found for peak
hip extensor

moment, duration
of the hip extensor
moment, peak hip
power generation,

and peak ankle
power generation.

Hip joint kinetics are
early markers of

proximal weakness
that are responsive to

change with
corticosteroid
intervention,
suggesting

quantitative gait
analysis could play a

larger role in the
assessment of the
efficacy of novel

therapeutics.

Le Moing 2016
[18]

Prospective
Observational
Cohort Study

Non-ambulatory
DMD patients (n

= 7, mean age
18.5 ± 5.5 years

Magneto-
Inertial
Sensors

(ActiMyo®)

Angular velocity
of the wrist, ratio

of the vertical
component of the
acceleration to the

overall
acceleration,
model-based

computed power,
elevation rate

The norm of the
angular velocity, a

model-based
computed power,
and the elevation

rate were
significantly

correlated with the
Minnesota scores

and with the
writing task.

The mean of the
rotation rate and

mean of the elevation
rate appeared

promising since these
variables had the best
reliability scores and
correlations with task

scores, suggesting
they are good
candidates as

potential outcome
measures in

non-ambulant DMD
patients

Lilien 2019 [19]
Prospective

Observational
Cohort Study

DMD patients (n
= 23, age >5

years)

Wearable
Magneto-
Inertial
Sensor

(WMIS)

7 walking
parameters and 7

upper limb
parameters

The validated 6 min
walk test and the

North Star
Ambulatory

Assessment were
correlated with
their device’s

variables and were
sensitive to change

in the DMD
population over a
6-month period.

This study suggests
the WMIS can record

a set of digital
biomarkers and can
be used to evaluate

even the most
severely impaired

patients and provides
objective and reliable

data.

Chen 2017 [20]

Prospective
Longitudinal
Observational
Comparative

Study (at baseline,
week 12, week 24,

week 48)

SMA Type 3
patients (n = 18,
mean age = 32.3
± 12.7 years) vs.
healthy controls

(n = 19, mean age
= 33.2 ± 13.9

years)

Microsoft
Kinect Sensor

Upper limb
movement; elbow
angle, arm lifting

angle, hand
velocity

Elbow angle and
arm-lifting angle
did not show any

difference between
SMA type 3 patients
and controls, hand
velocity was faster
in SMA patients.

This study suggests
that the Microsoft

Kinect sensor
provides reproducible,

objective, and
detailed information
of body point motion,
so has the potential of
being developed into

a complimentary
output measure for

SMA.
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Table 1. Cont.

Authors Study Design Study Setting Sensor Biomarkers Main Results Outcome

Chabanon 2018
[21]

Prospective
Longitudinal
Cohort Study

Type 2 and 3 SMA
patients (age 2–30

years); (1)
non-sitter SMA

Type 2 (n = 19), (2)
sitter SMA Type

(n = 34), (3)
non-ambulatory

SMA Type 3 (n = 9),
(4) ambulatory

SMA Type 3 (n = 19)
2 (n = 34), (3)

non-ambulatory
SMA Type 3 (n = 9),

(4) ambulatory
SMA Type 3 (n = 19)

Magneto-
Inertial
Sensors

(ActiMyo®)

Wrist angular
velocity, wrist
acceleration,
wrist vertical
acceleration

against gravity,
the power, the
percentage of
activity time

The strongest
correlations in this

study were
observed with the

wrist vertical
acceleration, and
the median wrist
angular velocity
was decreased in
the sitter patients
with SMA Type 2
when compared

with the non-sitter
individuals.

The pending two-year
study results will

evaluate the
sensitivity of the

studied outcomes and
biomarkers to disease

progression.

Golini 2020 [22]

Prospective
Observational
Comparative

Study (Animal
Study)

Male and female
wild-type (WT)
vs. transgenic
(SOD1G93A)

mice; (1) Males,
WT (n = 18), (2)

Males,
TG (n = 18), (3)

Females,
WT (n = 22), (4)

Females,
TG (n = 18)

Home cage
activity

monitoring:
Digital

ventilated
cage (DVC)

system;
comparing

with BW and
neuromuscu-

lar
function

Regularity
Disruption Index

(RDI)

The rise of RDI in
TG mice was

remarkable. When
computed during

daytime. The
increase of

irregularity in day
activity pattern in

TG mice could
reflect disturbances
in their rest/sleep
behavior; RDI rose

during the early
symptomatic stage

parallels grid
hanging, and BW

was declined.

This study suggests
that the RDI metric is

able to capture
potential rest/sleep
disturbances in ALS

models. Thus, it could
be used as a digital
biomarker to detect

disease-related
phenotypes.

First, to summarize the studies for ALS patients, one British research group performed
a non-controlled, non-drug study to investigate the feasibility of a novel platform for
objective data collection of multiple ALS manifestations, including physical activity, heart
rate variability (HRV), and speech characteristics through a wearable sensor [13]. The
study comprised two phases: a variable-length Pilot Study Phase for refinement of the
equipment and data transmission processes and a 48-week Core Study Phase (25 patients
enrolled, including the five patients who progressed from Pilot Study Phase to Core Study
Phase). During the Core Study Phase, patients visited a clinical site every 12 weeks to
perform various assessments and tasks, and the participants wore a sensor in daily life for
approximately three consecutive days every month (home monitoring periods). However,
the amount and quality of physical activity home monitoring data and HRV data were
lower than anticipated. It was found that most of the participating patients safely used
the sensor without any inconvenience in their daily life. This study suggested that the
monitoring platform could measure physical activity in patients with ALS in their home
environment. In addition, this research group compared longitudinally the measures
through the home-monitoring sensors with the gold-standard assessments, including ALS
Functional Rating Scale-Revised (ALSFRS-R) score and forced vital capacity. As a result,
four activity endpoints (average time spent active in the daytime, percentage of time spent
active in the daytime, daytime total activity score, 24 h total activity score) showed a
moderate correlation with ALSFRS-R total score and a strong correlation with ALSFRS-R
gross motor domain score. Additionally, there was a moderate correlation between speech
endpoints and ALSFRS-S bulbar domain scores. These study findings highlighted a
promising potential of the biotelemetry platform as an efficient clinical evaluation tool of
disease progression in ALS patients.
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Stegmann et al. emphasized that bulbar deterioration leads to faster decline and
shorter survival in ALS patients, assessed patients’ speech features digitally, and evaluated
their sensitivity to detect early changes and track progression [15]. The recruited 65 ALS
patients provided daily speech samples at home for three months and twice weekly for an
additional six months and ALSFRS-R scores on a weekly basis. Their speech was collected
remotely via a mobile application, and the articulatory precision (AP) and speaking rate
(SR) were assessed through automated speech analysis. This study demonstrated that AP
and SR decline was detected earlier than declines on the ALSFRS-R bulbar subscale, and
bulbar-onset participants declined faster in AP and SR than nonbulbar-onset participants.
Thus, this study showed the possibility of remotely detecting early speech changes and
tracking progression in ALS via automated algorithmic assessment of the remotely collected
speech.

Stegmann et al. evaluated the repeatability of acoustic and language features of
collected longitudinal speech from three separate samples (healthy controls, ALS patients,
ALS patients with suspected frontotemporal dementia) [16]. The acoustic and language
features were extracted using open source, including openSMILE, Talk2me, and Praat.
Overall, the average repeatability scores of speech features were found to be well below
acceptable limits for clinical decision-making. This result suggested that researchers should
be cautious when developing digital health models with open-source speech features.

Studies on DMD and SMA patients were conducted from the perspective of improving
the problem that the currently used outcome measures lack sensitivity and specificity to
detect significant improvements within the first 6–12 months of intervention. Heberer
et al. collected spatial–temporal data and quantified kinematics and kinetics at the hip,
knee, and ankle of 21 DMD boys between 4 and 8 years old using three-dimensional
gait analysis over one year [17]. Between the baseline and post-treatment visits, 12 boys
began a corticosteroid regimen (mean duration 10.8 ±2.4 months) while 9 boys remained
steroid-naïve. Significant between-group differences favoring steroid use were found
for primary kinetic outcomes (peak hip extensor moments (p = 0.007), duration of hip
extensor moments (p = 0.007), peak hip power generation (p = 0.028)), and spatial–temporal
parameters (walking speed (p = 0.016) and cadence (p = 0.021)). This study indicated that
hip joint kinetics could identify weakness in DMD boys and are sensitive to corticosteroid
intervention.

Le Moing et al. performed a pilot study in seven non-ambulant DMD patients to
demonstrate the feasibility and reliability of physical data recorded with a magneto-inertial
sensor, ActiMyo® containing a three-axis accelerometer, a three-axis gyroscope, and a three-
axis magnetometer [18]. Four variables representative (of upper limb activity were studied:
the rotation rate, the ratio of the vertical component in the overall acceleration, the hand
elevation rate, and an estimate of the power of the upper limb. This study demonstrated
that the ActiMyo® variables were well representative of movements performed during
the tasks and correlated well with the scores obtained using other previously validated
tests. In particular, the mean of the rotation rate and mean of the elevation rate had the
best reliability scores and correlations with task scores, suggesting that they could be
good candidates as potential outcome measures in non-ambulatory patients with DMD.
The aforementioned study performed the pilot study in a laboratory setting, and then
Lilien et al. explored the digital biomarker in home-based monitoring using a wearable
magneto-inertial sensor (VMIS) for 23 ambulant DMD patients to evaluate the motricity of
neuromuscular patients due to the difficulty of assessing their reduced movement and their
abnormal gaits [19]. The authors demonstrated that a precise estimate of foot trajectory in
ambulatory DMD is feasible by using their VMIS, and the device’s variables were correlated
with the scores obtained using other previously validated tests and are sensitive to change
in the DMD patients over six months. This study suggested that their wearable sensor
VMIS can record a set of digital biomarkers in the home environment and can be used to
evaluate even the most severely impaired patients and can provide objective and reliable
data.
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Similar studies have been conducted in patients with SMA. Chen et al. developed
a specifically designed and user-friendly game based on the Microsoft Kinect sensor,
measuring active upper limb movement [20]. They recruited 18 ambulant SMA type
3 patients and 19 age- and gender-matched healthy controls. The elbow angle and arm
lifting angle did not show any difference between SMA patients and healthy controls,
whereas the hand velocity was found to discriminate between two groups. This study did
not demonstrate that this game design is sensitive enough to capture minor differences
or early-stage progression in the high-functioning patient group but suggested that the
Microsoft Kinetic sensor has the potential of being developed into a complementary output
measure for SMA.

A prospective and longitudinal natural history study of patients with Type 2 and
3 SMA has been undergoing over two years [21]. This research group published the
baseline data of 81 patients aged 2 to 30 years, of which 19 are non-sitter SMA Type
2, 34 are sitter SMA Type2, 9 non-ambulatory SMA Type 3, and 19 ambulatory SMA
Type 3. Most assessments, including the Motor Function Measure, pulmonary function
testing, strength, electroneuromyography, and muscle imaging, discriminated between
the four groups well. Additionally, the physical activities of patients were measured by
three-dimensional sensors—ActiMyo® device, which continuously monitored linear and
rotational arm movements and velocity in the home. Five variables representing upper
limb activity were analyzed: the wrist angular velocity, the wrist acceleration, the vertical
wrist acceleration against gravity, the power, the percentage of activity time. This baseline
study showed that the selected variables of patient upper limb activity in real life not
only significantly correlated with motor function measure scores, but also significantly
correlated with other variables, suggesting that the variables of their sensor can be helpful
for evaluating disease progression in the different functional domains and that it also has
the potential to assess fatigue and loss of endurance during daily activities. The two-year
study results on evaluating the sensitivity of the studied outcomes and biomarkers to
disease progression are pending.

3.2. Overview of Included Animal Studies

The only animal study included in the present review investigated the SOD1G93A
mice model of ALS for detecting sleep and rest disturbances using a non-invasive digital
biomarker [22]. Male and female wild-type (WT) and transgenic (SOD1G93A) littermate
mice were transferred to a digital ventilated cage (DVC) rack at the age of seven weeks. The
DVC, a home cage monitoring system that enables non-intrusive 24/7 animal activity, was
used to detect irregular activity patterns that can potentially be associated with sleep and
rest disturbances along with the progression of ALS in the SOD1G93A mouse model. Two
mice of the same sex and genotype were housed per cage, then assigned to the following
experimental groups: (1) males, WT n = 18 (9 cages); (2) males, SOD1G93A transgenic
n = 18 (9 cages); (3) females, WT n = 22 (11 cages); (4) females, SOD1G93A transgenic
n = 20 (10 cages). The mice were monitored from 7 to 24 weeks of age; in addition,
body weight decline and neuromuscular function deterioration were measured by grid
hanging, and group strength tests were measured. As the ALS progressed over time in
SOD1G93A mice, activity patterns started to become irregular. The Regularity Disruption
Index (RDI), a novel digital biomarker, was utilized to quantitatively capture the increasing
irregularities of activity patterns. The increase of irregularity in daily activity pattern in TG
mice could reflect disturbances in sleep and rest behavior since RDI rose during the early
symptomatic stage and paralleled grid hanging, and body weight also declined. Therefore,
this study suggests that the RDI metric can capture potential sleep and rest disturbances in
ALS models. Thus, it could well be used as a digital biomarker to detect disease-related
phenotypes.
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4. Discussion

The present scoping review investigated the available evidence, aiming to identify
digital biomarkers in subjects with NMDs; a total of 10 studies were found for this review.
Only one article was an animal study, and four out of the nine studies were conducted on
ALS patients. Among diseases belonging to NMDs, ALS is one of few diseases for which
a functional rating scale (ALSFRS-R) has been recognized as a gold-standard outcome
measure that has been widely used in clinical practice and research [23]. One of the four
studies for ALS suggested that the marker obtained through the digital sensor had a good
correlation with the ALSFRS-R score [14]; another study, which assessed speech features
of ALS patients, stated that the biomarkers obtained from the mobile application could
detect earlier disease progression than ALSFRS-R bulbar score [15]. Although it was
not a human study, an animal study showed that the index obtained through the digital
sensor in SOD1gene-transgenic mice was correlated with the decline of body weight and
neuromuscular function. These results would be a good precedent for digital biomarker
development in the future.

Based on the studies introduced in this review, it seems that research is being con-
ducted to find biomarkers that can be monitored at home using digital sensors that capture
physical activity or movement for diseases such as DMD, SMA, and ALS. Digital biomark-
ers include all human data that can be measured using digital tools that include portable,
wearable, implantable, or digestible devices [24]. It is noteworthy that the most represen-
tative examples of a digital biomarker include heart rate and physical activity measured
using a portable smart band or smart watch [25].

Since many diseases belonging to NMDs mainly present muscle weakness and chronic
disease course, establishing a biomarker that can reflect the functional disability of patients
in real-time without the patients’ visiting a hospital will be exceptionally valuable. Through
this, the burden of patients and caregivers visiting the hospital will be significantly reduced.

In addition, in some NMD diseases, respiratory failure may be accompanied by respi-
ratory muscle or bulbar muscle weakness, which means poor prognosis [26]. Respiratory
muscle weakness can occur with acute or subacute onset or as a chronic progressive pre-
sentation, typically starting with nocturnal symptoms, leading to difficulty detecting it
in the early stage; furthermore, bulbar weakness increases the risk of aspiration so that
early intervention, including nasogastric tube insertion, is required. However, at an early
stage, it may not be recognized as quickly because it manifests as voice change or slurred
speech [26]. Therefore, if these early symptoms that are easy to miss can be detected
through digital biomarkers, the medical professionals will more accurately figure the sever-
ity or course of the disease by verifying the patient’s daily living and providing effective
interventions at the proper time. With that, medical professionals perhaps should consider
biomedical signals that directly or indirectly reflect health conditions such as physical
activity, skin conductivity, body temperature, electrocardiogram, heart rate, blood sugar,
oxygen saturation, electroencephalography, and electromyography as potential digital
biomarkers to further detect symptoms [27].

The development of digital biomarkers may advance the era of telemedicine. In
particular, chronic disease requires continuous management and education, and conditions
that present with gradual respiratory failure require careful follow-up and long-term
treatment [26]. The development of digital biomarkers makes home tele-management
possible so that medical staff can evaluate the patient’s condition from a distance and can
provide counseling and education at the proper time [28]. Additionally, a recent study
showed that digital cardiac biomarkers could make a difference in cardiac response to
rehabilitation, suggesting that a more patient-tailored treatment becomes possible using
digital biomarkers [29].

There are some limitations to this review. First of all, only articles published in English
were included. It might have been better to include other language research to better
representing the current evidence. Second, there were not enough results to perform the
quantitative synthesis needed to obtain a direct result. Lastly, since this review aimed to
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survey the current status of digital biomarkers applied in NMDs, the eligibility criteria
were defined rather broadly. Hence, future research could define detailed eligibility criteria
based on our findings.

Nevertheless, this is the first review investigating digital biomarkers in NMDs. As
demand for preventive and precision medicine continues to grow, the need for portable
and reliable digital biomarkers will also continue to grow in the medical field. That being
said, it is vital to collect and analyze digital signals for research purposes for the betterment
of treatments in NMDs.

5. Conclusions

The results from this review show the potential use of digital biomarkers for various
neuromuscular disorders. Research for digital biomarker development in NMDs is at its
initial stage. Even though the published studies so far were unable to obtain satisfactory
results, the results were promising that the digital biomarkers could be applied to patients
in various aspects. In order to be recognized as a digital biomarker, research clarifying
whether the prospective biomarker shows a good correlation with the currently established
biomarker and its outcome measures should be conducted first. Furthermore, it is necessary
to ensure a degree of safety that the digital biomarker does not cause major side effects and
that it provides convenience for patients and caregivers without them experiencing a great
burden. Future research should consider applying similar techniques on a large scale to
verify a digital biomarker’s effectiveness while improving methodological quality.
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