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ABSTRACT
Background. Many mammalian species have experienced range contractions. Follow-
ing a reduction in distribution that has resulted in apparently small and disjunct popula-
tions, the Humboldt marten (Martes caurina humboldtensis) was recently designated as
federally Threatened and state Endangered. This subspecies of Pacific marten occurring
in coastal Oregon and northern California, also known as coastal martens, appear
unlike martens that occur in snow-associated regions in that vegetation associations
appear to differ widely between Humboldt marten populations. We expected current
distributions represent realized niches, but estimating factors associated with long-term
occurrence was challenging for this rare and little-known species. Here, we assessed the
predicted contemporary distribution of Humboldt martens and interpret our findings
as hypotheses correlated with the subspecies’ niche to inform strategic conservation
actions.
Methods. We modeled Humboldt marten distribution using a maximum entropy
(Maxent) approach.We spatially-thinned 10,229marten locations collected from1996–
2020 by applying a minimum distance of 500-m between locations, resulting in 384
locations used to assess correlations of marten occurrence with biotic and abiotic
variables. We independently optimized the spatial scale of each variable and focused
development of model variables on biotic associations (e.g., hypothesized relationships
with forest conditions), given that abiotic factors such as precipitation are largely static
and not alterable within a management context.
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Results. Humboldt marten locations were positively associated with increased shrub
cover (salal (Gautheria shallon)), mast producing trees (e.g., tanoak, Notholithocarpus
densiflorus), increased pine (Pinus sp.) proportion of total basal area, annual precipi-
tation at home-range spatial scales, low and high amounts of canopy cover and slope,
and cooler August temperatures. Unlike other recent literature, we found little evidence
that Humboldt martens were associated with old-growth structural indices. This case
study provides an example of how limited information on rare or lesser-known species
can lead to differing interpretations, emphasizing the need for study-level replication
in ecology. Humboldt marten conservation would benefit from continued survey effort
to clarify range extent, population sizes, and fine-scale habitat use.

Subjects Biodiversity, Conservation Biology, Ecology, Natural Resource Management, Population
Biology
Keywords Threatened species, Distribution model, Habitat relationships, Humboldt marten,
Martes caurina, Maxent, Pacific marten, California, Oregon

INTRODUCTION
Modeling predicted distributions is important to direct conservation efforts yet creating
accurate predictions is challenging for rare, declining, or understudied species (Raphael &
Molina, 2007). For instance, constriction of the range available to a species—it‘s realized
niche—is the actualization of used conditions, but such conditions may change (Colwell
& Rangel, 2009). Contemporary location information may further associate a species
with conditions that were unaffected by prior agents of population decline, but not with
favored characteristics where the species resided prior (Caughley, 1994). For instance, bison
(Bison bison) were historically widely distributed throughout the Great Plains of North
America (Shaw, 1995), yet a contemporary species distribution model would associate
bison occurrence with conditions where the few relict populations reside, including the
extremely cold winters and thermal geysers of Yellowstone National Park. Appropriate
interpretation of the conditions that constitute suitable habitat is requisite for species’
management and spatial models may help predict occurrence (Sofaer et al., 2019).

Humboldtmartens (Martes caurina humboldtensis) are a distinct subspecies of the Pacific
marten (M. caurina) that historically occurred throughout coastal forests of northern
California and Oregon (Schwartz et al., 2020). Humboldt martens were thought to be
increasingly rare almost a century ago (Grinnell & Dixon, 1926) and were considered
to be extirpated in California and extremely rare in Oregon for the latter half of the
20th century (Zielinski et al., 2001). In 1996, the Humboldt marten was rediscovered
in California (Zielinski & Golightly, 1996). Subsequent research efforts over the last two
decades have elucidated some aspects of Humboldt marten ecology and demography
(e.g., Linnell et al., 2018; Delheimer et al., 2021), including surveys to evaluate Humboldt
marten distribution (e.g., Gamblin, 2019; Moriarty et al., 2019). Such investigations have
improved our knowledge of where Humboldt martens occur yet the full geographic extent
of the contemporary distribution remains unknown, although it appears to compose a
fraction of the historical distribution (USFWS, 2020). This putative range contraction

Moriarty et al. (2021), PeerJ, DOI 10.7717/peerj.11670 2/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.11670


has resulted in apparently small and disjunct populations (USFWS, 2019), which has
engendered substantial concern for the species’ persistence. Consequently, Humboldt
martens were listed as Endangered under the state of California’s Endangered Species Act
(CDFW, 2019) and as Threatened under the federal Endangered Species Act as a ‘‘coastal
distinct population segment’’ of Pacific martens (USFWS, 2020).

Clarifying the contemporary Humboldt marten distribution by identifying areas where
martens may occur that have not been surveyed and predicting the future distribution
(e.g., identifying areas where martens may not currently occur but could colonize) is
urgently needed for conservation planning. Nonetheless, modeling the distribution of
Humboldt martens is constrained by apparent non-stationary associations between extant
populations, and vegetation associations that contradict the prevailing paradigm for North
American martens. For instance, it has generally been recognized that North American
martens occur in mature forests characterized by dense canopy cover, presence of large
diameter and decadent trees and snags, and abundant coarse woody debris (Thompson
et al., 2012). Although initial investigations primarily associated Humboldt martens with
similar conditions (Slauson, Zielinski & Hayes, 2007), subsequent studies have indicated
that Humboldt martens also occur in young forests (<80 years old) with modest canopy
cover and relatively small diameter trees (Eriksson et al., 2019;Moriarty et al., 2019). Dense
and spatially-extensive shrubs, also an uncharacteristic vegetation association for martens
elsewhere in North America, was a consistent habitat component in most studies of
Humboldt martens (Slauson, Zielinski & Hayes, 2007; Eriksson et al., 2019; Gamblin, 2019;
Moriarty et al., 2019). Similarly, European pine martens (Martes martes) have long been
considered a habitat specialist associated with older forests (Storch, Lindstrom & De Jounge,
1990; Brainerd & Rolstad, 2002), yet have recently been documented in a wide variety of
habitat types including shrublands, grasslands, and agricultural areas (Lombardini et al.,
2015; Balestrieri et al., 2016;Moll et al., 2016;Manzo et al., 2018).

Observations that are limited in space or time may not identify the conditions necessary
for population persistence, which could result in a misrepresentation of a species’ niche.
A previous range-wide Humboldt marten distribution model by Slauson et al. (2019)
emphasized a strong correlation between Humboldt marten occurrence and an ‘‘old-
growth structural index’’ (OGSI) variable, which is a composite index of factors considered
common to old-growth forests in the region, including density of large live trees, snags,
and downed wood, stand age, and diversity of tree sizes (Davis et al., 2015). However,
more recent and broader-scale research efforts suggest that associations between OGSI
and Humboldt marten distribution are much less clear (e.g., Barry, 2018; Gamblin, 2019;
Linnell et al., 2018; Moriarty et al., 2019). A potential mismatch in previously-predicted
associations between vegetation and Humboldt marten distribution could lead to a
‘‘wicked problem’’ by focusing management or restoration in areas that may not benefit
the species across its range (Gutiérrez, 2020).

Here, our objective was to create a contemporary range-wide model of predicted
Humboldt marten distribution that includes recent location data collected from broad-
scale randomized surveys throughout the historic range, combined with more recent and
accurate vegetation layers (e.g., shrub layers). Our goal was to predict factors contributing
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toHumboldtmarten distribution and to highlight areas for future surveys and conservation
efforts.

MATERIALS & METHODS
Study area
We collected data throughout coastal northern California and Oregon. The Humboldt
marten is considered to occur in four Extant Population Areas (EPAs), which were created
using minimum convex polygons around clusters of marten detections, but excluded
clusters with smaller numbers of detections (<5) or detections >5 km from other detections
(USFWS, 2019). As such, our surveys included both the recognized EPAs (Central Coastal
Oregon, Southern Coastal Oregon, California-Oregon Border, and Northern Coastal
California; Fig. 1) but also extended between these designated boundaries to include the
historic range (USFWS, 2019).

Surveys in California occurred in both near-coastal and montane areas (Klamath
Mountains, California Coast Range) that received substantial precipitation (100–300 cm
annual precipitation) with cooler (7–10 ◦C) temperatures and drier summers dominated
with fog and low cloud moisture (Rastogi et al., 2016). Forest types included a mix of
coniferous and hardwood with a spatially-extensive shrub understory and dominant
tree species included redwood (Sequoia sempervirens) along the coast and Douglas-fir
(Pseudotsuga menziesii) in the mountains (Whittaker, 1960).

Surveys in Oregon similarly occurred in both near-coastal and montane areas (Oregon
Coast Range) where dominant forest types included Sitka spruce (Picea sitchensis) and
shore pine (Pinus contorta) along the coast and western hemlock (Tsuga heterophylla)
slightly inland (Franklin & Dyrness, 1973). The Sitka spruce zone was characterized by
a wet and moderately warm maritime climate with average annual temperatures of 10–
11 ◦C, average annual precipitation of 200–300 cm, and frequent fog and cloud cover.
The western hemlock zone, which was often co-dominated by Douglas-fir, was somewhat
cooler (7–10 ◦C average annual temperature) and drier (150–300 cm annual precipitation)
with fairly extensive summer fog and low cloud cover (Dye et al., 2020).

Common conifer species intermixed and included western hemlock, Port Orford
cedar (Chamaecyparis lawsoniana), and western redcedar (Thuja plicata). Hardwood trees
included tanoak (Notholithocarpus densiflora), giant chinquapin (Castanopsis chrysophylla),
coastal live oak (Quercus agrifolia), canyon live oak (Q. chrysolepis), California bay
(Umbellularia californica), red alder (Alnus rubra), bigleaf maple (Acer macrophyllum),
and Pacific madrone (Arbutus menziesii). Dominant shrubs throughout the study area
included salal (Gautheria shallon), evergreen huckleberry (Vaccinium ovatum), Pacific
rhododendron (Rhododendron macrophyllum), and red huckleberry (V. parvifolium).

Marten locations
We used spatially-referenced Humboldt marten locations collected between 1996 and 2020
in California and Oregon. We excluded locations occurring in areas that were modified
by fire or timber harvest after the location date and prior to 2016, the date represented
by our vegetation data. If multiple locations occurred within a 500-m × 500-m grid cell,

Moriarty et al. (2021), PeerJ, DOI 10.7717/peerj.11670 4/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.11670


O r e g o n

C a l i f o r n i a

W a s h i n g t o n

Salem

Eugene

Redding

Medford

Portland

Santa Rosa

Mount Shasta

San Francisco

"

0 100 20050
Kilometers

0 50 10025
Kilometers

0 100 20050
Kilometers

A CB

" "

Figure 1 Our study area andmodelling region for Humboldt martens (Martes caurina humboldten-
sis) included all of coastal Oregon and northern California. We modeled Humboldt marten predicted
distributions in forested lands ((A), green mask) in two ecoregions. We created a minimum convex poly-
gon of known locations buffered by 10-km (hatched area). We compiled 10,229 marten locations, dis-
playing 1,692 marten locations that were not GPS derived and clustered (icon color) from 5,153 surveyed
sites with non-detections in light gray, collected during 1996–2020 (B). We spatially thinned locations to
approximately 500m apart, prioritizing den and rest locations and resulting in 384 locations (black dots,
(C)).

Full-size DOI: 10.7717/peerj.11670/fig-1
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we spatially-thinned locations to randomly include one in each cell, attempting to achieve
spatial independence for modeling (Kramer-Schadt et al., 2013). Priority for location
retention from highest to lowest was: (1) rest and den locations from telemetry (Linnell et
al., 2018; Delheimer et al., 2021); (2) locations from scat dog detection surveys (Moriarty
et al., 2018; Moriarty et al., 2019); and (3) locations from baited camera and/or track plate
surveys (Slauson, Baldwin & Zielinski, 2012; Barry, 2018; Gamblin, 2019; Moriarty et al.,
2019). We used presence-only data because surveys that occurred prior to 2014 were often
missing detection histories from non-detection (e.g., absence) locations.

For the data for which the authors were responsible, our protocols were reviewed and
approved by the USDA Forest Service Research and Development Institutional Care and
Use Committee (permits 2015-002, 2017-005) or Humboldt State University Institutional
Care and Use Committee (permit 16/17.W.05-A). We obtained Scientific Take Permits for
hair snares and samples collected through the Oregon Department of Fish and Wildlife
(ODFW 119-15, 128-16, 033-16, 109-19, 107-20). Older verified survey data were provided
by the US Fish and Wildlife Service with no additional information.

Modeling approach
Our modeling approach included Humboldt marten locations, biotic and abiotic predictor
variables, and randomly generated pseudo-absence points. We used a minimum convex
polygon (MCP) around Humboldt marten locations buffered by 10 km to define the
modeling region (Fig. 1B). We chose a 10 km buffer because it approximated the upper
quartile of daily marten movement (Moriarty et al., 2017). We projected our model to
available vegetation data from Gradient Nearest Neighbor (GNN) data supplied by the
Landscape Ecology, Modeling, Mapping and Analysis lab (Bell, Gregory & Davis, 2020;
Bell et al., 2021), which included the coastal and Klamath level-3 eco-provinces (U.S.
Environmental Protection Agency, 2013). We removed urban areas and water from the
background data (Davis et al., 2016). We summarized the range, average, and standard
deviation for each variable within the modeling region and study area (Table 1, Fig. 1).

Biotic variables
Biotic variables in ourmodels included forest structure and composition, forest age, canopy
cover, OGSI, percent pine, percent mast, and predicted shrub cover, as described below.

We used the 2016 version of GNN (Ohmann & Gregory, 2002) to incorporate forest
structure variables including forest age, canopy percent cover, OGSI, and percent pine.
Forest age was the basal area-weighted age based on field-recorded or modeled ages of
dominant and codominant trees. Canopy percent cover was calculated using the Forest
Vegetation Simulator (Crookston & Stage, 1999). Our OGSI index ranged from 0–100 was
based from 4 elements: density of large diameter live trees per hectare, density of large
diameter snags per hectare, percentage of downed wood greater than 25 cm in diameter,
and an index of tree diameter diversity computed from tree densities in different diameter
classes (Davis et al., 2015). For live trees and snags, ‘‘large diameter’’ was dependent on
forest type and was defined for twelve vegetative zones, each zone with a unique minimum
diameter threshold (i.e., ranging 50–100 cm for live trees, 50–75 cm for snags; Davis et
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Table 1 Data ranges, means, and standard deviations for the model region, the contemporary Humboldt marten distribution, and at Humboldt marten locations.
We depict individual layer statistics within our Humboldt marten (Martes caurina humboldtensis) model region in coastal Oregon and northern California. We display the
variable, optimized spatial scale with a radius in meters, value range from the coastal ecoregions, means and standard deviation (SD) for the model region, minimum con-
vex polygon around all known marten locations (MCP), and values from spatially thinned marten locations (n= 384), our layer source, and a description of that variable.
We only considered variables with<60% correlation in our final model (Table S2).

Variable Scale Value
range

Model region
(Mean± SD)

Minimum
convex
polygon
(Mean± SD)

Marten
locations
(Mean± SD)

Source Description

Forest age,
years

270 0–712 95.5± 43 104.3± 49.4 109.8± 69.6 2016 GNN Basal area weighted stand
age based on field recorded
or modeled ages of domi-
nant/codominant trees

Canopy cover
(%)

1170 2–99 65.9± 13 66.4± 14 71.3± 18.6 2016 GNN Canopy cover percentage of
all live trees

Coastal prox-
imity

50 2–700 511.7± 193.1 516.3± 203.1 361.8± 197.9 PRISM Optimal path length from
the coastline accounting for
terrain blockage (Daly et al.,
2008)

Diameter di-
versity index

1170 26–811 433.9± 103 437.6± 111.7 459.4± 123.6 2016 GNN Diameter diversity index -
measure of stand structure
based on tree densities in
diff. DBH classes (x100)

Percent
downed
wood

270 0–797 69.3± 54.7 70.9± 50 68.5± 60.1 2016 GNN
(created)

Created within GNN to es-
timated percentage of large
downed wood, a component
of OGSI

Salal 1170 0–100 35.7± 30.9 50.7± 32.3 72.7± 17.8 Prevéy Probability of Gautheria
shallon species occurrence
(Prevéy et al., 2020)

Masting veg-
etation

1170 0–72 5.9± 7.4 5.2± 6.7 9.3± 9 2016 GNN Percent of stand basal
comprised of tanoak
(Notholithocarpus
densiflorus; LIDE), giant
chinquapin (Castanopsis
chrysophylla; CHCH),
coastal live oak (Quercus
agrifolia; QUAG), canyon
live oak (Quercus chrysolepis;
QUCH), and California
bay (Umbellularia
californica; UMCA) (mast
producing evergreen
hardwoods, indicator of prey
abundance)

(continued on next page)
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Table 1 (continued)

Variable Scale Value
range

Model region
(Mean± SD)

Minimum
convex
polygon
(Mean± SD)

Marten
locations
(Mean± SD)

Source Description

Old growth
structural in-
dex

50 0–100 32.7± 15.8 33.2± 16.1 33.8± 16.9 2016 GNN Old-growth structure index
based on abundance of large
live trees, snags, down wood,
and Diameter Diversity In-
dex (DDI)

Percent pine 1170 0–94 1.2± 3.5 1.5± 4.5 10.9± 20.1 2016 GNN Percent of pixel basal area
comprised of shore pine
(Pinus contorta; PICO), Jef-
ferey pine (Pinus jeffreyi;
PIJE) and knobcone pine
(Pinus attenuata; PIAT). We
use this as an indicator of
serpentine and coastal dune
environments.

Percent slope 1170 0–74 33.8± 10.9 36.2± 10.6 31.7± 15.8 USGS DEM Percent slope in degrees
Precipitation 1170 13–198 66.9± 27 70± 30.1 102.4± 30.5 2016 GNN Average annual precipitation

1981–2010 (inches)
Large snag
density

742 0–48 4.9± 4.3 5.8± 4.6 6.9± 4.9 2016 GNN
(created)

Created within GNN to esti-
mated density of large snags,
a component of OGSI

Temperature
(August max)

1170 8–24 16.5± 2.3 16.1± 1.7 16.4± 1.7 PRISM Average annual maximum
temperature 1981–2010
(Celcius).

Topographic
position in-
dex

270 -149–174 0.7± 26.7 1.1± 28.8 −0.3± 28.6 USGS DEM Topographic position index
- difference of cell elevation
with mean of all cells w/in
450 m radius

Large tree
density

1170 0–47 3.2± 3.5 4.4± 4.2 5.2± 5.9 2016 GNN
(created)

Created within GNN to esti-
mated density of large trees,
a component of OGSI

Huckleberry 1170 2–99 32.7± 24.6 39.1± 26 42.7± 27.2 Prevéy Probability of species occur-
rence for Vaccinium ovatum
(created)

M
oriarty

etal.(2021),PeerJ,D
O

I10.7717/peerj.11670
8/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.11670


al., 2015); see Item S1 for more information on integration of the OGSI variable into our
model.

We created a variable called ‘‘percent pine’’, which was the combined percentage of
total basal area of shore pine, Jeffreyi pine (P. jeffreyi), and knobcone pine (P. attenuata)
from GNN. This variable was included because martens have been detected in shore
pine communities in the Oregon Central Coast population (Linnell et al., 2018; Eriksson
et al., 2019), and in areas with serpentine soils characterized by sparse cover of Jeffreyi
and knobcone pine, stunted tree growth, and dense shrub understories (Kruckeberg, 1986;
Safford, Viers & Harrison, 2005; Harrison et al., 2006; Slauson et al., 2019). We visually
inspected the congruence of the serpentine soil layer created by the US Fish and Wildlife
Service (Schrott & Shinn, 2020) with our percent pine layer, confirming overlap between
the two variables.

Humboldt martens have been associated with dense shrub cover throughout their range
(Slauson, Zielinski & Hayes, 2007; Moriarty et al., 2019). Salal and evergreen huckleberry
appear particularly important, as the berries of each occur in Humboldt marten diets
and provide food for marten prey species (Eriksson et al., 2019; Manlick et al., 2019;
Moriarty et al., 2019).Wemodeled probabilities of species occurrence of salal and evergreen
huckleberry, creating themodel for evergreen huckleberry followingmethods published for
salal and other shrub species (Prevéy, Parker & Harrington, 2020; Prevéy et al., 2020). We
related locations to contemporary (1981–2010) bioclimatic variables from the AdaptWest
project (Wang et al., 2016) to depict the probability of species occurrence (1–100%).
Humboldt marten diet is dominated by animals (e.g., passerines, ground squirrels) that
feed on berries and mast and Humboldt martens also directly consume berries (Slauson &
Zielinski, 2017; Eriksson et al., 2019; Manlick et al., 2019). The ‘‘mast’’ variable represented
hardwood tree and shrub species that produce nuts, seeds, buds, or fruits eaten by wildlife
and was estimated using the 2016 GNN layer as the percent of total basal area comprised
of tanoak, giant chinquapin, coastal live oak, canyon live oak, and California bay.

Abiotic variables
Abiotic variables included temperature (◦C), precipitation (cm), cloud cover (%), coastal
proximity, percent slope, and topographic position index. We used 30-year normal PRISM
variables of Average Annual Precipitation converted to cm and Maximum Temperature
in August at an 800-m scale (1981-2010, PRISM Climate Group, Oregon State University,
http://prism.oregonstate.edu, created 10/17/2019) as a proxy for maximum annual
temperature. We explored annual data for temperature (2010–2018), but the available
4 km resolution produced artifacts in the model.

We created models with the variable Coastal Proximity, which uses PRISM data and
combines coastal proximity and temperature advection influenced by terrain (Daly, Helmer
& Quiñones, 2003) modified for the western United States (Daly et al., 2008). We derived
percent slope and topographic position index from US Geological Survey digital elevation
models. Topographic position index is an indicator of slope position and landform category;
it is the difference between the elevation at a single cell and the average elevation of the
user-defined radius around that cell (Jenness, 2006).
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Scale optimization
Given thatmartens select habitat atmultiple scales (e.g., broad-scale landscape features) and
fine-scale features within home ranges (4th order selection; e.g., Minta, Kareiva & Curlee,
1999), we optimized the spatial scale of each variable included in the model. We smoothed
variables using the extract function in package raster in R (Hijmans, 2020; R Core Team,
2020) with a radius of 50 m, 270 m, 742 m, and 1,170 m. Our smallest scale (50 m, 0.81 ha)
provided local and fine-scale conditions. We assumed 270 m (20 ha) approximated the size
of a Humboldt marten core area, similar to optimized scales of vegetation characteristics
used in predicting conditions for marten rest structures elsewhere in California (Tweedy
et al., 2019). The scale of 742 m (174 ha) represented an approximate female Humboldt
marten home range size, calculated as the average of female home range estimates (173 ha)
from two previous studies (Linnell et al., 2018; Data S1; PSW, 2019). Our broadest scale
was based on the largest size of a Humboldt marten male home range (1,170 m, 428 ha,
Data S1), assuming a male would overlap multiple females and could be interpreted as
the smallest unit of population level selection (Linnell et al., 2018; PSW, 2019). We used
individual univariate linear models (glm) for each spatial scale using our training location
data and a random background sample of 9,600 points (25 times the location data) within
the MCP at different locations than the Maxent generated pseudo-absence data (Data
S2). Similar to prior examples (Wasserman et al., 2010; McGarigal et al., 2016; Zeller et al.,
2017), we selected the scale for each variable that had the most extreme, and thus the most
predictive, coefficient as well as the lowest Akaike’s Information Criterion (AIC) value. We
also visually inspected the fit of each spatial scale using boxplots (Figs. S1–S3).

We provided boxplots to visually estimate whether our final variables were similar
between all marten locations, thinned marten locations, available surveyed locations
without detections (non-detection), and random locations (Fig. 2).

Predicted distribution
WeusedMaxentmodeling software v3.4.1 (Phillips, Anderson & Schapire, 2006) to estimate
the relative probability of Humboldt marten presence (Merow, Smith & Silander, 2013).
Maxent uses a machine learning process to develop algorithms that relate environmental
conditions at documented species’ presence locations to that of the surrounding
background environment in which they occurred (Phillips & Dudík, 2008; Elith et al.,
2011). We excluded variables with highly correlated predictors (|Pearson coefficient|>0.6),
selecting the variable that was most interpretable for managers (Table S2). During this
process, we considered the variance inflation (Table S3), which allows for evaluation of
correlation and multicollinearity. Variance inflation factors equal to 1 are not correlated
and factors greater than 5 are highly correlated as determined by (1/(1-Ri

2)), where Ri
2 is

squared multiple correlation of the variable i (Velleman &Welsch, 1981).
Within eachmodel iteration, we selected the bootstrap option with 10 replicates, random

seed, and 500 iterations. We trained our models using a random subset of 75% of presence
locations and tested these using the remaining 25% with logistic output. We used the
default of 10,000 pseudo-absence background samples. We varied the response functions
to include linear, product, and quadratic features. We selected the ‘‘auto features’’ option
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Figure 2 We investigate the range of variables in our thinned dataset compared to all marten locations
and detection/non-detection data (A-H). To provide the range of values observed in this study, we de-
pict boxplots for the variables in the top model showing the thinned marten data (Marten), all non-GPS
marten locations (Marten_DB), non-detected but surveyed locations (non-detection), and random loca-
tions within the minimum convex polygon (9,600 random locations).

Full-size DOI: 10.7717/peerj.11670/fig-2
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for all runs, which allowsMaxent to further limit the subset of response features from those
selected by retaining only those with some effect.

Species distribution maps were produced from all models using the maximum training
sensitivity plus specificity threshold, which minimizes both false negatives and false
positives. We evaluated the AUC statistic to determine model accuracy and fit to the testing
data (Fielding & Bell, 1997). The AUC statistic is a measure of the model’s predictive
accuracy, producing an index value from 0.5 to 1, with values close to 0.5 indicating
poor discrimination and a value of 1 indicating perfect predictions (Elith et al., 2006).
We assessed variables using response curves, variable contributions, and jackknife tests.
We used percent contribution and permutation importance to determine importance of
input variables in the final model (e.g., Halvorsen 2013). Percent contribution can be more
informative with uncorrelated variables (Halvorsen, 2013), while permutation importance
provides better variable assessment when models and variables are correlated (Searcy &
Shaffer (2016).

Because over-parameterized models tend to underestimate habitat availability when
transferred to a new geography or time period, we used selection methods suggested
by Warren & Seifert (2011). Maxent provides the option of reducing overfitting with
a regularization multiplier that can be altered by the user to apply a penalty for each
term included in the model (β regularization parameter) to prevent overcomplexity or
overfitting (Merow, Smith & Silander, 2013; Morales, Fernández & Baca-González, 2017).
A higher regularization multiplier will reduce the number of covariates in the model,
becoming more lenient with an increased sample size (Merow, Smith & Silander, 2013).
We did not include model replicates, an option in the interface, to output the required
data (lambda file) and set output to logistic. We altered the Regularization Multiplier from
0.5 to 4 for each 0.5 increment (e.g., Radosavljevic & Anderson 2014).

We ranked candidate models using AIC corrected for small sample sizes (AICc; Burnham
& Anderson 2002). We considered the model with the lowest AICc value to be our top
model with those with 1AICc<2 to be competitive models. For our top model, we
generated predicted-to-expected (P/E) ratio curves for our model using only the testing
data to evaluate its predictive performance, which was based on the shape of the curves,
a continuous Boyce index (Boyce et al., 2002), and Spearman rank statistics. We used the
predicted-to-expected curve to inform our suitability thresholds following Hirzel et al.
(2006). We defined unsuitable in areas where the model performed equal to or poorer
than random chance (P/E ≤ 1) with the lower 95% confidence interval of the P/E curve
overlapping 0. For predicted suitable and highly suitable locations, we divided P/E and
their respective 95% confidence values greater than 1, categorizing the lower half of data
as suitable and the upper portion as predicted highly suitable.

RESULTS
Locations
We compiled 10,229 Humboldt marten locations collected during 1996–2020 (542 baited
station, 263 detection dog team, 831 VHF telemetry, 8,537 GPS telemetry, 15 roadkill, and
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Table 2 We show the percent contribution and permutation importance from our topMaxent model.We ordered variables by their percent
contribution and report the optimized spatial scale (focal radius in meters), the univariate response type, and whether the univariate dependent
plots were generally positively or negatively correlated with Humboldt marten (Martes caurina humboldtensis) locations.

Variable Scale Response Univariate
relationship

Percent
contribution

Permutation
importance

Salal 1170 Quadratic + 23.3 15.5
Percent pine 1170 Product + 22.5 30.3
Precipitation_30-year average 1170 Product + 21.6 25.3
Canopy cover 1170 Quadratic + 18.7 20.2
Mast 1170 Product + 5.4 1.3
August temperature_30-year average 1170 Linear – 4.7 2.3
Percent slope 1170 Quadratic – 2.7 4.4
Old growth structural index 50 Linear – 1.2 0.7

41 others). Our GPS data represented locations taken every 2.5–5 min on 7 individuals
within the Central Coast (Linnell et al., 2018), and we did not display those clustered data.
After we spatially-thinned locations, 384 locations remained and were spread among Extant
Population Areas: Central Coastal Oregon (n = 77 locations), Southern Coastal Oregon
(n = 77 locations), California-Oregon Border (n = 33 locations), and Northern Coastal
California (n = 192 locations) (Fig. 1). There were 5 locations that did not occur within
boundaries of any EPA (USFWS, 2019). Location types included den or rest structure
locations (18%), genetically verified scats or telemetry locations (32%), and baited camera
or track plate locations (50%).

Thinned locations had similar medians and data distributions to the full location dataset,
except for mast and precipitation where the medians were slightly lower for the thinned
locations (Fig. 2). Non-detection locations had similar medians and data distributions to
random locations, with the most notable difference between medians for salal (Table 1,
Fig. 2). Differences between non-detection and random locations were likely due to
clustered sampling efforts (Fig. 1B).

Distribution modeling
Our final model included 8 variables after excluding correlated variables (Tables S2, S3).
Variables in our model were optimized at the home range spatial scale (1,170 m) except
OGSI (50 m), but differences between scales were modest (Figs. S1–S3). Our topmodel had
a Regularization Multiplier of 1.5. Predictor variables, in order of percent contribution,
included a positive relationship with salal (23.3%), percent pine (22.5%), average annual
precipitation (21.6%), canopy cover (18.7%), and mast (5.4%) followed by a negative
relationship with average maximum August temperature (4.7%), percent slope (2.7%),
and OGSI (1.1%, Table 2). Permutation importance was similar with the same top four
variables highly contributing, but with a slightly modified order of percent pine (30.3%),
average annual precipitation (25.3%), canopy cover (20.2%), and salal (15.5%; Table 2).
The OGSI variable contributed least for both metrics.

We interpreted Maxent’s univariate response curves and provide the marginal plots as
a supplemental figure (Fig. S4). Marten locations were correlated with both low and high
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amounts of canopy cover and percent slope (quadratic response, Fig. 3). Moderate amounts
of canopy cover (e.g., 5–50%) appeared to be negatively correlated with marten locations.
Predicted marten distribution was positively correlated with salal with some likelihood
of a threshold at high values (Fig. 3), percent pine (Fig. 3), average annual precipitation
(Fig. 3), and mast (Fig. 3). There was a negative correlation between marten locations and
August temperature (Fig. 3) and a slightly negative to neutral relationship between marten
locations and OGSI (Fig. 3).

The predicted versus expected curve of our final model delineated unsuitable areas
as <14%, suitable areas as 15–30%, and predicted highly suitable at >30% predicted
probability (Fig. 4, Data S3) with an AUC value on the test data at 92%. The model
depicted southern Oregon and northern California as having the largest spatial extent for
predicted marten distribution, including areas south of the current known distribution
(Fig. 5, Data S3).

DISCUSSION
We developed a range-wide species distribution model for the Humboldt marten
based on extensive survey effort and incorporation of contemporary vegetation and
climatic conditions. Our model is complementary, but not similar, to other Humboldt
marten distribution models (e.g., Slauson et al., 2019), which could lead to confusion
when attempting to understand Humboldt habitat associations. Instead of interpreting
differences between models as a conflict, we posit this as evidence of the conservation
challenge described by Caughley (1994) and representative of the difficulty in establishing
patterns of causality from observational studies. Nonetheless, our model predicted areas
where Humboldt martens are known to occur and identified areas of potential occurrence
outside of known population extents, which can be placed within an ecological theory
framework for managers. As with all models, there are limitations associated with our
predictions, and a clear assessment of these constraints is critical for model results to be
accurately used to inform management decisions (Sofaer et al., 2019).

The role of biotic interactions in shaping the distribution of species has been reported
(e.g., Forchhammer et al., 2005; Guisan & Thuiller, 2005), yet evidence of the importance
of biotic variables alongside abiotic variables for predicting distributions at larger spatial
scales has been largely lacking (e.g.,Wisz et al., 2013). High amounts of shrub cover appears
to be the most prevalent component of Humboldt marten locations in both California
(Slauson & Zielinski 2009, Slauson, Zielinski & Hayes, 2007) and Oregon (Moriarty et al.,
2019) and accordingly, both salal and mast (including mast-producing shrubs) had a
strong contribution to our model. Although associations with shrub cover or mast are
generally uncharacteristic of martens, European pine martens may occur in areas of dense
shrubs (Lombardini et al., 2015) and American marten population numbers in New York
appear correlated with mast in hardwood forests (Jensen et al., 2012). Our finding that
Humboldt marten distribution was strongly correlated with canopy cover is consistent
with previous marten research (Bissonette et al., 1997, Hargis et al., 1999), although our
response was quadratic, suggesting marten locations were associated with both low and
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Figure 3 We depict predicted relationships between Humboldt marten locations and each of the vari-
ables within our final model (A-H).Here, each curve is the predicted probability of presence with no con-
flicting influence of potentially correlated variables. Humboldt marten locations were correlated with both
low and high amounts of canopy cover and percent slope (quadratic response). Predicted distribution was
positively correlated with predicted salal (Gaultheria shallon) distribution, percentage of pine, precipita-
tion, and mast. We observed a negative correlation between marten locations and August temperature. We
observed a slight negative relationship between marten locations and the old growth structural index. Our
figure order matches the percent contribution values reported in Table 2. The curves reveal the mean re-
sponse (black) and standard deviation (gray) for 10 replicate Maxent runs.

Full-size DOI: 10.7717/peerj.11670/fig-3

Moriarty et al. (2021), PeerJ, DOI 10.7717/peerj.11670 15/28

https://peerj.com
https://doi.org/10.7717/peerj.11670/fig-3
http://dx.doi.org/10.7717/peerj.11670


Figure 4 Our predicted suitable transitions for Humboldt marten (Martes caurina humboldtensis)
range. We present mean predicted vs. expected curve (solid black line) from our model replicates, show-
ing 95-percent confidence intervals (gray-shaded vertical bars). The P/E= 1 threshold is where the curve
crosses the random chance line (horizontal orange line), and the blue dashed vertical lines are the 95-
percent confidence intervals. We used the predicted-to-expected curve to inform our suitability thresholds
following Hirzel et al. (2006), including predicted unsuitable (P/E and confidence intervals 0–1), marginal
(P/E> 1 but overlapping confidence intervals), and suitable (P/E and confidence intervals> 1; map de-
picted in Fig. 5).

Full-size DOI: 10.7717/peerj.11670/fig-4

high levels of canopy cover. Marten populations are typically associated only with relatively
dense and increasing canopy cover (Shirk, Raphael & Cushman, 2014) and we posit that a
quadratic response to canopy cover byHumboldtmartensmay be a function of shrub cover.
Although additional information is needed to describe fine-scale vegetation associations,
forest conditions with a dense understory layer of shrub and mast-producing species
represent achievable targets that can guide management or restoration.

Biotic variables influencing predicted Humboldt marten distribution in our model were
consistent with previous literature with some exceptions, most notably forest age andOGSI.
Within our model, the predicted relationship between Humboldt marten distribution and
higher OGSI values was not only weak but often negative (Supplemental Item S1). The
OGSI variable may, in fact, represent an interpretive mismatch with shrub cover—some
areas where Humboldt martens occur (e.g., mature Douglas fir forest; Slauson, Zielinski
& Hayes, 2007) are characterized by both older forest conditions (i.e., high OGSI values)
and substantial shrub cover, while other areas (e.g., serpentine or coastal pine forests;
Eriksson et al., 2019; Moriarty et al., 2019) are characterized by substantial shrub cover,
but not older forest conditions (i.e., low OGSI values). As an example of this mismatch,
much of the putative distribution of Humboldt martens in coastal Oregon and California
is dominated by mature western hemlock forests with high OGSI values, yet Humboldt
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Figure 5 We display our modeled predicted range for Humboldt marten (Martes caurina humboldten-
sis). For predicted range, we followed Hirzel et al. (2006) with predicted versus expected ratios transition-
ing between predicted highly suitable (green), suitable (orange), and marginal or not predicted suitable
(gray). Marten location information was displayed (black dots). We zoomed to population extents to pro-
vide increased visual resolution within the Central Oregon Coast (3A), South coast (3B), and northern
California (3C).

Full-size DOI: 10.7717/peerj.11670/fig-5
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martens are not strongly associated with such areas (Moriarty et al., 2019), possibly because
hemlocks are a shade-tolerant species that prohibit understory growth such as shrubs
(Kerns & Ohmann, 2004). When examining our marten locations in a model only with the
components of OGSI, downed wood was the most influential variable (Supplemental Item
S1). We suspect the differences between our model and the Slauson et al. (2019) model
resulted from non-stationary vegetation associations that were only revealed by increased
survey effort across a broader geographic scope. While the Slauson et al. (2019) model
relied on a modest number of Humboldt marten detections from 1996–2010 with poor
coverage outside of northern California (USFWS, 2019), our model included a relatively
large number of detections that occurred across a longer period of time (1996–2020), over
a broader geographic scope in both California and Oregon (Barry, 2018; Gamblin, 2019;
Linnell et al., 2018; Moriarty et al., 2019).

Range limit theorems have long postulated the importance of elevation, altitude, and
weather in determining the limits of species distributions (e.g.,Darwin, 1859). Precipitation
was one of the top 3 predictive variables in all model simulations and abiotic factors such
as increased precipitation, proximity to the coast, and cool temperatures likely influence
vegetation type and composition. If these variables are causally linked tomarten occurrence,
a plausible mechanism is that cooler wetter conditions result in dense vegetation growth
(e.g., shrubs). In areas with relatively low canopy cover but dense shrubs, shrub cover may
be functionally similar to canopy cover by offering increased protection from predators
(Hawley & Newby, 1957). High shrub cover also likely results in an increased availability
of berries and mast. Given that martens consume prey items (e.g., birds, rodents) that
feed on berries and mast, while also consuming berries themselves, shrubs may both
indirectly and directly subsidize marten diets. If increased shrub cover decreases predation
risk while simultaneously providing abundant food resources, such areas may provide
exceptional, if uncharacteristic, marten habitat (Eriksson et al., 2019). If this is a potential
mechanism, an example includes the abundance of huckleberries that have been attributed
to increased reproduction and population growth for grizzly bears (Ursus arctos) over a
32-year investigation (McLellan, 2015).

Species’ distributions may also be strongly influenced by less-apparent factors such
as interspecific interactions with predators or competitors (Siren, 2020). As an example,
spotted owls (Strix occidentalis) closely align with old-growth forest conditions which
have been characterized with relatively high accuracy (Davis et al., 2016), yet spotted owl
population viability is dramatically decreased with presence of barred owls (S. varia)
due to interspecific competition and predation (Wiens, Anthony & Forsman, 2014; Diller
et al., 2016; Dugger et al., 2016). Although few examples exist for carnivores, a recent
evaluation suggests that while lynx (Lynx lynx) distributions are closely-tied to deep snow,
the influence of reducing bobcat (L. rufus) competition was stronger than the influence
of snow itself (Siren, 2020). A directed research effort that integrates the influence of
vegetative and climatic associations with other factors such as prey availability, predation
pressure, and competition would provide better insight on the drivers of Humboldt marten
occurrence and a more holistic determination of marten distribution.
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Our results predict some of the components that comprise suitable marten habitat
but describing optimal habitat would be best informed by measures of survival and
fecundity. Future endeavors could develop site-specific models, ideally using telemetry
data that are biologically linked with fitness (e.g., long-lived adult female rest and den
structures) to address predicted habitat. We lack enough information regarding where
Humboldt martens resided historically to compare with our contemporary distribution
(Loehle, 2020), and we are generally ignorant of population densities, causal associations
of population declines, and population limitations. Such an understanding is essential
to describe expectations of future range (Brown, Stevens & Kaufman, 1996). Finally, the
lack of consistency among Humboldt marten studies is suggestive of imperfect knowledge
of what components constitute Humboldt marten habitat. To avoid differing views for
rare species conservation (e.g., Gutiérrez, 2020; Jones et al., 2020), amassing information
collaboratively with a goal of prospective meta-analyses and study-level replication will be
essential (Facka & Moriarty, 2017; Nichols, Kendall & Boomer, 2019).

CONCLUSIONS
Based on our modeling and an evaluation of available evidence, we conclude that the
most consistent range-wide characteristic with Humboldt marten distributions are forest
associations with extensive dense shrub cover or complex understory vegetation, whichmay
be indicative of increased food availability or predation escape cover. An understanding
of the strength of these interactions and factors that limit populations is needed to make
informed conservation decisions. An adaptive management framework with integrated
research components may allow for near-term conservation decision making.
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Data are available in the Supplemental Files and at Dryad: https://datadryad.org/stash/
dataset/doi:10.5061/dryad.qnk98sfgt.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.11670#supplemental-information.
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