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Abstract: Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to 
recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family 
comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular 
barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays 
a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, 
including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer 
(CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence 
and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression 
in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied 
as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional 
phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, 
with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed. 
Keywords: claudins, hepatocellular carcinoma, cholangiocarcinoma, pancreatic cancer, targeted therapy

Introduction
Hepatobiliary pancreas-related diseases are becoming more common in modern societies and the associated tumors are 
highly malignant. Most patients are at an advanced stage when diagnosed, and the 5-year survival rate is low, which 
seriously threatens quality of life.1 The main causes of death in patients with hepatobiliary and pancreatic tumors are 
recurrence and metastasis, and epithelial-mesenchymal transition (EMT) is crucial for the migration and metastasis of 
cancer cells.2 Specifically, EMT is a process of transformation of epithelial cells into mesenchymal cells, in which 
epithelial cells lose apical cell polarity, lose adhesion, and acquire the mesenchymal cell phenotype, thus gaining cell 
migration abilities, which promotes metastasis and drug resistance.3 This process is largely dependent on the breakdown 
and loss of tight junctions (TJs) between cells.

TJs are intercellular connection device that provides barrier and/or channel functions in the paracellular cleft and facilitates 
the maintenance of cell polarity.4–7 TJs are composed of four transmembrane proteins, including occludin, tricellulin, 
marvelD3 and claudins, which belong to TJ-associated marvel protein (TAMP) family.8–12 Claudins are the main components 
of tight junctions and function in mediating cell adhesion and paracellular permeability.13–17 The claudin family contains at 
least 27 transmembrane proteins,16,18 and the molecular weight of human claudin proteins range from 21–34 kDa.17 
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Structurally, claudins are composed of four transmembrane segments, two extracellular segments (ECS) and one intracellular 
loop (Figure 1).19 Among these structures, the ECS of claudins plays an important role in determining claudin function.20,21

Claudin family members not only form pores to regulate extracellular fluid and ions in epithelial cells, but also 
maintain epithelial homeostasis. Dysregulation of claudin proteins has been identified as an important mechanism for the 
loss of cell adhesion and metastasis, which leads to structural destruction and impaired function of epithelial and 
endothelial cells. Dysregulation of claudin expression has been shown to be associated with a variety of human diseases, 
among which it is most common in tumors, and changes in claudin expression are associated with specific pathogenic 
events (Table 1). In terms of carcinogenesis, different dysregulated claudin isoforms have different effects on different 
target cells (Table 2).22–27 In recent years, claudin-18.2 has been increasingly used as a therapeutic target in solid tumors. 
This article summarizes the role of claudin family of proteins in hepatobiliary and pancreatic tumors and their potential 
as therapeutic targets.

Claudin-1
Claudin-1 Benign Disease
Claudin-1 (CLDN1) is the first member of the claudin family and has a molecular weight of 22 kDa.14 It is crucial for 
epithelial barrier function68 and plays a role in inflammation and tumor progression in various organs.

Claudin-1 is closely associated with hepatitis C and liver cancers and plays a role in the entry of the HCV virus into 
hepatocytes.69,70 Specifically, the complex formed by claudin-1 and CD81 plays an important role in regulating the entry 
of HCV virus into cells.71–73 Antibodies targeting claudin-1 can neutralize HCV infectivity by reducing E2 binding to the 
cell surface and disrupting the CD81-claudin-1 interaction.72 These proteins provide a new targets for the treatment of 

Figure 1 Structure of Claudin protein. (By Figdraw).
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Table 1 Claudins in Non-Neoplastic Disease

Non-Neoplastic 
Disease

CLDN 
Subtype

Tissue 
Expression

Supplementary Statement

Demyelinating peripheral 

neuropathies

CLDN1 Upregulation28 The expression of claudin-1 can affect the demyelination process by altering the 

permeability of the blood nerve barrier.28

Xerostomia CLDN10 Downregulation29 Assembly of claudin-10 is necessary for salivary secretion, and downregulation of 
claudin-10 induces hyposecretion.29

Multiple sclerosis (MS) CLDN11 Upregulation30 The expression of Claudin-11 gene in white blood cells was significantly higher 

than that in normal group.30

Actinic keratosis (AK) CLDN1 Downregulation31 Claudin-1 may be a useful marker of pathological severity of AK.31

Psoriatic CLDN7 Upregulation32 Claudin-7 expression is regulated by HMG-CoA reductase in the epidermis.32

Atopic Dermatitis CLDN3 Downregulation33 Loss of Claudin-3 leads to sweat leakage from sweat glands.33

Asthma CLDN18.1 Downregulation34 Claudin-18 defects lead to increased sensitization of temperament antigen and 

airway hyperreactivity.34

Functional Dyspepsia (FD) CLDN12 Downregulation35 Regulatory miRNA up-regulate CLDN12, which leads to increased duodenal 

permeability in FD.35

Diabetes CLDN2 Upregulation36 CLDN2 can be used as a novel biomarker for prediabetes.36

Testicular intraepithelial 

neoplasia (TIN)

CLDN11 Upregulation37 The destruction of blood-testis barrier (BTB) is related to the dysfunction of 

claudin-11.37

Table 2 Claudins in Neoplastic Disease

Neoplastic Disease CLDN 
Subtype

Tissue 
Expression

Supplementary Statement

Gliomas CLDN1 Downregulation38 Down-regulated expression is potentially associated with the progression of glioblastoma 
multiforme (GBM)38

CLDN3 Upregulation39 Promote the growth and metastasis of GBM and mediate the tumorigenic effect of TGF-β.39

CLDN4 Upregulation40 CLDN4 can enhance the malignancy of glioma cells through the NNAT/Wnt signaling pathway.40

CLDN5 Downregulation38 Down-regulated expression is potentially associated with the progression of GBM.38

Thyroid carcinoma CLDN1 Upregulation41,42 Claudin-1 may help distinguish follicular adenoma from follicular thyroid carcinoma and typical 
variant thyroid-form carcinoma.41

CLDN6 Upregulation43

CLDN10 Upregulation44 CLDN10 is a functional gene that promotes tumorigenesis in papillary thyroid cancer (PTC), 
acting as an oncogene in PTC.44

Lung adenocarcinoma CLDN1 Downregulation45 CLDN1 is an inhibitor of cancer invasion and metastasis.45

CLDN2 Upregulation46 Enhances the proliferation of lung adenocarcinoma cells46

CLDN3 Upregulation47 CLDN3 overexpression promotes the malignant potential of lung adenocarcinoma, which may be 
regulated by EGF-activated MEK/ERK and PI3K-Akt pathways.47

Pancreatic cancer (PC) CLDN1 Downregulation48 Claudin-1 acts as a tumor suppressor in PC.48

CLDN4 Upregulation49 High expression of claudin 1 was significantly associated with the aggressive phenotype of 
pancreatic ductal mucinous tumors49

CLDN5 Upregulation50 Association between high claudin 5 expression and poor survival.50

CLDN7 Upregulation51 There was a statistically significant relationship between reduced Claudin 7 expression and 
reduced survival.51

CLDN18.2 Upregulation52 High CLDN18.2 expression was associated with longer overall survival.53

CLDN23 Claudin-23 is involved in the regulation of pancreatic cancer cell dissociation through changes in 
gene expression and intracellular localization.54

Prostate cancer CLDN1 Upregulation55 Elevated Claudin-1 expression levels predict a good prognosis for ERG-positive cancers.55

CLDN3 Downregulation56 Loss of Claudin-3 expression is a prognostic marker for castration-resistant prostate cancer 
(CRPC).56

CLDN4 Upregulation57 High claudin-4 expression was associated with high tumor grade, lymphocyte invasion, positive 
lymph node metastasis, and high mean peritumoral lymphatic vessel density.57

CLDN8 Upregulation58 CLDN8 promotes the proliferation and migration of prostate cancer cells.58

(Continued)
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HCV infection. Compared with common benign hepatobiliary diseases, pancreatic inflammation and other benign 
diseases have little correlation with claudin-1.

Claudin-1 Malignant Disease
Claudin-1 Functional Phenotype
Claudin-1 is involved in cancer invasion and metastasis and closely relates to hepatobiliary and pancreatic tumors. 
Furthermore, Claudin-1 is involved in the occurrence and metastasis of HCC,74–76 and claudin-1 also regulates 
cholangiocarcinoma (CCA) cell invasiveness.77 Simultaneously, the claudin-1 expression level correlates with the 
prognosis of patients with gallbladder cancer.78,79 Claudin-1 acts as a tumor suppressor in PC in pancreatic cancer.48 

Mechanistically, claudin-1 affects tumor progression by regulating epithelial mesenchymal transition (EMT). Claudin-1 
overexpression induces EMT by activating the c-Abl/ERK signaling pathway to regulate the expression of the transcrip-
tion factors Slug and Zeb1, thereby promoting the invasiveness of HCC cells.80 miR-193b expression inhibits pancreatic 
ductal adenocarcinoma (PDAC) cell proliferation, migration, invasion and EMT by inhibiting the eEF2K/MAPK-ERK 
oncogenic axis while upregulating the expression of E-cadherin and claudin-1.81 Downregulation of 5-HT1B and 
5-HT1D receptors,82 synthetic 8-hydroxydeoxyguanosine (synthetic 8-OHdG),83 or knockdown of LONP184 can inhibit 
the EMT of pancreatic cancer cells by upregulating claudin-1.

The Claudin-1 Molecular Pathway
Claudin-1 regulates multiple pathways and is involved in cancer progression. The c-Abl-protein kinase Cδ (PKCδ) signaling 
pathway and the c-Abl/Raf/Ras/ERK signaling pathway function with claudin-1 to enhance HCC invasion.80,85,86 

Furthermore, claudin-1 participates in the cell dissociation process of PC cells by activating mitogen-activated protein kinase 
2 (MEK2).87 The expression of claudin-1 is regulated by multiple factors. As its upstream molecule, hgH inhibits claudin-1 
expression and promotes the stem cell properties of HCC.88 Interestingly, TMPRSS4 promotes tumor sphere formation ability 
and cancer stem cell (CSC) traits by upregulating claudin-1.89 In addition, mitochondrial defects, heat shock factor 1(HSF1), 
lactate dehydrogenase B(LDHB), and miR-29a affect the role of claudin-1 in mediating HCC invasiveness.90–92 As a key 
molecule, claudin-1 is involved in regulating CCA invasiveness by multiple molecules and pathways, such as the P38 MAPK 
signaling pathway, polypeptide N-acetylgalactosaminotransferase-5 (GALNT5), etc.77,93 Furthermore, claudin-1 expression 
in human pancreatic cancer cells is induced by tumor necrosis factor–α (TNF-α).94 In pancreatic cancer tissue, ZIP495 as well 
as the distribution-deficient protein Par3-Tiam1 downregulate the tight junction marker proteins ZO-1 and claudin-1, thereby 
promoting pancreatic cancer invasion and metastasis.96 PKCα downregulates claudin-1 through Snail and mitogen-activated 
protein kinase/ERK-dependent pathways.97

Table 2 (Continued). 

Neoplastic Disease CLDN 
Subtype

Tissue 
Expression

Supplementary Statement

Renal cell carcinoma (RCC) CLDN2 Downregulation59 CLDN2 inhibits RCC progression by inhibiting YAP activation.59

CLDN7 Upregulation60 CLDN7 can be used as a useful diagnostic marker for the diagnosis of chromophobe RCC and 
eosinophil cytoma.60

CLDN8 Downregulation61 Potential tumor suppressor.61

CLDN10 Downregulation62,63 Overexpression of Claudin-10 inhibits the growth and metastasis of human clear cell renal cell 
carcinoma by regulating ATP5O and causing mitochondrial dysfunction.62

Urothelial carcinoma (UC) CLDN1 Upregulation64 Decreased Claudin-1 and Claudin-4 expression indicates the progression of urothelial 
carcinoma.64

CLDN4 Upregulation64 Decreased Claudin-1 and Claudin-4 expression indicates the progression of urothelial 
carcinoma.64

CLDN11 Downregulation65 CLDN11 reduce the aggressiveness of bladder cancer cells.65

Osteosarcoma (OS) CLDN10 Upregulation66 CLDN10 promotes malignant phenotype of osteosarcoma cells through JAK1/Stat1 signaling.66

CLDN12 Upregulation67 CLDN12 promotes cell proliferation and migration through the PI3K/Akt signaling pathway in 
osteosarcoma cells.67
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Claudin-1-Targeted Applications
Recent research has found that claudin-1 antibodies may provide therapeutic opportunities for HCC.80 Among which, 
targeting claudin-1 can treat HCC by affecting tumor stemness, metabolism, oncogenic signaling and disrupting the 
tumor immune microenvironment.80 Currently, Alentis Therapeutics had developed two Claudin-1 monoclonal antibo-
dies, ALE-F02 and ALE-C04.

Claudin-4
Claudin-4 Benign Disease
Claudin-4 (CLDN4) is composed of 209 amino acids, with four transmembrane segments, and is an integral component 
of tight junctions. Few studies have investigated the role of claudin-4 in benign hepatobiliary and pancreatic diseases. 
However, a few studies have found that the core genes CDH1 and claudin-4, which may be regulated by FOXP3 or 
USF2, play important roles in acute pancreatitis (AP).98

Claudin-4 Malignant Disease
Claudin-4 Functional Phenotype
Claudin-4 is differentially expressed in various cancers including HCC and CCA tissues, and can be used as a marker to 
distinguish HCC from CCA.99,100 A study conducted multiple linear regression analysis of standardized gene expression data 
for differential expression between CCA and HCC, and used claudin-4 to develop a “CCA diagnostic equation”, which was 
used to improve the accuracy of CCA diagnosis.101 Compared with hepatobiliary tumors, there are relatively more studies on 
claudin-4 in pancreatic tumors. Claudin-4 is closely associated with PC occurrence and progression, and different types of 
pancreatic cancer have different claudin-4 expression levels.102 Claudin-4 can be used to differentiate pancreatic ductal 
adenocarcinoma (PDAC) from benign epithelium (BE) surrounding tumor tissue.103 Furthermore, the expression of claudin-4 
is associated with pancreatic tumor progression, especially with unique pathways of intestinal differentiation.49,104 Claudin-4 
can be used as a prognostic marker for liver cancer and pancreatic ductal adenocarcinoma.105

The Claudin-4 Molecular Pathway
Claudin-4, a downstream molecule of zinc finger protein 703 (ZNF703), mediates EMT of HCC.106 In pancreatic cancer 
tissue, claudin-4, as a downstream molecule, is regulated by a variety of factors and pathways in pancreatic cancer 
tissues. Claudin-4 is a target of the transforming growth factor beta and Ras/Raf/extracellular signal-regulated kinase 
pathways.107 Inhibiting MEK-ERK signaling in PC cells has been found to increase the expression of E-cadherin and 
claudin-4, thereby inhibiting the invasive activity of pancreatic cancer cells.108 During EMT in human PC cells, PKCα 
activation downregulates TJ barrier function and the clostridium perfringens enterotoxin (CPE) receptor by modifying 
claudin-1 and claudin-4.109 The transcription factors DEC1 and BACH1 regulate claudin-4 expression in PC, thereby 
affecting EMT.110,111

Claudin-4 Targeted Application
Currently, many studies have evaluated clinical applications of claudin-4; however, the scope of its application is limited 
to the pancreas. Residues inside and outside the ECS2 structural domain of the claudin-4 protein are used for subtype- 
specific targeting by the c-terminal fragment of CPE (C-CPE),112–116 thereby achieving the effects of targeted claudin-4 
radiography and cancer therapy. As a target of radiographic imaging, claudin-4 can detect pancreatic cancer and 
precancerous lesions, which contributes to the early detection of pancreatic cancer.107,117–121 In addition, claudin-4 is 
also an effective target for cancer therapy.122 Targeting claudin-4 may improve the effectiveness and safety of anticancer 
drug treatments for pancreatic ductal carcinoma (PDC).123 Interestingly, the effect of CPE targeting claudin-4 in normal 
HPDE cells differs from that in PC, which may relate to the different localization of claudin-4 in normal HPDE cells and 
PC cells.124 Based on the spatial structure of claudin-4, a recent study developed a synthetic antibody fragment (sFab) 
that binds to human claudin-4 —— COP-1.125 Taken together, claudin-4 may serve as a target for radiological imaging 
and pancreatic cancer therapy.
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Claudin-7
Claudin-7 Benign Disease
Claudin-7 (CLDN7) consists of 211 amino acid residues and is mainly distributed in the intestine, stomach, lungs, 
bladder, skin and kidneys.126 The expression levels of claudin-7 vary in tumor tissues, and claudin-7 expression in 
malignant tumor tissues may be relate to tumor grade and prognosis.127–130 Current research on benign hepatobiliary and 
pancreatic diseases has not found a correlation between claudin-7 and these diseases.

Claudin-7 Malignant Disease
Claudin-7 Functional Phenotype
Compared with normal liver tissue, the expression of claudin-1 and claudin-7 is increased in cirrhosis and hepatocellular 
carcinoma.76,131 The downregulated or abnormal expression of claudin-7 is associated with liver metastasis of malignant 
tumors.132 A prior survival analysis showed that patients with high claudin-7 expression in HCC tissues had better 
prognosis than those without.131 Furthermore, other studies have reported that downregulation of claudin-7 is a positive 
prognostic marker in HCC.105 Similar to claudin-4, claudin-7 may be a useful marker for distinguishing HCC from CCA 
in humans,100 and this conclusion has also been verified in canine specimen studies.133 Notably, the expression of 
claudin-7 has helped distinguish different types of pancreatic tumors,134 and claudin-7 expression has been found to 
differ in pancreatic adenocarcinoma, with different degrees of differentiation.135 In PC cells, claudin-7 knockdown 
induces significant proliferation inhibition.136 Furthermore, studies on tumors in PC have found that the TJ protein 
claudin-7 binds to the tumor marker EpCAM to inhibit EpCAM-mediated cell-cell adhesion and promote migration, 
proliferation, apoptosis resistance and tumorigenicity.137–139 Claudin-7-dependent tumor exosomes promote non- 
metastatic tumor cells to restore cancer-initiating cell (CIC) activity.140 It was further proposed that LDN7 can serve 
as a CIC biomarker,139 however, the prerequisites for claudin-7 as a CIC marker involve glycolipid-rich membrane 
microdomain (GEM) localization and palmitoylation. In addition, claudin-7 not only affects the assembly of tumor 
exosomes, but palmitoylated claudin-7 also helps transmit information through exosomes.141

Other Claudins
Other claudin molecules associated with hepatobiliary and pancreatic diseases include claudin-2, 3, 5, 6, 9, 10, 11, 12, 14, 
17, and 23 isoforms. Among them, barrier-forming claudin-3, −5, −6, −9, −11, and-14 mainly form tightly closed 
paracellular barriers, pore-forming claudin −2, −10a/b, and-17 can selectively pass ions and solutes, while the barrier or 
channel-forming functions of claudins −12, −23 has not yet been determined.17,142–144

Benign Disease
Plasma claudin-3 is a marker of intestinal permeability(IP) in patients with liver disease.145 In the liver, claudin-3 is vital 
to maintain metabolic homeostasis, retention of bile acids, and optimal hepatocyte proliferation during liver 
regeneration.146 claudin-2 and claudin-3 relate to cholesterol stones, and in mouse experiments, knockdown of clau-
din-2 and claudin-3 was found to increase susceptibility to cholesterol gallstone disease.147,148 As mentioned previously, 
claudin-1 plays a role in HCV entry, and claudin-6 and claudin-9 can also mediate HCV entry into target cells.149

Malignant Disease
Functional Phenotype
Multiple claudin isoforms are involved in the occurrence, invasion, and metastasis of hepatobiliary and pancreatic 
tumors, and the expression level of claudin-5 relates to HCC prognosis.105,150 Fibrolamellar liver cancer is a subtype of 
HCC, and claudin-5 is specifically expressed in fibrolamellar liver cancer.151 Claudin-6 is upregulated in HCC tissues and 
promotes HCC progression.152,153 Claudin-9154 and claudin-17155 are related to the aggressiveness of hepatocytes. 
Claudin-10 is highly expressed in HCC154 and is functionally involved in HCC invasion.155 Claudin-10 is a molecular 
marker for poor prognosis after liver resection in patients with HCC.154,156 It is worth noting that claudin-1, claudin-2 
and claudin-4 are up-regulated in an HCC cell line with claudin-10 overexpression, which indicates that claudin-10 

https://doi.org/10.2147/JHC.S483861                                                                                                                                                                                                                                   

DovePress                                                                                                                                           

Journal of Hepatocellular Carcinoma 2024:11 1806

Du et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


expression in cancer cells may affect the expression levels of its family members.155 Claudin-14 is a direct target of 
EZH2-mediated H3K27ME3,157 and in HCC tissues, EZH2-H3K27ME3 overexpression enhances HCC migration and 
invasion by downregulating the claudin-14 expression.157 Low expression of claudin-14 is an independent prognostic 
factor for decreased survival rate of patients with HCC.157 Furthermore, reduced claudin-3158 and claudin-14157 

expression leads to an increase in Wnt/β-catenin signaling, which is a critical driver of EMT.159 The expression of 
claudin-3 differs in HCC and CCA,158,160 and claudin-3 in bile-derived external vesicles (EVs) is a useful CCA 
biomarker.160 In pancreatic diseases, claudin-2 provides a useful molecular marker for precancerous PDAC lesions.161 

Furthermore, claudin-3 is highly upregulated in PC,115 and claudin-3 upregulation promotes PC cell migration and 
invasion.162 Similar to claudin-4 expression, different types of PC have different expression levels of claudin-3, among 
which claudin-3 is highly expressed in pancreatic endocrine tumors.163 Furthermore, claudin-3 expression closely related 
to PC differentiation.164 Claudin-5 is present in endothelial cells of normal pancreatic tissue,50 and claudin-5 can be used 
to distinguish different types of PC.134,165 An immunohistochemical study in dogs found that loss of claudin-5 expression 
may contribute to carcinogenesis in exocrine pancreatic cells.166 Furthermore, some studies have shown that increased 
claudin-5 expression is associated with poor prognosis of pancreatic adenocarcinoma, which may relate to increased 
locomotion and A more aggressive carcinomas spread.50

Molecular Pathway
In liver cancer tissues, claudin-3 can significantly inhibit metastasis by inhibiting the Wnt/β-catenin-EMT axis in HCC 
cells.158 Claudin-6 silencing significantly inhibits the EGFR/AKT/mTOR signaling pathway in HCC, thereby inhibiting 
cell proliferation, migration, and invasion.152 Claudin-9167 and claudin-17168 affect the Stat3 signaling pathway through 
Tyk2, which ultimately enhances the metastatic ability of HCC. Claudin-11, a downstream molecule of miR-99b, 
mediates the inhibitory effect of miR-99b knockdown on HCC cell metastasis in vitro (Figure 2).169 miR-324-3p targets 
and downregulates claudin-3 to reduce PC cell migration, invasion, tumor formation, microvessel density, and lymph 
node metastasis.162 In pancreatic adenocarcinoma (PAAD) tissue, claudin-12 serves as a downstream molecule of 
LINC00857, which is regulated by the transcription factor ZNF460. The upregulation of claudin-12 expression can 
facilitate the progression of PAAD.170 As a TJ proteins, claudin-23 is involved in the regulation of PC cell dissociation 
through changes in gene expression and intracellular localization, thus affecting PC progression. Its expression is 
possibly correlated with the activation of the MEK signaling pathway during PC cell dissociation.54

Targeted Application
A human-rat chimeric IgG1 form of the monoclonal antibody (xi-1A2) may serve as a leading candidate rat monoclonal 
antibody (mAb) for safe claudin-2-targeted cancer therapy.171 With the in-depth research on claudin-3 and hepatobiliary 
and pancreatic diseases, it was found that Hizikia fusiforme (EHF) can inhibit the main components of TJ such as 
claudin-1, claudin-3 and claudin-4, thereby tightening TJs to inhibit cancer cell invasion.172 In addition, the receptor for 
Clostridium perfringens enterotoxin (CPE) happens to be the same as claudin-3 and claudin-4, which provides a natural 
material for the targeted application of claudin-3.173 Abion developed ABN501, the world’s first monoclonal antibody 
targeting Claudin-3, for the treatment of breast and ovarian cancer. Notably, a Phase I/II first human clinical trial has been 
initiated for claudin-6, to evaluate the safety and initial efficacy of human claudin-6 RNA-encoded T cell binding 
bisspecific antibody BNT142 RNA-LNP in patients with claudin-6-positive advanced solid tumors (NCT05262530).174

Claudin-18.2
Claudin-18 (CLDN18) is divided into two subtypes, of which claudin-18.1 is highly expressed in lung epithelial type 
I cells, while claudin-18.2 is specifically expressed in gastric tissue.175,176 In normal gastric tissue, claudin-18.2 is buried 
in the tight junctions of gastric mucosal cells.175,177 Due to malignant transformation and loss of cell polarity, claudin- 
18.2 is exposed on the surface of tumor cells, making it accessible to antibodies.178
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Claudin-18.2 and Gastric Cancer
Functional Phenotype
Prior studies have found that claudin-18.2 protein levels are down-regulated in gastric cancer cells179–181 and increased in 
gastric adenocarcinomas.182 Notably, claudin-18 is generally maintained in peritoneally disseminated (PD) gastric 
cancer,183 where claudin-18.2 positivity is associated with more frequent peritoneal metastasis.184 Experiments in mice 
found that deletion of claudin-18.2 promoted the progression of gastric cancer.177,185 The reason why claudin-18.2 
deletion promotes gastric cancer progression may not only relate to TJ dysfunction, but also inflammation mediated by 
changes in paracellular permeability.186,187 Claudin-18.2 plays a key role in mediating the adhesion between gastric 
cancer cells and cancer-associated fibroblasts (CAFs), thereby promoting gastric cancer progression and embolization.188 

In addition, the claudin-18-ARHGAP fusion gene was found in gastric cancer tissues, which may relate to the aggressive 
characteristics of gastric cancer.189,190 The fusion gene can cause RHOA activation in diffuse gastric cancer (DGC) and 
activation of FAK and YAP signaling.191 In gastric cancer tissues, the positive expression of claudin-18.2 closely relates 
to the tumor immune microenvironment.181,190,192

Figure 2 Regulatory mechanisms of HCC migration and invasion of different CLDN subtypes. (By Figdraw). 
Abbreviations: HCC, hepatocellular carcinoma; EMT, epithelial-mesenchymal transition; LDHB, lactate dehydrogenase B; HSF 1, Heat Shock Factor 1; ZNF703, zinc finger 
protein 703; EZH2, enhancer of zeste homolog 2; PKCα, protein kinase C-α; ERK, extracellular signal-regulated kinase; Zeb1, zinc finger E-box binding homeobox 1; EGFR, 
epidermal growth factor receptor; AKT, protein kinase B; mTOR, mechanistic target of rapamycin; Tyk2, tyrosine kinase 2; Stat3, signal transducer and activator of 
transcription 3; MT1-MMP, maturation of membrane type 1-matrix metalloproteinase; MMP2, matrix metalloproteinase 2.
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Molecular Pathway
The claudin-18 protein is divided into two isoforms. As a downstream target gene, claudin-18 is regulated by the T/EBP/ 
NKX2.1 homology domain transcription factor, thereby selectively splicing and encoding the gastric-specific isoform 
claudin-18.2.175 Regarding the mechanism by which claudin-18.2 deletion promotes the occurrence and progression of 
gastric cancer, prior research has found that the claudin-18.2 gene serves as a direct downstream target of miR-1303 and 
mediates miR-1303 regulation during on the proliferation and invasion of gastric cancer cells.179 At the same time, 
claudin-18.2 protein regulates multiple signaling pathways, thereby affecting the occurrence and progression of gastric 
cancer, such as p53 and STAT signaling,177 Notch and Wnt signaling pathways,186 YAP/TAZ signaling,193 etc.

Targeted Application
In view of the specific expression characteristics of claudin-18.2 in gastric cancer tissues, molecular imaging194 and 
claudin-18.2-targeted therapy have become new options for the diagnosis and treatment of gastric cancer.195–199 

According to the search results of the ClinicalTrials.gov database, there are currently more than one hundred clinical 
trials targeting claudin-18.2. Among these, Zolbetuximab is currently the most widely studied and recognized claudin- 
18.2-targeted therapy.200,201 Zolbetuximab targets binding to claudin-18.2 on the surface of tumor cells. Under normal 
conditions, cells are tightly connected structures, and Zolbetuximab is difficult to bind to claudin-18.2; in carcinoma, 
tumor cells overexpress claudin-18.2 and claudin-18.2 is exposed to the outer side of the basement membrane, which 
makes it easier for Zolbetuximab to bind to claudin-18.2 and play a role (Figure 3).202 Zolbetuximab combined with the 
anti-programmed cell death 1 antibody inhibited tumor growth more effectively than either drug alone.203

Furthermore, zolbetuximab combined with CAPOX has been tested as a potential first-line therapy 
(NCT03653507).204 Several early clinical trials presented at the 2024 American Society of Clinical Oncology (ASCO) 
Annual Meeting explored other targeted approaches to claudin-18.2 in difficult-to-treat advanced solid tumors, including 
claudin-18.2-targeting antibody-drug conjugate LM-302 and IBI343, bispecific antibody IBI38 against claudin-18.2/ 
CD3, and chimeric antigen receptor T-cell therapy satricabtagene autoleucel.205 Besides IBI38, bispecific antibodies 
targeting both HER2 and claudin-18.2 can enhance immune effector function to kill gastric cancer cells that express both 
antigens.206 A novel tri-specific T-cell engager DR303 has recently emerged for claudin-18.2-positive cancer immu-
notherapy, which can bind to claudin-18.2, human serum albumin (HSA), and CD3, showing significant tumor suppres-
sion effects.207 Satricabtagene autoleucel (satri-cel)/CT041, a self-engineered chimeric antigen receptor (CAR) T cell 
targeting claudin-18.2, has shown potential for treatment with manageable safety in patients with advanced gastric or 
gastrointestinal stromal tumors expressing claudin-18.2 (NCT03874897).208 The latest research has found that [177Lu] 
Lu-labeled anti-claudin-18.2 antibody [177Lu]Lu-TST001 shows the potential for radio immunotherapy in a mouse 
heterologous transplantation model of gastric cancer, which can serve as a potential new targeted therapeutic drug.209 

Claudin-18.2 targeted therapy has achieved better results in gastric cancer, although few studies have investigated such 
therapies in patients with hepatobiliary and pancreatic diseases.

Claudin-18.2 and Hepatobiliary and Pancreatic Diseases
At present, no link between claudin-18 and benign hepatobiliary and pancreatic diseases has been identified; however, 
claudin-18 affects their occurrence and development. Compared to gastric cancer, claudin-18.2 has been less studied in 
hepatobiliary and pancreatic diseases. The expression of claudin-18.2 in normal tissues is limited to gastric 
epithelium,210,211 but claudin-18.2 is also expressed in a variety of gastrointestinal tumors, including gastric cancer, 
pancreatic cancer, cholangiocarcinoma, etc.212 Claudin-18 is upregulated in tumor tissues of patients with HCC,213 and in 
pancreatic cancer, claudin-18 is a marker of early oncogenic processes214 and is commonly expressed in precursor PDAC 
lesions.161,214,215 In addition, claudin-18.2 is highly expressed in PDAC,52,210,211,216,217 and most PDAC specimens show 
high claudin-18.2 expression, especially well-differentiated PDAC.217 Membrane-bound claudin-18 is a useful marker 
for the diagnosis of PC,135 and in pancreatic tissue, the expression of claudin-18 and annexin A8 can be used to 
differentiate between benign reactive glands and pancreatic invasive ductal adenocarcinoma.218 Claudin-18.2 can also be 
used to distinguish different subtypes of PDAC,219 as it is specifically expressed in the intestinal-type component of 
intraductal papillary mucinous carcinoma(IPMC).220 The rate of claudin-18.2 positivity is high in pancreatic neoplasms, 
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and it is worth noting that its expression is not limited to the primary tumor but is also maintained in metastases.52 

Therefore, claudin-18 represents a marker for identifying the stomach and pancreatobiliary tract as the primary sites of 
metastatic adenocarcinoma.221,222 Furthermore, claudin-18 can be used to improve the accuracy of diagnosis of 
pancreatobiliary malignancies.223 The expression of claudin-18.2 correlates with various clinicopathological character-
istics, such as lymph node metastasis, distant metastasis, nerve invasion, stage, and survival rate of patients with 
PDAC.216,217 Among patients, claudin-18 expression positively associates with more differentiated histology and better 
prognosis.53,217,224 This may relate to the expression of claudin-18 on cancer cells, which promotes the invasion of PC 
T lymphocytes and anti-tumor immunity.224 Furthermore, activation of the PKC pathway significantly induces the 
expression of claudin-18 in normal HPDE cells and PC cells.214,225,226

The expression characteristics of claudin-18.2 make it a new and attractive target for antibody therapy in epithelial 
tumors (Table 3).178 Claudin-18.2 also provides a target for the treatment of gastric cancer and PC.211 The monoclonal 
antibody zolbetuximab, which targets claudin-18.2, is used to treat pancreatic ductal adenocarcinoma.210,216,227 For the 
targeted treatment of human claudin-18.2-positive cancers, prior studies have developed a recombinant antibody hu7v3- 
Fc based on a humanized VHH. In a mouse xenograft model, the anti-tumor efficacy of hu7v3-Fc was significantly 
higher than that of the zolbetuximab monoclonal antibody.228 In recent years, claudin-18.2-targeted chimeric antigen 
receptor (CAR) T cell therapy (CAR-T) has become a hot topic in the treatment of gastric cancer and PC.229,230 In 
addition, targeting claudin-18.2 can be used as a computerized imaging tracer to assist in disease diagnosis.231

Figure 3 The principle of Zolbetuximab targeting CLDN18.2+ tumor cells. (By Figdraw).
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Table 3 Clinical Trials Targeting Claudin-18.2 for the Treatment of Solid Tumors. (Date Source: Classical.clinicaltrials.gov)

study NCT 
Number

Status Study Results Interventions Phases Enrollment Study Type

1 NCT06038396 Recruiting No Results Available Drug: RC118 
Drug: Toripalimab

Phase 1/2 64 Interventional

2 NCT05367635 Recruiting No Results Available Drug: SKB315 for injection Phase 1 206 Interventional

3 NCT05980416 Recruiting No Results Available Drug: EO-3021 Phase 1 120 Interventional
4 NCT06219941 Recruiting No Results Available Drug: AZD0901 

Drug: 5-Fluorouracil 

Drug: Leucovorin 
Drug: l-leucovorin 

Drug: Irinotecan 

Drug: Nanoliposomal Irinotecan 
Drug: Gemcitabine

Phase 2 123 Interventional

5 NCT05161390 Recruiting No Results Available Drug:LM-302 Injection Phase 1/2 206 Interventional

6 NCT05009966 Recruiting No Results Available Drug: SYSA1801 for injection Phase 1 272 Interventional
7 NCT05001516 Active, not 

recruiting

No Results Available Drug: LM-302 Phase 1 42 Interventional

8 NCT04805307 Recruiting No Results Available Drug: CMG901 Phase 1 162 Interventional
9 NCT05156866 Recruiting No Results Available Drug: TORL-2-307-ADC Phase 1 70 Interventional

10 NCT04914117 Completed No Results Available Drug: RC118 for injection Phase 1 7 Interventional

11 NCT05205850 Recruiting No Results Available Drug: RC118-ADC Phase 1/2 135 Interventional
12 NCT05867563 Recruiting No Results Available Drug: TQB2103 for injection Phase 1 71 Interventional

13 NCT05065710 Recruiting No Results Available Drug: ZL-1211 Phase 1/2 162 Interventional

14 NCT05837299 Recruiting No Results Available Drug: IMC008 Phase 1 18 Interventional
15 NCT03874897 Recruiting No Results Available Drug: CAR-CLDN18.2 T-Cells 

Drug: PD-1 Monoclonal Antibody 

Drug: Chemotherapy

Phase 1 123 Interventional

16 NCT05583201 Recruiting No Results Available Biological: KD-496 Early 

Phase 1

18 Interventional

17 NCT05472857 Recruiting No Results Available Biological: Claudin 18.2 CAR-T Phase 1 30 Interventional
18 NCT05199519 Completed No Results Available Drug: IBI345 Phase 1 7 Interventional

19 NCT05393986 Recruiting No Results Available Drug: CT048 Autologous Injection (CT048) Phase 1 63 Interventional

20 NCT05620732 Recruiting No Results Available Biological: Claudin 18.2 CAR-T cells Not 
Applicable

20 Interventional

21 NCT05981235 Recruiting No Results Available Biological: AZD6422 CLDN18.2 CAR-T product Phase 1 96 Interventional

22 NCT05952375 Recruiting No Results Available Drug: Chimeric antigen receptor T cell preparation targeting Claudin 18.2 Not 
Applicable

9 Interventional

23 NCT04581473 Recruiting No Results Available Drug: CT041 autologous CAR T-cell injection 

Drug: Paclitaxel or Irinotecan or Apatinib or Anti-PD-1 antibody

Phase 1/2 192 Interventional

(Continued)
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Table 3 (Continued). 

study NCT 
Number

Status Study Results Interventions Phases Enrollment Study Type

24 NCT04842812 Recruiting No Results Available Biological: TILs and CAR-TILs targeting HER2, Mesothelin, PSCA, MUC1, Lewis-Y, 
GPC3, AXL, EGFR, Claudin 18.2/6, ROR1, GD1, or B7-H3

Phase 1 40 Interventional

25 NCT05946226 Recruiting No Results Available Biological: IMC002 injection Phase 1 18 Interventional

26 NCT04404595 Active, not 
recruiting

No Results Available Biological: CT041 Phase 1/2 110 Interventional

27 NCT05539430 Recruiting No Results Available Biological: LB1908 Phase 1 56 Interventional

28 NCT05862324 Recruiting No Results Available Biological: TAC01-CLDN18.2 Phase 1/2 113 Interventional
29 NCT04400383 Active, not 

recruiting

No Results Available Drug: AB011 Injection Phase 1 62 Interventional

30 NCT04495296 Recruiting No Results Available Drug: TST001 
Drug: Oxaliplatin 

Drug: Capecitabine 

Drug: Paclitaxel 
Drug: Gemcitabine 

Drug: Cisplatin 

Drug: Nivolumab

Phase 1/2 320 Interventional

31 NCT06027346 Recruiting No Results Available Biological: Bio-008 Phase 1 60 Interventional

32 NCT04671875 Recruiting No Results Available Drug: Recombinant Humanized Monoclonal Antibody MIL93 Phase 1 228 Interventional

33 NCT04396821 Recruiting No Results Available Drug: TST001 
Drug: Nivolumab Injection [Opdivo] 

Drug: mFOLFOX6 

Drug: Gemcitabine 
Drug: Albumin-Bound Paclitaxel

Phase 1/2 150 Interventional

34 NCT05639153 Recruiting No Results Available Drug: DR30303 Phase 1 94 Interventional

35 NCT05159440 Recruiting No Results Available Drug: TORL-2-307-MAB Phase 1 70 Interventional
36 NCT05707676 Recruiting No Results Available Drug: LB4330 Phase 1 66 Interventional

37 NCT05857332 Recruiting No Results Available Drug: SG1906 Phase 1 60 Interventional

38 NCT06005493 Recruiting No Results Available Drug: AZD5863 Phase 1/2 200 Interventional
39 NCT05278832 Recruiting No Results Available Drug: QLS31905 Phase 1 104 Interventional

40 NCT04856150 Recruiting No Results Available Drug: Q-1802 Phase 1 66 Interventional

41 NCT05839106 Recruiting No Results Available Drug: PM1032 injection Phase 1/2 200 Interventional
42 NCT05482893 Recruiting No Results Available Drug: PT886 

Drug: Paclitaxel 

Drug: Gemcitabine 
Drug: Abraxane

Phase 1/2 72 Interventional

43 NCT05365581 Recruiting No Results Available Drug: ASP2138 Phase 1 240 Interventional

44 NCT05719558 Recruiting No Results Available Drug: ASP1002 Phase 1 210 Interventional

https://doi.org/10.2147/JH
C

.S483861                                                                                                                                                                                                                                   

D
o

v
e

P
r
e

s
s
                                                                                                                                           

Journal of H
epatocellular C

arcinom
a 2024:11 

1812

D
u et al                                                                                                                                                               

D
o

v
e

p
r
e

s
s

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Conclusion
According to existing research, multiple claudin proteins are closely associated with hepatobiliary and pancreatic diseases. In 
liver diseases, the mechanism and impact of claudin-1 are more significant. Claudin-2, −6, −9, −10, and −17 may act as 
adverse factors in the progression of liver cancer. In contrast, claudin-3, −4, −5, −7, −11, and −14 may be favorable factors for 
the development and prognosis of liver cancer, and claudins expression is often used to distinguish cholangiocarcinoma from 
liver cancer. Among these, claudin-499,100 and claudin-7100,133 may serve as valuable markers for distinguishing between HCC 
and CCA. Compared to hepatobiliary diseases, pancreatic tumors and claudin proteins have been studied extensively. Among 
these, claudin-1, −4, and −23 have tumor suppressor effects, whereas claudin-2, −3, −5, −7, and −12 may have adversely 
affects the prognosis of patients with pancreatic tumors. In addition, claudin-3,163 claudin-4,102 claudin-5,134,165 claudin-7,134 

claudin-18.2219 can be used to distinguish between different types of pancreatic cancer. Regarding claudins targeting drugs, 
targeting antibodies for claudin-1, claudin-3, and claudin-6 have been developed and entered into preclinical studies. In 
hepatobiliary and pancreatic diseases, it has been proposed that claudin-4122 and claudin-7 can be used as new molecular 
targets for the treatment of pancreatic cancer.136 At present, it is known that claudin-18.2 has a good effect in the targeted 
therapy of gastric cancer. The prospects of targeted therapy for claudin-18 in PC have also been reported; however, the 
expression and mechanism of action of claudin-18 in hepatobiliary diseases remain unclear. Therefore, strengthening the 
research on the mechanism of action of claudin-18 and hepatobiliary and pancreatic tumors will be helpful for providing new 
plans for targeted therapy and immunotherapy of hepatobiliary and pancreatic tumors and carrying out related clinical trials to 
improve the precision treatment of such diseases. These approaches have the potential to ultimately improve the prognosis of 
patients with hepatobiliary and pancreatic tumors.
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