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ABSTRACT

Morphology-based classification of cells in the bone marrow aspirate (BMA) is a key step in the diagnosis and
management of hematologic malignancies. However, it is time-intensive and must be performed by expert
hematopathologists and laboratory professionals. We curated a large, high-quality dataset of 41,595 hematopathol-
ogist consensus-annotated single-cell images extracted from BMA whole slide images (WSIs) containing 23
morphologic classes from the clinical archives of the University of California, San Francisco. We trained a convolu-
tional neural network, DeepHeme, to classify images in this dataset, achieving a mean area under the curve (AUC)
of 0.99. DeepHeme was then externally validated on WSIs from Memorial Sloan Kettering Cancer Center, with a
similar AUC of 0.98, demonstrating robust generalization. When compared to individual hematopathologists from
three different top academic medical centers, the algorithm outperformed all three. Finally, DeepHeme reliably
identified cell states such as mitosis, paving the way for image-based quantification of mitotic index in a cell-specific
manner, which may have important clinical applications.

Introduction

Hematologic malignancies such as leukemias, lymphomas, myelodysplastic syndromes, plasma cell neoplasms, and
their precursor states, represent roughly 10% of cancer cases and cancer deaths worldwide1. Additionally, there
are many non-neoplastic hematologic disorders originating in the bone marrow, from sickle cell disease, to iron
deficiency anemia, to bone marrow failure syndromes2. For all these diseases, bone marrow aspirates (BMAs)
are a central diagnostic tool. They allow assessment of morphology and relative distribution of cell types, which
guides diagnostic and treatment decisions. Importantly, the exact quantification of cell subsets such as blasts,
blast-equivalents or plasma cells is required to assign distinct diagnostic categories, with significant implications for
treatment and prognosis3–8.

Despite its frequent clinical use, this process is technically challenging and time-intensive. Common sources
of heterogeneity include different sample processing and staining procedures, overlapping morphologic features,
and interobserver variability9. The limited number of professionals with these skills must balance the time needed
to make an accurate diagnosis, with the clinical need for a fast and accurate diagnosis. For diseases such as acute
promyelocytic leukemia, treatment delays can lead to death within days10, 11. However, accuracy and reproducibility
are just as important as speed, since diagnostic ambiguity and interobserver variability may have severe clinical
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implications. For example, when distinguishing acute myeloid leukemia with monocytic differentiation from chronic
myelomonocytic leukemia, precise quantification of blast-equivalents from mature monocytes can be extremely
challenging, lead to overestimation or underestimation of blast percentage, and consequently, overtreatment or
undertreatment of patients12–17.

Morphologic examination of BMAs has been a major bottleneck in the adoption of WSI systems in hematopathol-
ogy clinical practice. While whole slide scanners are becoming widely used for paraffin-embedded tissue specimens,
BMAs continue to be examined under microscopes. Cell counting and classification done this way is both time
consuming and error-prone, as it is possible to miss fields of view when using a microscope9. The ability to perform
accurate classification of BMA cells using a comparable WSI image would eliminate this bottleneck and pave
the way for digitization of these services and the development of algorithms to automate workflows and provide
diagnostic support.

Morphologic examination of BMAs has been a major bottleneck to adoption of WSI systems in hematopathology
clinical practice. While whole slide scanners are becoming widely adopted for paraffin-embedded tissue specimens,
BMAs continue to be examined under microscopes, using a range of magnification (400x-1000x) and either light or
oil microscopy. Cell counting and classification done this way is both time consuming and error prone, as it is very
possible to miss fields of view under this level of magnification9. The ability to perform accurate classification of
BMA cells using a comparable WSI image would eliminate this bottleneck to hematopathology clinical practice.
Eliminating this bottleneck would lead to the digitization of these services and allow for the deployment of algorithms
that help automate the current workflow, as well as future algorithms developed using this digitized data that can
improve the quality of diagnoses.

Results

Case Identification, Whole Slide Imaging, and Image Annotation
50 aspirate slides from 50 unique patients with normal BMA morphology were selected from the UCSF Parnassus
adult hospital and UCSF Benioff Children’s Hospital between 2017 and 2020. These BMAs were performed for
diagnosis, staging, and monitoring and showed uninvolved marrow and normal hematopoiesis. Patient’s ages ranged
from six months to 79 years, with 16% of cases originating from the pediatric hematopathology service. The gender
composition was roughly equal ( 48% male, 52% female). Race/ethnicity was as follows: White: 78%, Hispanic:
12%, Asian 8%, and Black 2%. No other patient information was used or kept with the slide images, which were
de-identified during the scanning process. WSIs were created using 400x-equivalent magnification.

The UCSF slide set was separated at this stage into 40 slides used for training and validation. 10 slides were
kept as a hold-out test set to ensure accurate reporting of the model’s performance on unseen patient cases. A
library of 41,595 images was assigned into one of 23 classes by consensus decision of an expert panel of three
hematopathologists (Table 1). 30,394 images in the training set and 8,507 images in the test set.

The 23 image classes represent all cell types included in a standard bone marrow differential, as well as
differentiation stages of trilineage hematopoietic cells (Figure 1b). The full spectrum of erythroid and neutrophil
maturation was included, from proerythroblast to mature erythrocyte and from myeloid blast to segmented neutrophil,
respectively. Along the megakaryocytic lineage, megakaryocytes and platelet clumps were assessed. The lymphoid
lineage included lymphocytes and plasma cells. Eosinophils were separated into mature eosinophils with segmented
nuclei and immature eosinophils. In addition, the set included monocytes, basophils and mast cells.

Additional classes include artifacts and mitotic bodies to probe for cellular states. The presence of mitotic boides
is a proxy for the mitotic rate of the sample, which is itself a clinically prognostic biomarker18–21. Because of the
differences in the relative distribution of bone marrow cell types, special efforts were made to identify additional
examples of rare classes including myeloid blasts, basophils, mast cells, and mitotic bodies22.

Neural Network Structure, Training and Testing
We used the ResNeXt-50 architecture23, which showed good performance in classifying bone marrow cells by Matek
et al24. ResNeXt is a convolutional neural network architecture, which combines elements of of VGG25, ResNet26
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and Inception models27. The network was initialized using weights from ImageNet-9 and then trained using bone
marrow cell images28.

All separations of training and test sets were performed at the slide/ patient level to avoid repeat test evaluation
on images from slides that had been used in training, even if the individual image instance was different. The 30,394
images from the 40 slides in the training set were split into training and validation sets using an 80:20 split and
5-fold cross validation. Testing was performed on the 8,507 images from the 10 slide test set.

In order to counteract an imbalanced distribution of cell types, up-sampling was used to equilibrate the classes
prior to data augmentation, which resulted in 50,000 images per class. Shape augmentation included rotations,
vertical and horizontal flips, shears and resize. Color augmentation included contrast, brightness, Gaussian noise and
stain-color transformations29, 30.

Bone Marrow Cell Classification Performance
All performance metrics were averaged across the five networks created as a result of 5-fold cross validation process.
Performance of the DeepHeme model was evaluated using AUROC, F1 score, accuracy„ precision, and recall
(sensitivity) (Table 2, Supplemental Table 1). The mean AUC, precision, and recall across all classes was 0.99, 0.89,
and 0.89, respectively. We define high performance as an average precision and recall both above 0.8. Using this
metric, 19 of the 23 classes of cells achieved high performance. The algorithm achieved an AUC above 0.98 on all
classes, except basophil (AUC=0.94), which also happened to have the smallest number of training images.

To better understand the severity of misclassification, we constructed a confusion matrix that plots true versus
predicted labels (Supplemental Figure 1). Most miscategorizations occurred between developmentally and mor-
phologically adjacent cell types. For example, most misclassified metamyelocytes (M3) were classified as either
myelocytes (M2) or band neutrophils (M5), the precursor or successor cell stage in normal hematopoiesis. Since
these categories are not distinct groups, but rather classifications on a continuous biologic spectrum, we would
expect this result based on ambiguous cases, even among human experts.

The most common misclassification was between myeloid and erythroid blasts, with 14% of myeloid blasts
misclassified as erythroid blasts and 12% of erythroid blasts misclassified as myeloid blasts. These classes are
developmentally adjancent and very similar in morphology. No previous work has attempted to distinguish them
computationally at 400x-equivalent resolution, although Choi et al. did so when using 1000x oil microscopy31.

Model Learns Underlying Hematopoietic Developmental Relationships
Uniform Manifold Approximation and Projection for Dimension Reduction32 (UMAP) was used to create a two-
dimensional representation of the high-dimensional features learned by DeepHeme. This was done to visualize and
explore how the different classes are being grouped together or separated from each other(Figure 2a). Towards the
top left of the UMAP, we see that myeloid blast (myeloblast) and proerythroblast are connected by a thick bridge of
cells, representing the theoretical hematopoietic stem cell population from which they both differentiate. Cascading
bridges downward, and to the right, represent neutrophil and erythroid development, respectively (Figure 2b and 2c).

The only clear break in the erythroid lineage is between orthochromic erythroblasts and polychromatic erythro-
cytes. These are also the only two cell classes that have a clearly defined morphologic division that separates them
(the presence or absence of a nucleus). For the rest of neutrophil and erythrocyte development, the dividing line
between adjacent cell classes requires interpretation based on multiple subjective parameters.

In fact, a bridge is seen between nearly all directly related hematopoietic cell types. Their is a notable absence of
a bridge from the hematopoietic stem cell to lymphocytes or plasma cells, as they do not undergo development in the
marrow, but rather return to the marrow after maturation in the thymus, lymph nodes, and other lymphoid tissues.
The inclusion of intermediate cell types such as hematogones or lymphoplasmacytoid cells in the future may link
these groups. Other un-bridged, related cells are likely missing intermediate cell types due to their infrequency in
the marrow.

The algorithm also learned morphologic relationships across lineages. For example, all five cell classes in our
dataset with high nuclear-to-cytoplasmic (N:C) ratio co-localize, while only cell clusters that are directly related
to each other are attached by bridges (Supplemental Figure 2). Of note, the unconnected class in this group,
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lymphocytes, is also the only mature cell type. These findings suggest N:C ratio can be inferred by distance from this
cluster, which is a morphologic feature common to many malignancies, and maturity can be inferred by proximity
to, and interconnection with, the myeloblast and proerythroblast cell clusters.

Another example is the positioning of the mitotic bodies cluster. The mitotic bodies in this study broadly derive
from three morphologic groups based on cytoplasmic color, which correspond to the lineage of the cell undergoing
mitosis. Mitotic cells in the neutrophil lineage have a pale pink cytoplasm, those in the eosinophilic lineage contain
bright pink cytoplasm and those in the erythroid lineage have deep blue cytoplasm. The mitotic body cluster is
placed by the UMAP directly between these three lineage cluster sets, perhaps reflecting the relationship of the
mitotic body class to these three lineages. These findings suggest further subclassification of mitotic bodies by
lineage is possible based on cytoplasm color.

This UMAP has recapitulated much of the hematopoietic structure known to biologists as a result of decades of
research (Figure 1b). It is important to point out that the deep learning algorithm was not given any information about
the underlying relationships between the classes. Rather, it has reconstructed elements of the hematopoietic tree
based on morphology alone. The fact that UMAP recapitulates biological relationships suggests that the algorithm is
learning relevant morphologic features rather than confounders or shortcuts, which would not recapitulate biological
relationships. These findings also suggest the possibility of identifying novel biological relationships by combining
single cell image datasets with dimension reduction methods.

Comparison with Clinical Experts

To determine whether or not DeepHeme achieves clinical level accuracy, we compared its results to pathologists’
assessments. We selected three subspecialty hematopathologists from three different well-established cancer centers
(MSKCC, UCSF and Brigham and Women’s Hospital) and asked them to perform the same classification task
as the algorithm. Specialists were blinded to each other, unlike the gold-standard labels, which were defined by
consensus. Twenty-five images from each of the 23 classes from the UCSF test set were randomly chosen for review.
Figure 3a summarizes the performance of the reviewers versus AI. DeepHeme achieved hematopathologist-level or
better performance on all 23 classes, with a mean precision and recall of (0.90±0.00, 0.90±0.00) versus (0.78±0.05,
0.76±0.06) for hematopathologists (Figure 3a and Supplemental Tables 3-5). In terms of variation, the mean standard
deviation for precision and recall across the 23 classes was (0.03±0.02, 0.04±0.02) for the AI, versus (0.08±0.06,
0.10±0.00.05) for hematopathologists. In terms of speed, the three hematopathologists averaged roughly 3 hours for
the task of labeling 575 images. By contrast, DeepHeme performed the same task in 0.36 seconds, or approximately
30,000 times faster than the experts.

Model Generalizability

Multi-site generalization has proven difficult to achieve in many areas of medical computer vision33, 34. While no
algorithm has demonstrated multi-site generalization for this problem, it is a necessary precondition to widespread
adoption, since building pathologist-labelled training sets at each individual hospital is unreasonable. To evaluate
DeepHeme’s ability to generalize to an external dataset, we next tested the classifier on images from a completely
independent hospital system, Memorial Sloan Kettering Cancer Center (MSK). The MSK dataset includes 2,694
images from 10 randomly selected de-identified normal slides from the hematopathology service (Table 1). Images
were scanned using a Leica Aperio AT2, de-identified, and then sent to UCSF for annotation. The same annotation
strategy was used for the external dataset, to ensure that differences in performance were not the consequence of
inter-annotator variability. Table 2 and Figure 3b summarize the performance of DeepHeme on the external dataset.
We see a decrease of only 1%, 3%, and 4%, for mean AUC, precision, and recall, respectively between the UCSF
and MSK datasets (Table 2), demonstrating robust generalization. The largest performance drop was in PL3 (platelet
clumps). Hematopathologist review of the dataset revealed that platelet clumps in the MSK dataset were larger and
more numerous due to variation in slide preparation (laboratory artifacts).
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Saliency Mapping
Saliency refers to what is noticeable or important in an image. The saliency map for an image in the context of
convolution neural networks represents the significant pixels in the picture that affect the class score of the network’s
prediction. Saliency maps were used to visualize which parts of the image were most important to the classification.
If the algorithm were focusing outside the cell of interest, it would demonstrate that its performance is based on
confounding factors, rather than medically-relevant image features. This type of error, called shortcut learning, is
common in deep learning models33, 34. Figure 3c shows eight randomly selected images from different classes, as
well as their saliency maps using different mapping algorithms25, 35–37. Using this approach, we see that DeepHeme
is correctly focusing on the cell of interest and not adjacent cells or non-cellular components of the image.

Comparison with Other Bone Marrow Cell Classifiers
Direct comparison with shared test sets from other published studies in this area is not possible since there is
significant variation in class definitions and limited data availability. However, Table 3 compares DeepHeme to
recent high-quality publications in this field. Chandradevan et al. was the first study to perform analysis using deep
learning on bone marrow slides from WSIs, a breakthrough at the time. This study is limited by a relatively small
dataset, limited image classes, and limited reporting on performance1338. Aside from DeepHeme, it is the only other
paper to employ a consensus of multiple hematopathologists to develop its labels.

Matek et al. made significant improvements through the use of a large-scale dataset and higher number of classes,
however the dataset was not annotated by hematopathologists, which is the clinical gold-standard24. Both Matek and
Chandradevan et al also appear to have separated their training and test sets once all images were cropped, meaning
that their algorithms were tested on the same slides on which they were trained, likely leading to performance
overestimates, overfitting and generalization issues. Matek et al. also used images taken using microscope cameras
under oil at 400x, which may not generalize well to light-microscopy images and WSIs.

Lewis et al. and Tayebi et al. were the only other papers we identified that separated training and testing at
the slide-level, demonstrating slide-level generalizability39, 40. Tayebi et al and Matek et al each were limited by
extreme class imbalances, which led to weak performance on many image classes. Some classes were trained on
as few as 7 images. Consequently, they achieved high performance, as defined by >0.8 in precision and recall, on
only 7 of 19, and 8 of 21, image classes, respectively. By contrast, DeepHeme achieved high performance on 19 of
23 image classes and achieved a higher mean F1-score (0.89 vs 0.78 vs 0.67). DeepHeme was the only algorithm
to demonstrate generalization to an external setting. It was also the only algorithm to demonstrate performance
comparable or superior to practicing hematopathologists.

Website
A web application has been built at https://hemepath.ai/deepheme.html for scientists to interact with the DeepHeme
algorithm. The application allows users to test the algorithm on images from either the UCSF or MSK test sets.
They can also upload their own images. Images should be either cropped from 400x-equivalent WSIs or images
captured from microscope cameras at 400x. Alternatively, users can capture pictures using microscope-mounted
phone cameras and upload those images.

Discussion

Classification and quantification of individual cell types in BMAs is an essential part of how hematopathologists
diagnose hematological disorders. This task is not only time consuming and requires a high level of skill, but also
involves considerable inter-observer variability. Only 200-500 individual cells are routinely quantified in standard
clinical practice, affecting accurate quantification and meaning diseased cells may be missed. C

Computational tools can overcome these shortcomings, but they need to meet the following requirements: they
should perform the original task faster, and they should have at least at the same level of quality as the human
expert. The DeepHeme algorithm meets these requirements. First, it performs the diagnostic task in a fraction of a
second, thereby vastly surpassing the human expert. Second, DeepHeme is the first algorithm for bone marrow cell
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classification to achieve high performance (defined as >0.8 precision and recall) on 20 out of 23 classes. Finally, it is
also the first algorithm to demonstrate robust generalization, making it widely applicable across institutions.

We note the degree of interobserver variability among human experts in our study. This might reflect differences
in local practices, different levels of experience, or the fact that cells were assessed on a single-cell level, where
internal comparison to other cells was not allowed, a practice that is often used by human pathologists to "calibrate".
This variation underscores a key advantage of AI-based systems, which can analyze a large number of cells with low
variation, thereby producing more accurate and reproducible diagnostic and prognostic signatures.

In addition, more nuanced subclassifications can be made routinely and reproducibly. For example, hematopathol-
ogists do not routinely sub-classify all erythroid maturation stages. However, subtle changes in developing erythroid
cells may translate into clinically meaningful parameters or biomarkers that could advance the understanding of
conditions such as myelodysplastic or bone marrow failure syndromes. AI-based assessments of BMAs could
therefore enable the discovery of novel diagnostic and prognostic signatures.

The mitotic rate is a surrogate for cellular proliferation and is usually quantified using Ki-67 immunohisto-
chemical stains on paraffin-embedded tissue, which is delayed by one or more days relative to the BMA. Ki-67
is only assessed semi-quantitatively, due to issues with variation in staining and inter-observer interpretation41, 42.
AI-assisted BMA mitotic rate assessment would have numerous advantages over Ki-67 staining. It does not require
paraffin embedding or immunohistochemical staining, it allows more accurate quantification and "screening" of a
larger number of cells, and it would allow assessment of individual cell morphology. DeepHeme is the first algorithm
to classify BMA cells undergoing mitosis, making it a promising tool to develop biomarkers based on morphologic
features of cells undergoing mitosis and mitotic rates of BMA samples.

While developed in healthy bone marrows, future work will focus on developing image libraries that represent
the spectrum of hematologic disorders. By training on more extensive image libraries, an AI may learn morphologies
associated with underlying genetic alterations, thereby allowing prediction of molecular or cytogenetic results. For
example, in AML, many genetically-defined subtypes have associated morphologic features, such as distinct nuclear
or cytoplasmic features?. Abnormal cell morphology is also a hallmark of myeloproliferative and myelodysplastic
neoplasms.

In clinical workflows, DeepHeme can be used for screening and flagging of abnormal specimens, thereby
substantially reducing the burden on human experts. Importantly, such screening would classify thousands to
millions of cells per slide, rather than the 200-500 that humans typically classify, leading to more accurate cell
counts and ensuring that areas that may have disease are not missed. For smaller clinics and resource limited settings,
deployment in combination with a microscope camera or cell phone mounted microscope are promising approaches
currently in development. By achieving high speed and diagnostic-grade accuracy, DeepHeme can help standardize
clinical practice by reducing the variation seen in human experts, and pave the way for biomarker discovery in
hematologic malignancies.

Data Availability
Cell images will be published upon acceptance via The Cancer Imaging Archive and at www.hemepath.ai/DeepHeme.html.
The code used for this project is downloadable on GitHub at https://github.com/goldgoflab/DeepHeme_training.
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Online Content

Methods

Case Identification and Whole Slide Imaging
Two new datasets were created to develop and test the performance of our deep learning algorithm, one from UCSF
and one from MSK. All slides were randomly selected from the clinical service based on normal morphology and
adequate specimen. For the UCSF dataset, the slides were stained using a version of the Wright-Giemsa stain
(Fisherbrand modified Wright-Giemsa Stain Pack) and were either prepared at the UCSF Parnassus hospital or the
UCSF Benioff Children’s Hospital between 2017 and 2020. WSIs were scanned at 400x-equivalent magnification
using either a Leica Aperio AT Turbo or Leica Aperio AT2 and saved as de-identified .svs files. All MSK slides
were scanned using the same methods using a Leica Aperio AT2. All slides were scanned using a high density of
focus points and a single z-plane. Images include a range of image quality reflecting variations in stain intensity,
slide preparation, and slide age.

Image Library Annotation
Images were annotated using annotation software developed in-house. To compensate for variations in slide
preparation and stain intensity, as well as to replicate features of a manual microscope, the software’s viewer permits
modification of brightness, contrast, and zoom. To compensate for variations in slide preparation and stain intensity,
as well as to replicate features of a manual microscope, the software’s viewer permits modification of brightness,
contrast, and zoom. Images from both the UCSF and MSK datasets were annotated using a 3-step process. Initial
image classification was performed by a single pathologist. A second audit was performed by a single pathologist to
remove any errors made with the first round of classification. Finally, a panel of three hematopathologists reviewed
the final sorted cell lists to provide a consensus label that was used as the gold-standard.

For each image, the annotated cell is in the center of the image, based on the whole cell, not the nucleus, except
for the following classes. Since megakaryocytes are larger than the field of view, image centers were placed in
multiple non-overlapping locations within the megakaryocyte to capture different fields of view. For cells undergoing
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mitosis, the centers may have been placed in either the center of the mitotic figure, the center of the cell, or both. For
platelet clumps, the center of the object was placed in the middle of the clump. Images were exported as 96x96 pixel
PNGs with a resolution of 72px/inch.

Neural Network Structure, Training and Testing
In order to counteract a imbalanced distribution of cell types, up-sampling was used to equilibrate the classes
prior to data augmentation. 20 times augmentation transformations using the Albumentations python library were
performed to augment the shape and color, which resulted in approximately 50,000 images per class with 1.15
million augmented images in total130. Shape augmentation included rotations, vertical and horizontal flips, shears
and resize. Color augmentation included contrast, brightness, and Gaussian noise. In addition, we also performed
stain-color augmentation transformations. A histopathology (HE)-based color augmentation was performed using
the Stainlib python package43.

We used the ResNeXt-50 architecture23, which showed good performance in classifying bone marrow cells by
Matek et al24. The network was initialized using weights from ImageNet-9 and then trained using bone marrow cell
images28. Specifically, we modified the network input to accept images of the size 96 x 96 pixels, and adjust the
number of output nodes, yielding the 23 overall cell types of our annotation scheme. The model took individual
cell patches as the input and generated class predictions. After applying the softmax function to the output to
generate probability distributions, the highest probability determined the cell class prediction results. The model
was trained with batch size 1024, with an initial learning rate 0.001, for 30 epochs. The learning rate decayed
every 5 epochs. Early stopping was used to prevent overfitting. Binary cross-entropy loss was used as the loss
function with one-hot encoded targets. We used the Adam Optimization method for updating the model weights
while reducing training error. All training was performed on NVIDIA TITAN RTX graphics processing units, where
training of the ResNeXt model took approximately 12 hours of computing time. For training and validation, we used
40 images from slides from the UCSF dataset, whereas the rest 10 slides were used as the UCSF test set. 5-fold
cross validation was performed on the training/validation set. We then trained 5 different networks for 13 epochs,
where each network used a different fold for validation and the remaining 4 folds for training. All model tuning and
parameters adjustment were performed during training and validation. All the numbers reported in the paper come
from analysis of the unseen test sets. Results were then averaged across the 5 different cross-validation networks.

Saliency Mapping
In our research, we employed Grad-CAM and SmoothGrad saliency mapping algorithms to better understand the
categorization choices made by these algorithms25, 35–37.

UMAP Interpretation
Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) was used to represent the
information that the deep learning classifier learned32. We embedded the extracted features represented in the
flattened final convolutional layer of the network (1000 dimensions) into 2 dimensions for each member of the data
set using the UMAP algorithm. UMAP works by using by using nearest-neighbor-descent technique to identify the
closest neighbors. The nearest neighbors that were previously found are then connected to create a graph44. The next
stage for UMAP is to map the approximation manifold to a lower-dimensional space, in our case two dimensions,
after learning it from the higher-dimensional environment. To perform these calculations we used the umap-learn
package in Python45.
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Figure 1. A) Experimental workflow. Whole slide images of bone marrow aspirates were digitized using whole slide
scanners. Regions of interest were selected by hematopathologists and the location and classification of cells was labeled by a
consensus of three hematopathologists. The single cell images were used to train and test convolutional neural networks with
ResNext-50 architecture to produce DeepHeme, an algorithm that classifies single cell images into 23 different cell classes. A
web application was built, where scientists can interact with the DeepHeme algorithm
(https://www.hemepath.ai/deepheme.html). B) Cell classes, lineage trajectories, and physiologic functions. A diagram of
cells and morphologic labels included in the study, as well as their relationship to each other in the hematopoietic tree. In
addition to classes of cells, two important morphologic categories were included: mitotic body and artifact.
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Figure 2. A) UMAP embedding of extracted features recapitulates biological relationships. The shape of the UMAP
recapitulates major aspects of hematopoiesis, of which the untrained neural network has no prior knowledge, suggesting it has
been learned from the training images. Bridges between clusters reflect the natural continuum and lineage trajectories between
adjacent cell types. B) Neutrophil differentiation. The complete spectrum of neutrophil development from myeloblast to
segmented neutrophil has been learned by the algorithm. C) Erythrocyte differentiation. Similarly, the full spectrum of
erythroid development has also been inferred by the algorithm. The break between orthochromatic erythroblasts (ER5) and
polychromatic erythrocytes (ER6) likely reflects their clear morphologic boundary (the presence of any nuclear remnants).
Such clear morphologic boundaries do not exist between other cell categories, which are defined based on multiple, subjective
features.
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Figure 3. A) Comparison of DeepHeme algorithm to expert hematopathologist evaluation. Each cell was first categorized
by three independent hematopathologists blinded to each other. 25 images from each of the 23 classes from the UCSF test set
were randomly chosen to be re-labelled by three individual hematopathologists from three different institutions to assess the
performance limits of experts, as well as variability among them (green). DeepHeme (red) achieved hematopathologist-level
performance or superiority in all 23 classes. B) Model Generalizability. Comparison of performance of DeepHeme on the
UCSF test set, versus the external MSK set. We see a modest variation in performance across most cell classes, with a mean F1
score dropping from 0.89±0.00 to 0.85±0.01. C) Saliency Maps. This figure shows randomly selected saliency maps from 8
classes using different mapping algorithms. Row 1: Original. Row 2: Grad-CAM. Row 3: SmoothGrad. In each case, the map
demonstrates that DeepHeme focuses on the cell of interest rather than adjacent cells or non-cellular components of image.
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Cell Code UCSF Training Set UCSF Test Set MSK Test Set Total
Number of Patients/Slides 40 10 10 60

Cell Class
Mast Cell B1 284 68 58 410
Basophil B2 164 33 22 219
Immature Eosinophil E1 910 266 43 1,219
Mature Eosinophil E4 431 98 89 618
Pronormoblast ER1 1,667 404 229 2,300
Basophilic Normoblast ER2 1,795 437 80 2,312
Polychromatophilic Normoblast ER3 1,990 605 100 2,695
Orthochromic Normoblast ER4 1,991 658 105 2,754
Polychromatophilic Erythrocyte ER5 1,223 322 99 1,644
Mature Erythrocyte ER6 1,338 290 117 1,745
Lymphocyte L2 2,464 739 93 3,296
Plasma Cell L4 916 255 96 1,267
Myeloid Blast M1 2,131 567 229 2,927
Promyelocyte M2 2,146 560 210 2,916
Myelocyte M3 2,359 758 158 3,275
Metamyelocyte M4 1,481 549 109 2,139
Band Neutrophil M5 1,785 652 128 2,565
Segmented Neutrophil M6 1,446 363 145 1,954
Monocyte MO2 1,231 296 131 1,658
Megakaryocyte PL2 1,007 232 145 1,384
Platelet Clump PL3 131 30 160 321
Artifact U1 910 195 75 1,180
Mitotic Body U4 594 130 73 797
Sum 30,394 8,507 2,694 41,595

Table 1. Datasets. This table shows the Number of hematopathologist-labeled, single cell images, per cell category, evaluated
in the training, test, and external validation sets. Training and test sets were separated at the slide level to avoid testing on
images from slides on which training had been performed. Each slide was obtained from a unique patient undergoing bone
marrow evaluation, with results showing normal hematopoiesis.
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Cell Class UCSF Test Set MSK Test Set
AUC Precision Recall AUC Precision Recall

Mast Cell 0.99±0.00 0.87±0.02 0.96±0.01 0.94±0.02 0.89±0.05 0.64±0.08
Basophil 0.94±0.02 0.87±0.10 0.76±0.02 0.94±0.03 0.73±0.08 0.64±0.08
Immature Eosinophil 0.99±0.00 0.94±0.01 0.96±0.00 1.00±0.01 0.86±0.04 0.96±0.02
Mature Eosinophil 0.99±0.00 0.92±0.01 0.92±0.02 1.00±0.00 0.95±0.02 0.96±0.02
Pronormoblast 0.99±0.00 0.72±0.03 0.75±0.05 0.99±0.00 0.83±0.03 0.81±0.06
Basophilic Normoblast 0.99±0.00 0.79±0.03 0.74±0.06 0.98±0.01 0.80±0.05 0.65±0.12
Polychromatophilic Normoblast 0.98±0.00 0.82±0.02 0.83±0.02 0.98±0.01 0.84±0.04 0.76±0.10
Orthochromic Normoblast 0.99±0.00 0.91±0.01 0.92±0.02 0.99±0.00 0.99±0.01 0.83±0.07
Polychromatophilic Erythrocyte 1.00±0.00 0.98±0.00 0.96±0.01 1.00±0.00 0.98±0.03 1.00±0.00
Mature Erythrocyte 1.00±0.00 0.97±0.01 0.99±0.01 1.00±0.00 1.00±0.00 0.98±0.03
Lymphocyte 1.00±0.00 0.95±0.00 0.95±0.00 1.00±0.00 0.87±0.03 0.94±0.02
Plasma Cell 0.99±0.00 0.94±0.02 0.93±0.00 0.99±0.00 0.98±0.01 0.97±0.02
Myeloid Blast 0.98±0.00 0.74±0.04 0.71±0.06 0.98±0.00 0.69±0.07 0.78±0.04
Promyelocyte 0.99±0.00 0.82±0.01 0.83±0.01 0.99±0.00 0.78±0.03 0.81±0.06
Myelocyte 0.99±0.00 0.88±0.02 0.87±0.03 0.98±0.00 0.75±0.04 0.70±0.08
Metamyelocyte 0.99±0.00 0.82±0.02 0.85±0.02 1.00±0.00 0.85±0.01 0.89±0.02
Band Neutrophil 0.99±0.00 0.89±0.01 0.83±0.01 1.00±0.00 0.94±0.01 0.95±0.01
Segmented Neutrophil 0.99±0.00 0.88±0.02 0.89±0.03 1.00±0.00 0.98±0.00 0.96±0.02
Monocyte 0.99±0.00 0.80±0.02 0.88±0.03 0.99±0.00 0.82±0.04 0.85±0.03
Megakaryocyte 1.00±0.00 0.99±0.01 1.00±0.00 1.00±0.00 0.74±0.03 1.00±0.00
Platelet Clump 1.00±0.00 1.00±0.00 0.97±0.02 0.87±0.05 0.99±0.00 0.59±0.06
Artifact 0.99±0.00 0.94±0.02 0.96±0.01 1.00±0.00 0.69±0.07 0.98±0.02
Mitotic Body 0.99±0.01 0.96±0.01 0.92±0.02 0.97±0.02 0.92±0.04 0.81±0.02
Mean 0.99±0.00 0.89±0.00 0.89±0.00 0.98±0.00 0.86±0.01 0.85±0.01
Median 0.99±0.00 0.90±0.01 0.90±0.01 0.99±0.00 0.86±0.02 0.88±0.01

Table 2. DeepHeme performance and external validation metrics. AUC, precision and recall were calculated for the
hold-out UCSF test set and the external MSK test set. The mean AUC, precision, and recall across all classes for the UCSF test
set were 0.99, 0.89 and 0.89, respectively. There were 1%, 3%, and 4% decreases for mean AUC, precision, and recall between
the datasets, demonstrating the model’s high level of generalizability. F1-score and accuracy are available in the Supplemental
Tables 1 and 2.
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Chandradevan et
al. Lewis et al. Matek et al. Tayebi et al. DeepHeme

Annotation Standard Hematopathologist
consensus

Not reported
Clinical Laboratory

Staff
Hematopathologist

Hematopathologist
consensus

Image Source WSI (light) WSI (light)
Microscope

Camera under Oil
WSI (light) WSI (light)

Images 9,269 23,609 171,374 26,782 41,595

Image Classes 12 16 21 19 23

Images in smallest
class 62 155 8 7 219

Classes with high
performance Not reported Not reported 7 6 19

Mean F1-Score Not reported Not reported 0.67 0.78 0.89

Mean Precision Not reported Not reported 0.61 0.83 0.89

Mean Recall Not reported Not reported 0.76 0.75 0.89

Slide Level External
Validation No Yes No Yes Yes

Expert Comparison No No No No Yes

Institution Level
External Validation No No No No Yes

Table 3. Comparison to other deep-learning-based bone marrow cell classifiers. This table compares DeepHeme to other
works that use CNNs to classify single cell images from 400x-equivalent images. All image totals are for the entire study,
including training and test sets. ’High performance’ is defined as >0.8 precision and recall. ’Images in smallest class’ is a
measure of class imbalance and is included because tiny training sets for individual classes generally yields low performance
for those classes. DeepHeme matches or outperforms currently published algorithms across all metrics except total number of
images used in the study.
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Supplemental Figures and Tables
Tables
1) Expanded UCSF Results
2) Expanded MSK Results
3) DeepHeme vs Experts F1
4) DeepHeme vs Experts Precision
5) DeepHeme vs Experts Recall

Figures
1) UCSF DeepHeme Confusion Matrix
2) UMAP High N:C Ratio
3) UMAP Mitotic Bodies (maybe remove)
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Cell Class Cell Code AUC F1-Score Accuracy Precision Recall
Mast Cell B1 0.99±0.00 0.91±0.01 1.00±0.00 0.87±0.02 0.96±0.01
Basophil B2 0.94±0.02 0.81±0.05 1.00±0.00 0.87±0.10 0.76±0.02

Immature Eosinophil E1 0.99±0.00 0.95±0.00 1.00±0.00 0.94±0.01 0.96±0.00
Mature Eosinophil E4 0.99±0.00 0.92±0.01 1.00±0.00 0.92±0.01 0.92±0.02

Pronormoblast ER1 0.99±0.00 0.73±0.01 0.97±0.00 0.72±0.03 0.75±0.05
Basophilic Normoblast ER2 0.99±0.00 0.76±0.02 0.98±0.00 0.79±0.03 0.74±0.06

Polychromatophilic Normoblast ER3 0.98±0.00 0.82±0.00 0.97±0.00 0.82±0.02 0.83±0.02
Orthochromic Normoblast ER4 0.99±0.00 0.91±0.01 0.99±0.00 0.91±0.01 0.92±0.02

Polychromatophilic Erythrocyte ER5 1.00±0.00 0.97±0.00 1.00±0.00 0.98±0.00 0.96±0.01
Mature Erythrocyte ER6 1.00±0.00 0.98±0.00 1.00±0.00 0.97±0.01 0.99±0.01

Lymphocyte L2 1.00±0.00 0.95±0.00 0.99±0.00 0.95±0.00 0.95±0.00
Plasma Cell L4 0.99±0.00 0.93±0.01 1.00±0.00 0.94±0.02 0.93±0.00

Myeloid Blast M1 0.98±0.00 0.72±0.02 0.96±0.00 0.74±0.04 0.71±0.06
Promyelocyte M2 0.99±0.00 0.83±0.00 0.98±0.00 0.82±0.01 0.83±0.01

Myelocyte M3 0.99±0.00 0.87±0.01 0.98±0.00 0.88±0.02 0.87±0.03
Metamyelocyte M4 0.99±0.00 0.84±0.01 0.98±0.00 0.82±0.02 0.85±0.02
Band Neutrophil M5 0.99±0.00 0.86±0.00 0.98±0.00 0.89±0.01 0.83±0.01

Segmented Neutrophil M6 0.99±0.00 0.88±0.01 0.99±0.00 0.88±0.02 0.89±0.03
Monocyte MO2 0.99±0.00 0.84±0.01 0.99±0.00 0.80±0.02 0.88±0.03

Megakaryocyte PL2 1.00±0.00 0.99±0.00 1.00±0.00 0.99±0.01 1.00±0.00
Platelet Clump PL3 1.00±0.00 0.99±0.01 1.00±0.00 1.00±0.00 0.97±0.02

Artifact U1 0.99±0.00 0.95±0.01 1.00±0.00 0.94±0.02 0.96±0.01
Mitotic Body U4 0.99±0.01 0.94±0.01 1.00±0.00 0.96±0.01 0.92±0.02

Mean 0.99±0.00 0.89±0.00 0.99±0.00 0.89±0.00 0.89±0.00
Medium 0.99±0.00 0.91±0.00 0.99±0.00 0.90±0.01 0.90±0.01

Table 1. UCSF Results. Expanded performance metrics of DeepHeme algorithm on the UCSF test set.
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Cell Class Cell Code AUC F1-Score Accuracy Precision Recall
Mast Cell B1 0.94±0.02 0.74±0.07 0.99±0.00 0.89±0.05 0.64±0.08
Basophil B2 0.94±0.03 0.67±0.05 0.99±0.00 0.73±0.08 0.64±0.08
Immature Eosinophil E1 1.00±0.01 0.91±0.03 1.00±0.00 0.86±0.04 0.96±0.02
Mature Eosinophil E4 1.00±0.00 0.96±0.01 1.00±0.00 0.95±0.02 0.96±0.02
Pronormoblast ER1 0.99±0.00 0.82±0.02 0.97±0.00 0.83±0.03 0.81±0.06
Basophilic Normoblast ER2 0.98±0.01 0.71±0.06 0.98±0.00 0.80±0.05 0.65±0.12
Polychromatophilic Normoblast ER3 0.98±0.01 0.80±0.07 0.99±0.00 0.84±0.04 0.76±0.10
Orthochromic Normoblast ER4 0.99±0.00 0.91±0.05 0.99±0.00 0.99±0.01 0.83±0.07
Polychromatophilic Erythrocyte ER5 1.00±0.00 0.99±0.02 1.00±0.00 0.98±0.03 1.00±0.00
Mature Erythrocyte ER6 1.00±0.00 0.99±0.02 1.00±0.00 1.00±0.00 0.98±0.03
Lymphocyte L2 1.00±0.00 0.90±0.03 0.99±0.00 0.87±0.03 0.94±0.02
Plasma Cell L4 0.99±0.00 0.98±0.01 1.00±0.00 0.98±0.01 0.97±0.02
Myeloid Blast M1 0.98±0.00 0.73±0.03 0.95±0.01 0.69±0.07 0.78±0.04
Promyelocyte M2 0.99±0.00 0.80±0.03 0.97±0.00 0.78±0.03 0.81±0.06
Myelocyte M3 0.98±0.00 0.72±0.04 0.97±0.00 0.75±0.04 0.70±0.08
Metamyelocyte M4 1.00±0.00 0.87±0.01 0.99±0.00 0.85±0.01 0.89±0.02
Band Neutrophil M5 1.00±0.00 0.95±0.01 0.99±0.00 0.94±0.01 0.95±0.01
Segmented Neutrophil M6 1.00±0.00 0.97±0.01 1.00±0.00 0.98±0.00 0.96±0.02
Monocyte MO2 0.99±0.00 0.83±0.01 0.98±0.00 0.82±0.04 0.85±0.03
Megakaryocyte PL2 1.00±0.00 0.85±0.02 0.98±0.00 0.74±0.03 1.00±0.00
Platelet Clump PL3 0.87±0.05 0.74±0.04 0.98±0.00 0.99±0.00 0.59±0.06
Artifact U1 1.00±0.00 0.81±0.05 0.99±0.00 0.69±0.07 0.98±0.02
Mitotic Body U4 0.97±0.02 0.86±0.02 0.99±0.00 0.92±0.04 0.81±0.02
Mean 0.98±0.00 0.85±0.01 0.99±0.00 0.86±0.01 0.85±0.01
Median 0.99±0.00 0.85±0.02 0.99±0.00 0.86±0.02 0.88±0.01

Table 2. MSK Results. Expanded performance metrics of DeepHeme algorithm on the MSK test set.
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Cell Code DH_cv1 DH_cv2 DH_cv3 DH_cv4 DH_cv5 Expert1 Expert2 Expert3
B1 0.89 0.92 0.89 0.92 0.91 0.76 0.92 0.84
B2 0.81 0.87 0.82 0.87 0.86 0.75 0.87 0.74
E1 0.94 0.98 0.96 0.96 0.96 0.81 0.89 0.85
E4 0.92 0.98 0.96 0.94 0.96 0.96 0.90 0.94

ER1 0.83 0.82 0.81 0.79 0.86 0.62 0.68 0.65
ER2 0.76 0.75 0.81 0.70 0.78 0.52 0.69 0.65
ER3 0.91 0.88 0.87 0.91 0.85 0.40 0.69 0.59
ER4 0.98 0.98 0.94 1.00 0.94 0.71 0.84 0.71
ER5 0.96 0.94 0.96 0.94 0.98 0.81 0.92 0.92
ER6 0.96 0.96 0.96 0.96 0.98 0.86 0.96 0.87
L2 0.90 0.90 0.94 0.92 0.94 0.80 0.91 0.77
L4 0.96 0.92 0.96 0.92 0.98 0.77 0.96 0.89
M1 0.71 0.67 0.78 0.72 0.75 0.50 0.63 0.53
M2 0.84 0.79 0.87 0.86 0.83 0.50 0.64 0.44
M3 0.82 0.83 0.85 0.83 0.84 0.53 0.61 0.57
M4 0.90 0.84 0.87 0.80 0.90 0.26 0.60 0.64
M5 0.85 0.91 0.81 0.78 0.83 0.69 0.73 0.71
M6 0.88 0.98 0.83 0.92 0.87 0.81 0.84 0.80

MO2 0.94 0.92 0.89 0.92 0.92 0.82 0.89 0.67
PL2 1.00 1.00 0.98 0.98 0.98 0.77 1.00 1.00
PL3 0.96 1.00 0.98 1.00 0.98 0.96 1.00 0.96
U1 0.90 0.91 0.92 0.92 0.96 0.67 0.92 0.76
U4 0.98 0.89 0.89 0.94 0.94 0.86 0.92 0.81

Mean 0.90 0.90 0.89 0.89 0.90 0.70 0.83 0.75
Median 0.90 0.91 0.89 0.92 0.92 0.76 0.89 0.76

Table 3. DeepHeme vs Experts F1-Score. F1-score for each of five cross-validation (cv) trained versions of the DeepHeme
algorithm, as well as each of the individual export hematopathologist annotators.

4/9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.02.20.528987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.20.528987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cell Code DH_cv1 DH_cv2 DH_cv3 DH_cv4 DH_cv5 Expert1 Expert2 Expert3
B1 0.83 0.89 0.83 0.89 0.83 0.70 0.89 1.00
B2 0.86 0.95 0.95 0.95 1.00 0.78 0.95 0.69
E1 0.92 1.00 0.96 0.96 0.96 0.71 0.83 0.79
E4 0.96 0.96 0.96 0.96 0.96 0.93 0.92 0.92

ER1 0.87 0.81 1.00 0.83 0.85 0.55 0.73 0.67
ER2 0.94 0.78 0.78 0.83 0.79 0.52 0.67 0.60
ER3 0.86 0.85 0.80 0.83 0.81 0.53 0.71 0.58
ER4 0.96 1.00 1.00 1.00 0.92 0.74 0.95 0.65
ER5 0.96 0.96 1.00 0.96 1.00 1.00 0.96 0.92
ER6 0.96 0.96 0.93 0.96 0.96 0.76 0.93 0.91
L2 0.88 0.88 0.92 0.92 0.92 0.90 0.86 0.69
L4 0.96 0.96 0.96 0.92 1.00 0.65 1.00 1.00
M1 0.65 0.70 0.72 0.68 0.78 0.67 0.59 0.60
M2 0.77 0.70 0.80 0.77 0.79 0.52 0.68 0.50
M3 0.95 0.87 0.81 0.87 0.84 0.47 0.55 0.47
M4 0.88 0.84 0.95 0.80 0.92 0.67 0.72 0.74
M5 0.81 0.86 0.76 0.77 0.79 0.71 0.63 0.74
M6 0.88 1.00 0.87 0.92 0.91 0.76 0.84 0.73

MO2 0.96 0.96 0.95 0.92 0.92 0.83 0.95 0.82
PL2 1.00 1.00 0.96 0.96 0.96 0.89 1.00 1.00
PL3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
U1 0.88 0.86 0.89 0.89 0.96 0.52 0.92 0.70
U4 1.00 0.95 0.95 1.00 1.00 1.00 0.96 1.00

Mean 0.90 0.90 0.90 0.90 0.91 0.73 0.84 0.77
Median 0.92 0.95 0.95 0.92 0.92 0.71 0.89 0.74

Table 4. DeepHeme vs Experts Precision. Precision for each of five cross-validation (cv) trained versions of the DeepHeme
algorithm, as well as each of the individual export hematopathologist annotators.
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Cell Code DH_cv1 DH_cv2 DH_cv3 DH_cv4 DH_cv5 Expert1 Expert2 Expert3
B1 0.96 0.96 0.96 0.96 1.00 0.84 0.96 0.72
B2 0.76 0.80 0.72 0.80 0.76 0.72 0.80 0.80
E1 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.92
E4 0.88 1.00 0.96 0.92 0.96 1.00 0.88 0.96

ER1 0.80 0.84 0.68 0.76 0.88 0.72 0.64 0.64
ER2 0.64 0.72 0.84 0.60 0.76 0.52 0.72 0.72
ER3 0.96 0.92 0.96 1.00 0.88 0.32 0.68 0.60
ER4 1.00 0.96 0.88 1.00 0.96 0.68 0.76 0.80
ER5 0.96 0.92 0.92 0.92 0.96 0.68 0.88 0.92
ER6 0.96 0.96 1.00 0.96 1.00 1.00 1.00 0.84
L2 0.92 0.92 0.96 0.92 0.96 0.72 0.96 0.88
L4 0.96 0.88 0.96 0.92 0.96 0.96 0.92 0.80
M1 0.80 0.64 0.84 0.76 0.72 0.40 0.68 0.48
M2 0.92 0.92 0.96 0.96 0.88 0.48 0.60 0.40
M3 0.72 0.80 0.88 0.80 0.84 0.60 0.68 0.72
M4 0.92 0.84 0.80 0.80 0.88 0.16 0.52 0.56
M5 0.88 0.96 0.88 0.80 0.88 0.68 0.88 0.68
M6 0.88 0.96 0.80 0.92 0.84 0.88 0.84 0.88

MO2 0.92 0.88 0.84 0.92 0.92 0.80 0.84 0.56
PL2 1.00 1.00 1.00 1.00 1.00 0.68 1.00 1.00
PL3 0.92 1.00 0.96 1.00 0.96 0.92 1.00 0.92
U1 0.92 0.96 0.96 0.96 0.96 0.92 0.92 0.84
U4 0.96 0.84 0.84 0.88 0.88 0.76 0.88 0.68

Mean 0.90 0.90 0.89 0.89 0.90 0.71 0.83 0.75
Median 0.92 0.92 0.92 0.92 0.92 0.72 0.88 0.80

Table 5. DeepHeme vs Experts Recall. Recall for each of five cross-validation (cv) trained versions of the DeepHeme
algorithm, as well as each of the individual export hematopathologist annotators.
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Figure 1. Confusion Matrix. This figure shows the confusion matrix of prediction on the test set of UCSF images. Most
misclassifications are between biologically adjacent cell classes, reflecting the true ambiguity between edge cases. Notable
examples include myeloid blast (M1) vs erythroid blast (ER1). These are developmentally adjacent cell types and as a result
have some morphologic overlap.
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Figure 2. UMAP embedding for cells with high nucleus:cytoplasm (N:C) ratio. All five cell classes in our dataset with
high N:C ratio co-localize, while only cell clusters that are directly related to each other are attached by bridges. Of note, the
bridge between myeloblasts (M1) and proerythroblasts (ER1) reflects the location of the theoretical hematopoietic stem cell
that exists as a precursor between them.

8/9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2023. ; https://doi.org/10.1101/2023.02.20.528987doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.20.528987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. UMAP embedding for mitotic bodies. The mitotic bodies in this study broadly derive from three morphologic
groups based on cytoplasmic color, which correspond to the lineage of the cell undergoing mitosis. Mitotic cells in the
neutrophil lineage have a pale pink cytoplasm, those in the eosinophilic lineage contain bright pink cytoplasm and those in the
erythroid lineage have deep blue cytoplasm. The mitotic body cluster is placed by the UMAP directly between these three
lineage cluster sets, perhaps reflecting the relationship of the mitotic body class to these three lineages. Further
subclassification of mitotic bodies by lineage is possible based on cytoplasm color.
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