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Abstract

Gene sequences are the target of evolution operating at different levels, including the nucleotide, codon, and amino acid levels.

Disentangling the impactof thosedifferent levelsongenesequences requiresdevelopingaprobabilisticmodelwith three layers.Here

we present SENCA (site evolution of nucleotides, codons, and amino acids), a codon substitution model that separately describes 1)

nucleotide processes which apply on all sites of a sequence such as the mutational bias, 2) preferences between synonymous codons,

and3)preferencesamongaminoacids.Weargue thatmost synonymous substitutionsarenotneutral and thatSENCAprovidesmore

accurate estimates of selection compared with more classical codon sequence models. We study the forces that drive the genomic

content evolution, intraspecifically in the core genome of 21 prokaryotes and interspecifically for five Enterobacteria. We retrieve the

existence of a universal mutational bias toward AT, and that taking into account selection on synonymous codon usage has conse-

quences on the measurement of selection on nonsynonymous substitutions. We also confirm that codon usage bias is mostly driven

by selection on preferred codons. We propose new summary statistics to measure the relative importance of the different evolu-

tionary processes acting on sequences.
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Introduction

Nucleotide substitutions that act on coding DNA sequences

can be classified as either: 1) Synonymous substitutions, which

cause no change in the encoded protein; or 2) nonsynony-

mous substitutions, which change the encoded protein se-

quence. Evolutionary studies thus aim to distinguish

between these two kinds of substitutions (Miyata and

Yasunaga 1980; Nei and Gojobori 1986). As the substitution

type depends on its position within a codon, this led to the

emergence of codon substitution models (Goldman and Yang

1994; Muse and Gaut 1994; Yang and Nielsen 1998; Pond

and Muse 2005; Kosiol et al. 2007; Mayrose et al. 2007),

taking the codon as the unit of evolution. Such models are

currently used to estimate the strength of selection acting on

coding sequences, usually assuming that synonymous substi-

tutions are neutral. In addition, they can be used to model

nonuniform frequencies of synonymous codons in real coding

sequences.

Indeed, the usage of synonymous codons in genes and

genomes is not random and shows for every organism a spe-

cific set of preferences (Grantham et al. 1980), called codon

usage bias (CUB). In prokaryotes, codon preferences are stable

enough within a genome to be a useful tool to detect, for

example, recent horizontal transfer between genomes, based

on differences in CUB (Karlin 2001). Furthermore, CUB inten-

sity is variable within a genome, which helps to predict gene

expression levels (Gouy and Gautier 1982; Sharp et al. 1986;

Thomas et al. 1988; Agashe et al. 2013; Wallace et al. 2013;

Gilchrist et al. 2015). Two explanations for the existence of

CUB are usually proposed: Mutational bias (neutral or non-

adaptative) or selective pressures to optimize translational ef-

ficiency or accuracy (Akashi and Eyre-Walker 1998; Hershberg

and Petrov 2008; Sharp et al. 2010). Mutational biases can be

due to either mutational processes (Sueoka 1988; Rocha et al.

2006; Hershberg and Petrov 2010; Hildebrand et al. 2010;

Palidwor et al. 2010) or biased gene conversion (Duret

2002), whereas selective pressures act for coadapting codon

usage and tRNA content in the cell (Gouy and Grantham

1980; Sharp and Li 1986; Bulmer 1987; Kanaya et al. 1999;

Rocha 2004). These hypotheses explain the existence of CUB

through evolutionary processes. However, CUB is usually
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studied on extant sequences, using statistics that do not con-

sider its evolution, such as Codon adaptive index (CAI) (Sharp

and Li 1986, 1987) or ENC (effective number of codons)

(Wright 1990), which respectively, measure the similarity of

a gene’s CUB relative to a reference gene set or to a uniform

distribution. Some studies propose CUB measures that ac-

count for mutational bias (e.g., Knight et al. 2001; Supek

et al. 2010; O’Neill et al. 2013), and the more widespread EN

C 0 by Novembre (2002). These descriptive statistics are insuf-

ficient to quantify the level of selection acting on CUB through

time as they only take extant genomic nucleotide composition

into account. Hence evolutionary models are needed to infer

and quantify the processes acting on sequences, by gathering

information from the phylogenetic signal.

By construction, usual codon models assume that CUB

arises by neutral mechanisms. However, the existence of se-

lection on synonymous codons may have strong conse-

quences on these models (Spielman and Wilke 2015).

McVean and Vieira (2001) built a codon model restricted to

synonymous mutations that jointly use neutral rates of muta-

tion, and a model of relative fitness between synonymous

codons to derive codon substitution rates that involve

codon-specific selection coefficients. This idea of relative fit-

ness of codons has been first adapted in a broader phyloge-

netic context in Nielsen et al. (2007), to add selection on CUB

to synonymous and nonsynonymous substitutions. Their

modeling is more simple, because codons are either preferred

or not-preferred, and all codons of the same category share

the same fitness. A more realistic model was after proposed by

Yang and Nielsen (model FMutSel in Yang and Nielsen

[2008]), where each codon has its own fitness. However, in

both models, the relative fitness between two codons is com-

puted in the same way whether they encode for the same

amino acid or not. But amino acids themselves have their own

specific fitness, as their distribution is not uniform in proteins.

In these models, the fitness of codons does not only consider

CUB, but also amino acid preferences, which may blur the

specific analysis of CUB. In Halpern and Bruno (1998),

Rodrigue et al. (2010), and Tamuri et al. (2012), amino acid

fitness is explicitly modeled in site-specific context as the main

feature of selection in addition to a neutral mutation process

on nucleotides.

Here, we extend the work of McVean and Vieira to synon-

ymous and nonsynonymous substitutions in a model that dis-

entangles the selective processes acting on synonymous

codons and on amino acids, and considers explicitly the fitness

of amino acids, as in the work of Halpern and Bruno.

Specifically, we add a process of substitution between

amino acids to the nucleotide and synonymous codon substi-

tution process. We organize then the substitution processes of

coding sequences in three layers: The nucleotide layer de-

scribes the neutral mutation process that every site undergoes,

the amino acid layer describes how the nonsynonymous sub-

stitutions change the coded amino acids, and the codon layer

describes how each codon is preferred among its synonymous

codons. Our model name is SENCA for site evolution of nu-

cleotides, codons, and amino acids and is implemented in

Bio ++ (Guéguen et al. 2013).

SENCA allows us to explicitly estimate mutational pro-

cesses, preferences on codon usage and on the usage of

amino acids. Because of this organization, we can propose

summary statistics, based on GC content and ENC, to mea-

sure the relative importance of mutational processes and se-

lection on the evolution of codon usage. In this article, we

show how SENCA disentangles qualitatively and quantita-

tively the effect of mutational processes and selection upon

CUB and GC content. For this, we use SENCA in an homo-

geneous and nonstationary way, first on 21 groups of pro-

karyotes (Lassalle et al. 2015) that span a wide diversity of

genomic GC content (between 27% and 65%), and then, at

a deeper evolutionary scale, on five species of the

Enterobacteria clade.

New Approaches

Theoretical Model

We modeled the evolution of codon sequences by specifying

the substitution rate from sense codon I ¼ I1I2I3 to J ¼ J1J2J3,

where Ik changed to Jk (k 2 ½1; 3�). The instantaneous substi-

tution rate from I to J is

qIJ!

0 if I and J differ at two or three different positions;

mIkJk
gðxI; xJÞ if Ik!Jk is a synonymous mutation;

mIkJk
ogðxI; xJÞ if Ik!Jk is a nonsynonymous mutation;

8>><
>>:

ð1Þ

where mIkJk
is the mutation parameter from nucleotide Ik to Jk;

xI (respectively xJ) is the overall preference of codon I (respec-

tively J) and g is the part of the substitution rates due to fix-

ation bias from the formula introduced in McVean and Vieira

(2001) and Yang and Nielsen (2008), in a similar way as in

Halpern and Bruno (1998):

gðxI; xJÞ ¼

�log
� xI

xJ

�

1�
xI

xJ

if xI 6¼ xJ;

1 if xI ¼ xJ:

8>>>><
>>>>:

ð2Þ

We considered that g depends on the product of synony-

mous codon preference with the respective amino acid pref-

erence (if they code for different amino acids). Thus, we

defined the overall preference of codon I as the product of

the relative preference of the amino acid encoded by codon I,

AAI, over the other amino acids cðAAIÞ; the relative prefer-

ence of codon I over synonymous codons, uAAI
ðIÞ; and dAAI

the degeneracy of amino acid AAI. Thus
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xI ¼ cðAAIÞ � dAAI
� uAAI

ðIÞ: ð3Þ

g ranges between 0 and þ1. Interestingly, gðxJ;xI Þ

gðxI ;xJ Þ
¼ xI

xJ
(see

supplementary equation 1, Supplementary Material online),

which means that, considering only preferences between

codons, the ratio of substitution rates between two codons

equals the ratio of their preferences.

SENCA is based on three substitution layers: Nucleotide (N),

codon (C), and amino acid (A) layers. These layers act simul-

taneously as represented on figure 1.

. The nucleotide layer N accounts for a neutral process of
nucleotidic mutations, and is modeled through a classic nu-
cleotide model (see http://biopp.univ-montp2.fr/manual/
html/bppsuite/2.2.0/Nucleotide.html#Nucleotide for a list
of available models). We can compute equilibrium frequen-
cies of A,. . .,T nucleotides: p?A,. . .,p?T from the mutation
parameter from nucleotide Ik to Jk, mIkJk

. The number of
free parameters depends on the chosen model.

. The codon layer C accounts for the relative preferences
between synonymous codons; let us denote codðAAIÞ the
set of synonymous codons translated into AAI. The relative
preference of codon I over synonymous codons is
uAAI
ðIÞ 2 ½0; 1�, and for each amino acid these preferences

are normalized such that
P

I2codðAAI Þ
uAAI
ðIÞ ¼ 1. This layer

has 61 parameters and only 61� 20 ¼ 41 free ones due to
our intra amino acid normalization process.

. The amino acid layer A accounts for the preferences be-
tween amino acids in the case of nonsynonymous substitu-
tions; in our case, we modeled it with a unique overall
selection parameter on nonsynonymous substitutions (as
is usually done in codon models), called !, and a preference
profile on amino acids. We then have 20 free parameters: !
represents the ratio of the nonsynonymous over synony-
mous substitution rates, and for any amino acid AA
the relative preference of AA over the other amino acids

is cðAAÞ, and they are normalized such thatP
AA2 amino acids cðAAÞ ¼ 1.

After this parameterization, the generator q is normalized

as usual, with one substitution per site per unit of time on the

stationary distribution.

Hereafter we use the notation SENCA[layers] to indicate

the “layers” that are considered under a particular set of as-

sumptions. In the case of uniform codon usage (i.e., no CUB),

the C layer follows a null hypothesis—we denote that assump-

tion as SENCA[NA]—and uAAI
ðIÞ ¼ 1

dAAI

. The preference of

codon I is then the preference of its amino acid cAAI
. In the

case of no preference on the amino acids, the A layer follows a

null hypothesis—denoted as SENCA[NC]—and cðAAÞ ¼ 1
20

for each amino acid AA. There the overall preference of

codon I is proportional to dAAI
� uAAI

ðIÞ. One can notice

that in the joint case of no preference of amino acids nor

on codons—that is, null model, denoted SENCA[N]—the pref-

erences of the 61 sense codons are equal (stop codons are not

considered in the model).

Equilibrium Frequencies

From equation (1), when the nucleotidic model is reversible

we can compute the equilibrium frequency of codon I, f ?ðIÞ:

f ?ðIÞ!
Y3

k¼1

p?Ik
|fflffl{zfflffl}
N layer

0
BBBB@

1
CCCCA� dAAI

� uAAI
Ið Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

C layer

0
B@

1
CA� c AAIð Þ|fflfflffl{zfflfflffl}

A layer

0
B@

1
CA: ð4Þ

This illustrates how processes induced by SENCA are sepa-

rated into three layers N, C, and A. We computed partial equi-

librium frequencies of codons that result from either N (i.e.,

model SENCA[N]), C (i.e., SENCA[C]), or A (i.e., SENCA[A])

layer only, by setting the other layers’ parameters to their

null hypothesis value in equation (4). Under SENCA[N],

amino acids and codons preferences are ignored and for

each codon I equation (4) becomes f ?NðIÞ!�3
k¼1p

?
Ik
. Under

SENCA[C] equation (4) becomes f ?C ðIÞ!uAAI
ðIÞ � dAAI

, and

under SENCA[A] it becomes f ?AðIÞ!cðAAIÞ. These partial equi-

librium frequencies are useful for comparing evolutionary

layers, but as they are deduced from extant sequences which

have been applied simultaneously to all (N, C, and A) layers,

they should always be interpreted together and not separately.

Summary Statistics

As SENCA has many free parameters, we developed three

summary statistics to estimate the overall role played by

each layers based on classical codon usage statistics: GC and

GC3 composition, and ENC (Wright 1990). First, we deduced

from equation (4) the GC equilibrium frequency for each layer,

respectively, noted GC?
N; GC?

C , and GC?
A in order to estimate

the influence of each layer on the equilibrium genome

FIG. 1.—SENCA representation. Here is an example of construction of

some—not all—instantaneous substitutions from sense codon GCG, that

codes for Alanine, to other codons, for example, coding for Alanine,

Valine, or Proline. In blue is the nucleotide (N) layer, in red the codon (C)

layer, and in yellow the amino acids (A) layer. Arrows indicate which layer

affects each substitution.

SENCA GBE
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composition. Similarly, we estimated the equilibrium fre-

quency at the third position within codons, denoted GC3?

for each layer. Because the redundancy in the genetic code

is greater at this position compared with others, GC3 is often

used as a proxy for underlying mutational bias in prokaryotic

genomes (Muto and Osawa 1987). As genomes with very

different CUB can be similar in terms of GC? and GC3?, we

used the same approach by computing ENC? statistics for

each layer.

We computed distance of genomic GC? content to a uni-

form usage of the 61 sense codons (i.e., 51.4% of GC, after

removing the stop codons, which are AT-rich) as

dGC? ¼ GC? � 0:514: ð5Þ

We also defined dGC?
N; dGC?

C , and dGC?
A as the distances

to unbiased content for each layer.

We defined similar statistics for genomic GC3? content. A

uniform usage of the 61 sense codons leads to GC3 ¼ 0:508.

Then

dGC3? ¼ GC3? � 0:508: ð6Þ

Similarly, we defined dGC3?N; dGC3?C , and dGC3?A.

To study more specifically CUB, we computed ENC (Wright

1990) for observed sequences using codons frequencies. ENC

is a measure of CUB as it goes from 20 (maximum bias) to 61

(no bias):

ENC ¼
X

R2ARC

k2
R

X
AA2R

1

nAA � 1
nAA

X
I2codðAAÞ

p2ðIÞ

0
@

1
A� 1

0
@

1
A
ð7Þ

with ARC the set of all degeneracy classes of amino acids, kR

the number of amino acids of such a class, nAA the observed

number of codons coding for AA, cod(AA) the set of codons

of amino acid AA, p(I) the relative frequency of codon I among

its synonymous.

We computed ENC?, the effective number of codons on

sequences at equilibrium of the model, by replacing in equa-

tion (7): nAA ¼ L� f ?ðAAÞwith L the length (in codons) of the

data and f ?ðAAÞ the equilibrium frequency of amino acid AA

and replacing pðIÞ ¼ f ?ðIÞP
J2codðAAÞ f

?
ðJÞ

the relative frequency of

codon I at equilibrium. We also defined ENC?
layer induced by

each layer, by computing ENC using partial codon equilibrium

frequencies described previously: nAA
?
layer ¼ L�

P
I2codðAAÞ f

?
layerðIÞ and p?layerðIÞ ¼

f ?
layer
ðIÞP

J2codðAAÞ f
?
layerðJÞ

the relative

equilibrium frequency of the codon I of this layer. For both N

and C layers, f ?NðIÞ and f ?C ðIÞwere computed as described in the

section “Equilibrium Frequencies.”

From the ENC? estimates, we computed the distance from

uniform usage (61) to the effective codon usage. We denoted

dENC? ¼ 61� ENC?, for any layer: dENC?
layer ¼

61� ENC?
layer.

Materials and Methods

Data and Model Implementation

Intraspecies Data Set

Our data set came from Lassalle et al. (2015), see table 1. We

used coding DNA sequences from the core genomes of 20

bacterial pathogens and of one archeal group. These species

were chosen because they encompass the diversity of genome

composition among prokaryotes and that we could select

nonrecombinant genes. We obtained between 6 and 35

strains per species. For each species, we built codonwise nu-

cleotide alignments using seqinR package in R (Charif and

Lobry 2007) to translate nucleotide sequences, ClustalW

(Larkin et al. 2007) to align protein sequences, and

PAL2NAL (Suyama et al. 2006) to retrieve nucleic alignments.

Within a species, we sorted genes by increasing ENC values

and concatenated them by groups of around 50 genes, to

ensure we had enough data for precise parameter estimation.

In total, we obtained 166 concatenates (from 1 to 16 per

species, see table 1). Then, we computed a phylogenetic

tree for each concatenate using CodonPhyML (Gil et al.

2013), with an Nearest Neighbor Interchange (NNI) tree topol-

ogy search and the GY + W+K + F, F3x4 model. We selected

one tree per species, as trees topologies were consistent

within each species (see supplementary fig. S1 for topology,

Supplementary Material online). We rooted our trees using

TPMS (Bigot et al. 2013) and a reference species tree built

with BIONJ (Gascuel 1997) from a distance matrix of the com-

plete genomes of HOGENOM V6 database (Penel et al. 2009).

Interspecies Data Set

We considered five enterobacteria that present an average GC

content: Klebsiella pneumoniae 342 (KLEP3), Escherichia coli

E24377A (ECO24), Citrobacter koseri ATCC BAA-895

(CITK8), Salmonella enterica subsp. enterica serovar

Typhimurium str (SAENT1), and Escherichia fergusonii ATCC

35469 (ESCF3). These species present a similar GC content of

55% and the phylogenetic depth of the tree is such that we

can perform our SENCA analysis in a homogenous context.

Moreover, we chose this data set as it contains S. enterica

and E. coli, two species present in the intraspecies data set.

Indeed, we will compare the results of both data sets. From

HOGENOM, we selected the 1,797 gene families containing

these five species, and only kept gene families for which the

topology correspond to the reference HOGENOM species tree

(see supplementary fig. S2, Supplementary Material online) and

for which there were neither duplications nor deletions. We

obtained 222 HOGENOM families that were then aligned
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codonwise as previously described. We concatenated genes

sorted by increasing ENC values into four concatenates of

around 50 genes each.

Implementation

SENCA was implemented in Bio ++ (Guéguen et al. 2013) and

likelihood optimized with bppml (Dutheil and Boussau 2008).

For the N layer, under the hypothesis that the mutation pro-

cess is strand symmetric and reversible, as, in our study, we are

interested in broad tendencies in GC content at equilibrium,

we used the T92 model (Tamura 1992) which depends on

two free parameters, the equilibrium frequencies of the GC

pairs p?CG and � which is the transition/transversion ratio.

Additionally, to reduce computational complexity in the intra-

species analysis, we supposed that the A layer is stable within

a species, that is, cAAI
stationary (which is more realistic than

assuming stationary amino acids frequencies). This assump-

tion is reasonable as we studied intraspecies evolution, with

short tree depths. We relaxed this assumption in the interspe-

cies analysis. We tested the informativeness of SENCA layers

N, C, and A with likelihood ratio tests (LRT, see supplementary

table S1, Supplementary Material online). In order to demon-

strate the usefulness of our approach, we compared SENCA

with the more classical YN98 + F61 codon model (Yang and

Nielsen 1998), noted YN98 hereafter, in which synonymous

substitutions are neutral, but where any CUB can be modeled,

as each codon has its own equilibrium frequency. We per-

formed nonstationary analyses using a homogeneous model-

ing for all models (numbers of parameters in supplementary

table S1, Supplementary Material online). We compared

SENCA and YN98 using Akaike information criterion (AIC)

and Bayesian information criterion (BIC) (see supplementary

table S1, Supplementary Material online). Please note that, if

we use HKY85 (Hasegawa et al. 1985) model for the N layer

and assume stationarity, then the fitness of codon I, noted FI,

presented in Yang and Nielsen (2008) is equal to

FI ¼ dAAI
� uAAI

ðIÞ � cðAAIÞ.

Simulations

We performed simulation studies using bppseqgen sequences

generator with SENCA model (Dutheil and Boussau 2008).

We used a species trees with 13 leaves and median branch

length &0:10 (see supplementary fig. S3, Supplementary

Material online) and simulated an alignment of 20,000 sites.

Root was set equal to the global null hypothesis, that is, uni-

form codon usage, and we simulated with combinations of G

C�N at 0.3, 0.5 and 0.7, and GC3�C at 0.3, 0.5 and 0.7. We

tested different classical nucleotidic models for the N layer of

SENCA: T92 (Tamura 1992), HKY85 (Hasegawa et al. 1985, as

in FMutSel of Yang and Nielsen [2008]), GTR (Tavar 1986),

Table 1

Summary of the Data Set Characteristics

Data Set Taxon Name No. of Strains No. of Concatenates Mean GC % Median ENC

Clostridium Clostridium botulinum 8 11 29.6 35.3

Campylo Campylobacter jejunii 6 7 31.6 39.8

Francis Francisella tularensis 8 7 33.8 41.6

Staph Staphylococcus aureus 15 11 34.2 40.5

Sulfoa Sulfolobus spp. 8 9 35.4 45.0

B_anthracis Bacillus antharcis/aureus group 17 6 37.0 42.5

Listeria Listeria spp. 8 6 38.8 47.6

Strep_pyo Streptococcus pyogenes 12 7 39.6 48.5

Helico Helicobacter pylori 14 2 40.4 46.6

Acineto Acinetobacter spp. 6 10 40.8 43.7

Clamy_trach Clamydia trachomatis 13 7 41.8 50.7

Strep_pneu Streptococcus pneumoniae 13 7 42.0 48.8

Yersinia Yersinia pestis 11 13 49.3 51.8

Escherichia Escherichia coli 35 3 53.3 45.5

Salmo Salmonella enterica 14 12 54.6 45.3

Neisseiria Neisseiria meningitidis 8 4 55.3 43.8

Brucella Brucella spp. 9 8 58.8 41.6

Bifido_longum Bifidobacterium longum 6 7 61.9 38.2

Mycobacterium Mycobacterium tuberculosis complex 7 1 66.1 41.5

Burk_ceno Burkholderia cenocepacia complex 8 16 68.2 31.0

Burk_mal Burkholderia mallei group 9 12 68.7 31.0

NOTE.—Data comes from Lassalle et al. (2015). On each line is indicated the species and the corresponding number of strains in the alignments, the number of
concatenates, the mean observed GC content and the median observed ENC, each concatenate being approximately 50 genes long. Genes are from the core genome, at
least 900 nt long and classified as nonrecombinant in Lassalle et al. (2015).

aArcheal species of the data set.
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SSR (Yap and Speed 2004), and L95 (Lobry 1995, the most

general strand symmetric model). As there are many ways to

set the parameters of the codon layer for a given GC3�C , we

used the scenario that may be the most difficult to discrimi-

nate, where the amino acids of a same redundancy class share

the same codon preferences and where for each amino acid

all GC ending synonymous codons share uniformly this GC3�C
preference (and symmetrically for AT). The AA preferences of

the A layer were chosen randomly, to be different from the

root preferences which equals to 1
20 for each amino acid.

Hence, the A layer is not stationary (see supplementary mate-

rial, Supplementary Material online, for the values). For each

parametrization, we ran five replicates.

We also performed parametric bootstrap tests on

Burkholderia cenocepacia complex, Campylobacter jejunii spe-

cies (GC-rich and AT-rich, respectively) to check the variance

of real estimates that considers particular codon bias. We per-

formed 30 replicates for each concatenate.

Results

We studied 21 groups of prokaryotes that are diverse in terms

of genomic content (GC content ranges from 29% to 68%).

We showed two main results. First, SENCA better predicts ge-

nomic content and CUB than YN98+F61. Second, SENCA pa-

rameterization is relevant to distinguish mutational effects from

selection on codons, and to compare them. Finally, we studied

a deeper Enterobacteria tree of five species to see how the

different layer effects scale with the depth of the tree.

Model Identifiability and Validation

Simulations

In theory, SENCA is identifiable (see supplementary material,

Supplementary Material online, for demonstration), but we

wanted to check its practical identifiability on our data. For

this, we performed a simulation study and parametric boot-

straps. Results are shown in figure 2, for controlled parameters

(red dots) and for parametric bootstraps on C. jejunii (AT-rich

species, blue dots) and B. cenocepacia complex (GC rich spe-

cies, green dots). In both cases maximum-likelihood estimates

from SENCA retrieved with good precision the values used for

simulations, confirming the model identifiability. In particular,

one concern may be that opposite effects from the nucleotidic

and codon layers may be hard to grasp by SENCA. Here we

see that SENCA retrieves the input parameters correctly, even

in those difficult cases.

We also tested a simulation study with N layer modeled by

HKY85, SSR, GTR, or L95. We saw that using complex nucleo-

tidic models, such as SSR, GTR or L95, reduced the practical

identifiability of the model, and that HKY85 and T92 gave

similar results justifying our usage of the T92 nucleotidic

model. Results are shown in supplementary figure S4,

Supplementary Material online.

Model Validation

We compared likelihoods of SENCA and YN98 models using

AIC and BIC criteria (see supplementary table S1,

Supplementary Material online). Using AIC, SENCA is better-

fit than YN98 for 152 concatenates out of 166. Using BIC

(�BIC > 2), SENCA is better-fit than YN98 in 121 concatena-

tes. SENCA has fewer parameters to estimate than YN98:

Both models approximately share the same number of total

parameters, but in SENCA we can hypothesize the stationarity

layer by layer, and doing it for the AA layer reduces the

number of free parameters by 19. This possibility of tuning

each layer in the model according to the biological signal

under study is one of the most relevant features of SENCA.

To check the importance of each layer, we also performed

estimations by fixing one layer to its null hypothesis at a time:

SENCA½NC�; SENCA½NA�; SENCA½CA�. We computed LRT to

validate the significance of our parametrization. Layers N, C,

and A are always informative (P value< 0.05 after Bonferroni

correction) except for the layer N of the enterobacteria study.

Comparison to YN98 + F61 Model

GC Content at Equilibrium

In figure 3, we compare the equilibrium GC? content of YN98

and SENCA with T92 model of the N layer (analyses using

HKY85 are similar, results are not shown). For most of the

species, global GC? estimates of SENCA are below GCobs, in-

dicating a global tendency toward AT enrichment at equilib-

rium. In particular, for all AT-rich species, GC? is close to 0.3, a

value observed in some recent studies (Hershberg and Petrov

2010; Hildebrand et al. 2010) as the equilibrium of mutation

forces. This overall tendency is not identified by YN98, whose

estimates are often closer to a uniform GC content relative to

SENCA estimates.

As already observed in many species, in figure 3b, we

found GC3 content more biased than GC content.

Comparing equilibrium GC3? of both models, we see that

SENCA estimates are often closer to the observed values

than YN98, especially for AT-rich and GC-rich species, even

though models are theoretically both able to retrieve such

extreme GC3 biases. It suggests that explicitly taking into ac-

count the structure of the genetic code in the substitution

process is an important modeling feature.

It is interesting to understand how these results depend on

the evolutionary scale. In particular, intraspecific results for

Escherichia and Salmonella can be compared with those of

the interspecific study (fig. 3) which includes these species. For

global GC content, results are quite similar between and inside

species, with YN98 still closer to a uniform GC content relative

to SENCA. For GC3, the equilibrium estimates both by SENCA

and YN98 are higher than the intraspecific estimates, which

reveals the difference between studies at inter- versus intra-

specific scales, where synonymous mutations may still be
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polymorphic. We can see that the difference is more marked

for SENCA, which we attribute to a better capacity to grasp

the evolutionary signal at the third position in the intraspecific

study.

Codon Usage Bias

We then explored CUB using ENC (Wright 1990). We com-

puted equilibrium ENC? estimated by YN98 and by SENCA

(see fig. 3c). As expected, ENCobs is lower in AT-rich or GC-rich

species: The higher the bias in genomic content, the higher

the bias in codon usage. By comparison to ENCobs, ENC?YN98

almost invariably shows lower CUB than the observed values,

whereas ENC?SENCA and ENCobs are closer for all species. At the

interspecific level, SENCA also predicts an equilibrium ENC

closer to the observed one, whereas YN98 has higher

values, matching what is seen on the intraspecific analysis of

E. coli and S. enterica. Moreover, we can notice that ENC? of

Enterobacteria is lower than of E. coli and S. enterica. This is

explained because at the intraspecific scale, slightly deleterious

mutations are expected to be still present whereas they must

have been deleted at the interspecific scale. Those deleterious

mutations increase the frequency of unpreferred codons and

lead to an increase of ENC? values.

Effects on Selection Measure

! is used as an index for the strength of selection—the lower

the value of !, the stronger the purifying selection. ! is con-

sidered as the ratio between nonsynonymous substitutions

(a)

(c)

FIG. 2.—Simulation results for each layer. x axis corresponds to the chosen values (red dots) or known values (green and blue dots) used to simulate data,

y axis to the values estimated by maximum likelihood. Red dots correspond to simulations with GCN and GCC ranging from 0.3 to 0.7. Green and blue dots

correspond to parametric bootstrap where parameter values taken from previous estimations are used to first simulate, then infer, the evolutionary

processes, respectively, of Burkholderia cenocepacia complex and of Campylobacter jejunii.
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(a)

(b)

(c)

FIG. 3.—GC, GC3 contents and ENC estimates at equilibrium from SENCA and YN98. Species are ordered by increasing GC content in (a) and (c), and by

increasing GC3 in (b). Interspecific results are shown on the right. Gray bars represent observed GC in (a), observed GC3 in (b), and observed ENC in (c).

Boxplots span the different concatenates within a species. Black stands for SENCA estimates, green for YN98 estimates. Arrows indicate Escherichia coli and

Salmonella enterica.
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and synonymous substitutions. In a context where some syn-

onymous substitutions are slightly deleterious, they are less

frequent than if considered as neutral substitutions, and

SENCA will estimate higher ! than YN98. As shown in

figure 4a, we indeed observe that ! values inferred with

SENCA are significantly higher than with YN98

(P < 210�16, unilateral paired Wilcoxon test). Moreover,

these differences are even greater in the enterobacteria esti-

mates of ! than in E. coli or S. enterica estimates (except for

two concatenates of Salmonella), see figure 4b. Indeed, for

enterobacteria, the median difference between ! estimates is

0.0075 (variance 5:8� 10�7) whereas for E. coli or S. enterica,

the median is 0.0035 (variance 1:1� 10�4). In fact, in intra-

specific studies, slightly deleterious mutations may not yet

have been suppressed, and less difference is expected be-

tween neutral and synonymous substitutions than in interspe-

cific studies.

This demonstrates that taking CUB into account for evolu-

tionary studies is important as it can change the classical esti-

mates of selection acting on genomic sequences.

SENCA: A Multilayered Model

GC Content at Equilibrium

As SENCA is a multilayered model, it is possible to examine the

different layers separately. At first, we blocked one layer at a

time, which leads to the loss of useful information (see LRT

results; supplementary table S1, Supplementary Material

online). Even though, in this case, the global GC� content is

mostly reliable (see supplementary fig. S5, Supplementary

Material online), the dynamics between layers are different

and the CUB (through ENC�; see supplementary fig. S5c,

Supplementary Material online) is highly impacted if C (for

average GC species) or A is fixed (for every species). This is

explained as each layer refines the model, and it confirms the

importance to examine the joint contribution of N, C, and A

on GC� and GC3� estimates.

We looked at dGC?, the distance between GC? and uni-

form composition (see eq. 5). We checked whether the effects

of the different layers may be summed to explain the equilib-

rium GC content. Indeed the correlation between dGC? and

the sum dGC?
A þ dGC?

C þ dGC?
N is highly significant

(R2 ¼ 0:996; P < 10�16, see supplementary fig. S6a,

Supplementary Material online), and the slope of the regres-

sion is 0.95 (intercept was fixed to 0). Therefore, dGC? esti-

mates can be seen as different forces acting separately on the

global GC? content. Thus, we looked at the contribution of N,

C, and A layers on equilibrium GC content (fig. 5a). We ob-

served that in most of the cases C and N layers influence GC in

the same direction. This leads to a more biased dGC?—that is,

further from 0.514—than any layer taken independently. For

AT-rich species, the N layer has negative dGC? values,

whereas for GC-rich species (> 60%), dGC?
N is positive. The

C layer follows the same pattern in a smoother way.

Furthermore, we saw that similar dGC? can be due to very

different dGC?
N; dGC?

C , and dGC?
A. As an example, the species

Clostridium botulinum, Staphylococcus aureus and

Streptococcus pyogenes present similar dGC? values, approx-

imately�0.2, but different layers effect, with the N layer dom-

inating in St. aureus, or C and A layers having opposite effects

in Cl. botulinum. This illustrates the ability of our multilayered

model to explain the nucleotide composition of sequences.

Overall, we observed two large categories of intraspecific

results. For all the species but the GC-rich ones and Yersinia

pestis, the N layer has a negative effect on dGC� and dGC3�.

(a) (b)

FIG. 4.—Estimates of! from SENCA and YN98. The line representsoSENCA ¼ oyn98. Estimates of SENCA are significantly higher than those of YN98 (see

main text). (a) represents the intraspecies data set and (b) represents in blue Escherichia coli, in red Salmonella enterica, and in black the concatenates from

the interspecific data set. Each point is a concatenate.
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(a)

(b)

FIG. 5.—Layers contribution to GC and GC3 contents at equilibrium from SENCA. Blue stands for GC?
N , red for GC?

C , and yellow for GC?
A. (a) represents

the distances of N, C, and A to a uniform GC content (dGC?
layer ¼ GC?

layer � 0:514) and (b) the distances of N, C, and A to a uniform GC3 content

(dGC3?layer ¼ GC3?layer � 0:508). Each bar represents one concatenate. Species are ordered by increasing observed GC in (a) in and observed GC3 in

(b). Interspecific results are shown on the right. Arrows indicate Escherichia coli and Salmonella enterica.
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This makes sense in relation to the theory that mutations are

universally biased toward AT (Hershberg and Petrov 2010;

Hildebrand et al. 2010). For average GC species, selection

may compensate for such a bias by being GC-driven.

However, the behavior on GC-rich species is very different.

This difference is not due to the model, as it is symmetric

with GC, and the causes should be looked in the evolution

process. The C layer contributes far more to GC in these spe-

cies than in other ones. Both N and C layers are toward high

GC, and the A layer is strongly in the opposite direction, all

with equal strength, suggesting a complex process on content

equilibrium.

Comparing the interspecific analysis with results from

Escherichia and Salmonella is interesting as the decomposition

in the interspecific analysis is different than the one of

Escherichia and Salmonella species. In the interspecific data,

mutations are fixed, which means that the N layer is con-

cerned by substitutions, that is, mutations plus selection.

These substitutions are GC-driven, and as in the intraspecific

studies the mutations are toward AT, we can hypothesize that

selection biased toward GC. At this evolution scale, prefer-

ences on amino acids have a strong impact toward AT, much

stronger than in the intraspecific studies, with the exception of

GC-rich species. This unexpected result is connected to previ-

ous hypotheses published as Lobry (1997). Indeed, the pref-

erence toward AT in the A layer is probably related to the

chemical constraints of the bacterial proteome.

Finally, we studied GC3? (fig. 5b). The correlation between

dGC3? and the sum dGC3?A þ dGC3?C þ dGC3?N is highly sig-

nificant (R2 ¼ 0:997; P < 10�16, see supplementary fig. S6b,

Supplementary Material online) with a slope of 0.87 and an

intercept fixed to 0. Globally, dGC3? is clearly driven by the

C layer. Red barplots are predominant for every species but

S. enterica. This is different from the behavior of GC? estimates

but it is expected as most—but not all—of the C layer action

should be seen in the third codon position. This is consistent

with the classical observation that GC3 is more biased than

GC12 (GC at the first and second codon positions) in prokary-

ote genomes (Muto and Osawa 1987). The N layer effect is

weak, but not null at this position. By definition, it is equal to

the global N effect which acts identically on all positions. Note

that for GC�3 there is nearly no impact from the A layer be-

cause of the degeneracy of the genetic code at this position.

Codon Usage Bias

We computed partial ENC?, that is, ENC computed on codon

partial equilibrium frequencies due to each layer separately,

and compared this with ENC? and ENCobs (see supplementary

fig. S7, Supplementary Material online). Our main result is that

ENC? is quite close to ENC?
C and that ENC?

N was very high

(mean value is 58.4). This suggests that the C layer dominates

the establishment of CUB at equilibrium, with a relatively small

effect of the N layer. There are a few interesting exceptions: St.

aureus, Chlamydia trachomatis, or, among GC-rich species,

Burkholderia cenocepaia show a lower value of ENC?
N, indicat-

ing a marked effect of the N layer on CUB. These effects need

to be studied in context, that is, to be compared with ENC?.

To quantify the effects of C and N layers on CUB at equi-

librium, we defined dENC as the distance of ENC to 61 (no

bias). In figure 6, we see that the C layer is predominant in the

FIG. 6.—Quantification of N and C layers’ effect on CUB. Blue represents
dENC?

N

dENC? and red
dENC?

C

dENC? . Species are ordered by increasing observed GC content.

Interspecific results are shown on the right. Arrows indicate Escherichia coli and Salmonella enterica.
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estimation of CUB for the 21 species: dENC?
C > dENC?

N.

Similarly to our procedure for dGC?; we checked whether dE

NC? could be predicted from the layer estimates, by fitting d

ENC? to dENC?
N þ dENC?

C with a linear regression model. The

fit indicates that the intuitive idea of adding separate layer

effects to estimates CUB at equilibrium works quite well

(R2 ¼ 0:964 with P < 10�16, slope: 0.98 with an intercept

fixed to 0, see supplementary fig. S8, Supplementary

Material online). The slope of 0.9806 of the linear model in-

dicates that the direct sum of dENC?
N and dENC?

C slightly over-

estimates dENC? in these data. Moreover, we can see that this

tendency varies with GC content, as the ratio
dENC?

C
þdENC?

N

dENC? is

mostly below 1 for GC-poor species, and above 1 for GC-rich

species (see fig. 6).

As ENC is a statistic computed on multidimensional data,

the sum of dENC? for the C and N layers neglects the over-

lapping effects of these layers. By direct comparison, our

model allows us to measure how N and C layers interact

to influence the overall CUB, either positively or negatively.

One clear example of negative interaction is Salmonella: In

figure 5b, we see that dGC3?N and dGC3?C do not have the

same sign for this species. Correspondingly, in figure 6, the

sum dENC?
C þ dENC?

N overestimates dENC?, for all Salmonella

concatenates but the three where the N and C layers agree on

GC3?, which means that N and C layers interact negatively, as

expected. One can also see a pattern of “descending stair-

case” for the red bars in figure 6, for many species (in partic-

ular St. aureus and B. cenocepaia, respectively, for AT- or

GC-rich examples). This is related to the data structuration,

as genes were concatenated according to their observed ENC

values, higher ENC (and then lower CUB) last. This pattern

then indicates that for genes having a low level of observed

CUB, SENCA finds the C layer effect to be less important than

in genes with higher CUB.

Discussion

In sequence evolution, several biological processes act to-

gether at nucleotides, codons, and amino acids scales. In

order to quantify the effects of mutation and selection at

each of these scales, we developed an evolutionary model,

SENCA, divided into three layers: nucleotide (N), codon (C),

and amino acid (A). SENCA, by construction, is very flexible,

and can be employed to tackle a variety of biological ques-

tions. As an example, we can set each layer to be stationary or

not in function of the data. The decomposition of evolutionary

signals in different layers allows for treating each layer sepa-

rately; for example, by using specific amino acid substitution

models for the A layer, or specific nucleotide substitution

models for the N layer. Moreover, because the genetic code

is explicit in this model, selection on CUB and on nonsynony-

mous substitutions can be studied simultaneously. This differ-

ent modeling makes the most prominent difference with

model FMutSel, where layers A and C are not distinguishable.

Moreover, FMutSel is all stationary, which is a strong hypoth-

esis (actually not supported by our data). Considering the

model described in Nielsen et al. (2007), the authors assume

that 1) CUB is only defined through an optimal codon per

amino acid, 2) selection on CUB shows the same intensity

for all amino acids, and 3) the set of optimal codons is

known a priori. In this model, this unique fitness on all pre-

ferred codons neutralizes all preferences on amino acids

(which is not supported by our data). Moreover, SENCA

does not require the optimal codons to be known—which is

particularly useful when using a nonhomogeneous codon

layer where preferences may change over time. One addi-

tional feature of SENCA is that we can easily study the overall

equilibrium of the model in a mixture of equilibrium from each

layer, through summary statistics, such as dGC?
layer; dGC3?layer,

and dENC?
layer. We have shown that these statistics can be

manipulated intuitively, as the effects of all layers can be

summed up almost linearly to give the global equilibrium.

Moreover, these statistics all account for the phylogenetic

signal, which was not considered in previous studies such as

Novembre (2002), Supek et al. (2010), and O’Neill et al.

(2013).

We performed a nonstationary analysis of the core ge-

nomes of 21 bacterial and archaeal species from Lassalle

et al. (2015), and of five Enterobacteria. We estimated equi-

librium frequencies using SENCA in comparison with similar

estimates using classical codon model YN98 + F61. The main

mechanistic difference between the two models is that

SENCA considers explicitly the genetic code, and synonymous

substitutions are a priori not neutral. Indeed, ENC? of YN98 is

higher than ENC? of SENCA (fig. 3c), which challenges the

assumption that synonymous substitutions are neutral. As ex-

pected, and in accordance with simulations in Spielman and

Wilke (2015), we show that this assumption leads to a sys-

tematic bias in the estimation of the strength of selection

acting on nonsynonymous substitutions. When synonymous

substitutions have a selective cost, they are less frequent, lead-

ing to higher estimates of !. These estimates are in most cases

more accurate than those of YN98, as shown by maximum-

likelihood comparisons with the AIC and BIC. On the other

hand, it is possible that codon preferences change, in which

case synonymous substitutions may be advantageous, and

lead to lower estimates of !. SENCA is then useful for detect-

ing selective pressure on nonsynonymous substitutions, as it

better estimates the cost of synonymous substitutions by dis-

tinguishing them from the background mutational bias

(Lawrie et al. 2011).

Moreover, taking into account selection on CUB allows our

model to better predict genome composition. This is unex-

pected, as in comparison with YN98 + F61 there is no addi-

tional composition specific feature in our modeling. First, our

estimates of the evolutionary processes acting on genome

composition in all these species are in agreement with the

recent findings of Hershberg and Petrov (2008) and
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Hildebrand et al. (2010), as GC?
N is low, indicating a bias to-

ward AT in the mutational process. Second, our model de-

scribes more accurately how GC3 is more biased than GC.

Interestingly, although this higher variability of the third codon

position is often hypothesized to come from mutational pro-

cesses unrestricted by selection (as is the case in first and

second positions of codons, e.g., Muto and Osawa 1987),

SENCA explains most of this variability through selection on

CUB. On the other hand, the influence of nucleotide processes

is stronger when considering the global genome composition,

as CUB has a much weaker impact on the first and second

positions.

The SENCA approach allows us to draw conclusions with

respect to the relative influence of selection and mutation on

codon usage. In our analysis, multiple AT-rich pathogens have

very similar GC? values, which are decomposed in different

effects of each layer. We also show that the A layer effects is

prominent in GC-rich species, with an amino acid composition

depleting the genome in GC, whereas the A layer is quanti-

tatively less important in AT-rich species. Finally, our results

clearly indicate that CUB is driven by the C layer (fig. 6).

These differences may arise from differences in host, popula-

tion size or species evolutionary history (Losada et al. 2010).

Globally, our results on intraspecific data can be interpreted

in the context of the current thinking that mutations are uni-

versally biased toward AT. For middle and low GC species, we

observe a quite constant effect of the N layer with a partial

equilibrium GC of 30%, in agreement with Hershberg and

Petrov (2010) and Hildebrand et al. (2010). The C layer effect

on GC?, on the contrary, goes smoothly upwards with in-

creasing observed GC content. Then, it appears that non-

GC-rich species all share the same nucleotide processes, and

their actual GC content depends on the level of selection on

CUB.

A surprising result is the inversion of the N pattern for GC-

rich species. One explanation could be the selection on CUB:

In those species, there would be such a strong selection de-

leting AT-driven mutations, that the N layer would stand for

substitutions, and not mutations, even though the data are

intraspecific. Indeed, comparing Brucella and Bifidobacterium,

two GC-rich species with close observed GC, we can see that

their N layers are very different, and ENC? is much lower in

Bifidobacterium, indicating a stronger selection on CUB.

Another hypothesis is that nucleotidic processes in those spe-

cies are more complex; in particular, one may think of GC-

biased gene conversion, which may push the GC content of

those genomes higher. A third hypothesis would be selection

on GC content itself by the environment, an hypothesis hotly

debated at the turn of the century (Galtier and Lobry 1997;

Naya et al. 2002; Musto et al. 2006; Palmeira et al. 2006) and

still driving research nowadays (Reichenberger et al. 2015)

Our interspecific analysis shows that, if the average results

on genome composition are quite similar with those of the

corresponding species studied intraspecifically (Salmonella)

and Escherichia, the internal evolutionary dynamics can be

quite different. This may be related to the evolutionary scale

or the rate of fixation of mutations in the intraspecific data.

These results emphasize the interest of decomposing the evo-

lutionary signals in layers, as done by SENCA, to better test

hypotheses on the evolution of those species.

One future SENCA development is to distinguish gBGC

from other genomic signals. This would be particularly rele-

vant for applications to metazoan, where gBGC acts as a

spurious mode of positive selection, promoting the fixation

of deleterious mutations (Ratnakumar et al. 2010) whereas

selection on CUB might also be effective (Gingold et al.

2014). Concerning bacteria, which have been shown to also

be subject to gBGC in recombining genes (Lassalle et al.

2015), application of SENCA is also in theory possible but

much more difficult because the method would require the

knowledge of several site-specific phylogenetic trees, which is

hard to infer when between species recombination is strong.

Eventually, likelihood inference will have to consider all these

trees simultaneously.

Finally, flexibility of our model allows for an investigation of

biological questions focused on each particular layer. With

SENCA, rates of substitutions between amino acids are only

based on a profile of 20 preferences. To be more realistic, an

ongoing project is to use empirical matrices of preferences

between amino acids, as done in models of protein evolution.

But specific matrices will be needed, as in our case overall

nucleotide biases are handled by the nucleotide layer and clas-

sical protein models already include them. Several methods to

model site-specific amino acid fitness have been proposed

previously (Halpern and Bruno 1998; Rodrigue et al. 2010;

Tamuri et al. 2012), with similar formula for the selection,

and it may be straightforward to adapt them on our modeling.

However, the additional complexity may prevent the direct

estimation of the whole process, and perhaps it will be nec-

essary to estimate this site-specificity in a second step.

The codon layer accounts for the relative preferences be-

tween synonymous codons. We could compare these prefer-

ences to biological correlates such as tRNA content and gene

expression. For example, are the most frequent tRNA in cells

linked to codon preferences estimates? There is a known cor-

relation between tRNA content and codon usage (e.g.,

Kanaya et al. 1999; Rocha 2004). Using SENCA, we could

quantify if this correlation is only due to the C layer, or if

CUB originating from N layer has an impact on this correlation.

Moreover, nonhomogeneous modeling will permit us to ana-

lyze how and when CUB has evolved. This could be applied to

cases of genome reduction caused by ecological changes,

such as the marine cyanobacteria Prochlorococcus (Batut

et al. 2014) or Mycobacterium leprae (Gómez-Valero et al.

2007).

Last but not least, the evolutionary estimation of CUB by

SENCA could be used as a predictive factor instead of ob-

served CUB in multiple applications. One potential application

SENCA GBE
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is the correlation between CUB and gene expression, and we

hope that SENCA will provide a relevant estimator along these

lines. Using techniques such as stochastic mapping (Minin and

Suchard 2008; Romiguier et al. 2012), it is possible to infer

heterogeneous ancestral patterns of evolution from an homo-

geneous model, and then to infer ancestral gene expression.

As an extension of SENCA, we plan to parametrize site-

specific selection on codon usage, and use mixtures of these

site models to obtain site-specific and gene-specific estimates

of the effect of selection on codon usage.

Supplementary Material

Supplementary equation, material, figures S1–S8, and table

S1 are available at Genome Biology and Evolution online

(http://www.gbe.oxfordjournals.org/).
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