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Abstract: Nucleolin (NCL) has been reported as a cellular receptor for the human respiratory syncytial
virus (RSV). We studied the effects of re-purposing AS1411, an anti-cancer compound that binds
cell surface NCL, as a possible novel strategy for RSV therapy in vitro and in vivo. AS1411 was
administered to RSV-infected cultures of non-polarized (HEp-2) and polarized (MDCK) epithelial
cells and to virus-infected mice and cotton rats. Results of in vitro experiments showed that AS1411,
used in micromolar concentrations, was associated with decreases in the number of virus-positive
cells. Intranasal administration of AS1411 (50 mg/kg) to RSV-infected mice and cotton rats was
associated with partial reductions in lung viral titers, decreased virus-associated airway inflammation,
and decreased IL-4/IFN-γ ratios when compared to untreated, infected animals. In conclusion,
our findings indicate that therapeutic use of AS1411 has modest effects on RSV replication and host
response. While the results underscore the challenges of targeting cell surface NCL as a potential novel
strategy for RSV therapy, they also highlight the potential of cell surface NCL as a therapeutic target.

Keywords: nucleolin; RSV; virus; therapy

1. Introduction

The respiratory syncytial virus (RSV, or human orthopneumovirus due to a recent name
change [1]), an enveloped, single-stranded RNA Pneumovirus which affects all age groups
worldwide and causes serious lower respiratory infections such as bronchiolitis and pneumonia [2].
Despite considerable efforts made since the 1960s to develop a safe and effective RSV vaccine,
no licensed vaccine is available, and the recent failure of a phase III clinical trial of a vaccine candidate
exemplifies the longstanding difficulties experienced in this area [3]. Palivizumab, an antibody that
binds to the RSV fusion (F) protein (a viral envelope protein involved in initial viral entry into cells and
cell-to-cell spread of infection), is used for RSV prophylaxis in selected “high-risk” patients, and there
are reports of RSV resistance developing with respect to this drug [4–7]. Treatment of RSV infections
has predominantly focused on targeting viral components such as the F protein [8] or the polymerase
enzyme involved in viral nucleic acid replication [9]. Targeting viral components confers selection
pressure for the emergence of drug-resistant viruses [5,10,11].
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As obligate intracellular parasites, viruses interact with host cellular components during
infection [12,13]. “Targeting the host” is a potential alternative strategy for anti-viral therapy, with this
approach conferring a lower probability of the development of viral drug resistance [14]. With our
discovery of nucleolin (NCL) as a functional cellular receptor for RSV that putatively interacts with F
protein [15], we reasoned that administration of a compound that binds cell surface NCL might be
useful for RSV treatment. To test this, we studied the effects of AS1411 (also known as ACT-GRO-777;
ACT Corporation, Lexington, KY, USA), a synthetic DNA aptamer that binds cell surface NCL [16,17]
and is in the process of phase II clinical trials for cancer treatment [18], on RSV infections in vitro
and in vivo. In vitro experiments consisted of AS1411 administration to RSV-infected HEp-2 cells,
a non-polarized cell line, or MDCK cells, a polarized cell line that expresses NCL on the apical
aspect [19] and models the route of entry of RSV in the respiratory tract [15,20–23]. In vivo experiments
to investigate proof of concept involved RSV challenge, followed by AS1411 administration, in two
rodent models: mice [24], and cotton rats [25]. The specific aims of this study were: (1) To determine
the effects of AS1411 administration on RSV infection in HEp-2 or MDCK cells; and (2) To determine
the effects of AS1411 given therapeutically to RSV-infected mice and cotton rats on levels of infectious
virus in the lungs, animal body weight, virus-associated airway inflammation, host IL-4/IFN-γ ratio
(an index of Th2 (IL-4), and Th1 (IFN-γ) used in evaluation of new vaccines and drugs [26–28]) and
bronchoalveolar lavage (BAL) cytology.

2. Materials and Methods

2.1. General Study Design

Figure 1 shows the schematic outline of the design for in vitro and in vivo experiments. In vitro
experiments focused on quantifying HEp-2 or MDCK cells that showed RSV-associated positive
immunofluorescence over a range of doses of AS1411. These conditions were chosen to model the
in vivo situation in which the virus is not washed off and drug treatment would be given after the
virus has already established infection and started spreading to neighboring cells. For in vivo studies,
a single dose of AS1411 suspension (50 mg/kg) was delivered intranasally to anesthetized animals.
This dose of AS1411 was based on dosing used in humans for cancer treatment, and the intranasal
route reflected cell surface NCL being expressed on the apical aspect of airway epithelial cells [20,21].

2.2. In Vitro Experiments: Administration of AS1411 to Rsv-Infected HEp-2 Cells or MDCK Cells

HEp-2 cells or MDCK cells, cultured in EMEM (Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% fetal bovine serum (FBS) (Thermo Fisher Scientific, Waltham, MA, USA)
and antibiotics, were plated onto black, flat, clear-bottomed 96 well plates (Thermo Fisher Scientific,
Waltham, MA, USA) (1 × 104 cells/well). The next day RSV A2 (ATCC, Manassas, VA, USA), prepared
by centrifugation as previously described [29], was added (multiplicity of infection (MOI)) = 0.1) and
incubated for 24 h at 37 ◦C and 5% CO2 to allow at least one full round of virus replication. Twenty-four
hours later, AS1411 was applied to the wells in triplicate, starting at 70 µM with serial dilutions down
to 4.4 µM. As a negative control we used a cytosine-rich derivative of the same compound (CRO) that
does not interact with NCL.

In the fluorescence focus assay (a type of plaque assay adapted from Malhotra et al. [30]),
the amount of RSV-infected cells per well is converted to a fluorescent signal. Twenty-four hours
after AS1411 or sham treatment, cells were fixed with 75% cold acetone in phosphate-buffered saline
(PBS) for 5 min. Following three washes with PBS/0.1% Tween-20 (PBS-Tween) (Thermo Fisher
Scientific, Waltham, MA, USA), cells were incubated with a 1:10 dilution of NCL-RSV3 monoclonal
antibody pool (Novacastra, Newcastle Upon Tyne, UK) in PBS-Tween/10% FBS for 30 min
at room temperature. Cells were washed again with PBS-Tween and incubated with 1:400
dilution (5 µg/mL) of Alexa Fluor 488 anti-mouse IgG (Life Technologies, Carlsbad, CA, USA)
in PBS-Tween/10% FBS. Then, after a final wash, fluorescence was detected with a Tecan Infinite
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M200ProTM plate reader (excitation: 488 nm; emission: 519 nm) (Tecan Group, Männedorf,
Switzerland). Results were expressed as a percentage of fluorescent-positive cells to the corresponding
“virus only” control. To assess for potential cytotoxicity, parallel experiments were carried out using
the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS)
assay for cell viability (Promega, Madison, WI, USA) according to the manufacturer’s instructions.
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Figure 1. General study design. (a) In Vitro experiments with respiratory syncytial virus (RSV)-infected
HEp-2 and MDCK cell cultures; (b) In Vivo experiments in mouse model; (c) In Vivo experiments in
cotton rat model. BAL: bronchoalveolar lavage.

2.3. Mouse Experiments

Animal studies were approved by the Hospital for Sick Children (Toronto, ON, Canada)
Animal Care Committee in accordance with standards of the Canadian Council on Animal Care
(Project Approval Number: 34753). Female Balb/c mice, aged 6 to 8 weeks, were purchased from
Charles River Laboratories (St. Constant, QC, Canada), kept in a specific pathogen-free environment,
and fed food and water ad libitum. The RSV used (RSV-A2, ATCC, Manassas, VA, USA) was
propagated in HEp-2 cells and purified over sucrose in an ultracentrifuge [31].

For all virus instillation procedures, lightly sedated mice (isoflurane) readily inhaled 50 µL of
instillate applied to their nares with a P-200 pipetter while the mouth was held closed. On day 0,
mice received 5 × 106 plaque forming units of RSV A2 via intranasal installation (n = 4–6 per group).
Mice were monitored and weighed daily.

On day 1 after RSV challenge, isoflurane-anaesthetized mice received AS1411 (50 mg/kg,
diluted in PBS) via intranasal installation. The control group received buffer only. On day 4,
when RSV titers were maximal in the mouse model [24], designated mice were euthanized and
the lungs removed, weighed and homogenized for viral plaque assays on HEp-2 cell monolayers.
On day 6, when RSV-associated airway inflammation is maximal in mice [24], designated animals
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were euthanized and underwent BAL for enumeration of inflammatory cells and measurement of
protein levels of IL-4 and IFN-γ by a commercial assay (Luminex Molecular Diagnostics, Toronto, ON,
Canada). Lungs were then removed, inflated and fixed in 10% neutral buffered formalin and processed
for preparation of paraffin-embedded blocks. Four-µm-thick sections were put onto glass slides,
stained with hematoxylin and eosin (H&E) (Millipore Sigma, Temecula, CA, USA) or periodic
acid–Schiff (PAS) (Millipore Sigma, Temecula, CA, USA), and coded. For each animal, an airway
inflammation histological score was generated that represented the sum of the following parameters:
(1) airway epithelial necrosis/sloughing; (2) mononuclear cell infiltration; (3) granulocyte infiltration;
(4) airway wall edema; (5) bronchus-associated lymphoid tissue (BALT) hyperplasia; and (6) goblet cell
metaplasia (Figure 2; adapted for mouse from Hegele et al. [32], based on histopathological features of
human bronchiolitis [33]).
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2.4. Cotton Rat Experiments

Four-to-five-week-old cotton rats arrived one week after ordering, were quarantined for 14 days,
and were randomized and assigned to treatment or control groups (n = 6 animals per group).
Animals were maintained in accordance with an approved protocol from the local Institutional Review
Board at the Lovelace Respiratory Research Institute (Albuquerque, NM, USA) (Project Approval
Number: FY14-107).

On day 0, animals were lightly sedated with isoflurane (Millipore Sigma, Temecula, CA, USA)
and received 100 µL containing either 1 × 106 pfu of RSV or uninfected sham inoculum intranasally.
Animals were allowed to recover and then 4 h later, cotton rats were again anaesthetized with isoflurane,
and received either AS1411 (50 mg/kg) or buffer, administered via intranasal installation. Animals were
monitored and weighed daily. On day 5 post-RSV challenge, when lung viral titers in cotton rats
are near peak levels and virus-associated lung inflammation can be discerned histologically [25],
animals were euthanized and BAL was performed. Lung tissue was then removed and was either
weighed and homogenized for viral titers, or snap frozen to isolate RNA, or inflated and fixed with
10% formalin and processed for preparation of paraffin-embedded blocks.

RSV titers were determined by plaque assay of lung homogenates on HEp-2 cells. Lung mRNA
cytokine levels for IL-4 and IFN-γ were measured by qPCR. Briefly, RNA was isolated from
Trizol-solubilized (Thermo Fisher Scientific, Waltham, MA, USA), snap-frozen lung tissue with the use
of the Direct-Zol™ RNA Miniprep kit (#R2053) (Zymo Research Corp., Irvine, CA, USA), according to
the manufacturer’s instructions. Cytokine mRNA expression was determined with the use of an ABI
TaqMan® RNA-to-CT™ 1 Step kit (#4292938) (Thermo Fisher Scientific, Waltham, MA, USA), an ABI
7900HT real-time thermocycler (Applied Biosystems, Foster City, CA, USA) and previously published
cytokine-specific primers and probes [34,35]. The forward and reverse primers used for this were: IL-4
Forward: CAT GTA CCG GGA ACT GTA CTC; IL-4 Reverse: GAC ATC CGG TAC AAC CAT CTT;
IL-4 Probe: 5HEX/ATG CGA CGA/ZEN/GGA AGC CTT GAA; IFN-γ Forward: CCA GAC TTT GTA
TCA TGG CTT; IFN-γ Reverse: CCG ACA TCT GAG CTA CTT GAA; IFN-γ Probe: 56-FAM/TGC TCT
GCT/ZEN/TCT CAC AGG CT. β-Actin was used as the housekeeping gene to normalize samples
(∆Ct (Ct target − Ct β-Actin)). mRNA expression was expressed as relative change from baseline
(baseline samples = no RSV challenge but treated with vehicle), ∆∆Ct (∆Ct animal − avg ∆Ct no
RSV, vehicle).

For lung histopathological assessment, 4-µm-thick sections were put onto glass slides, stained
with H&E or PAS, and coded. For each animal, an airway inflammation score was generated as
described above for mice, adapted for cotton rats.

2.5. Statistical Analyses

Unless otherwise indicated, we expressed results as mean ± SEM and compared groups by either
Mann–Whitney U test; Kruskal–Wallis test, or two-way ANOVA with Bonferroni procedure to account
for multiple comparisons (PRISM software version 6.0, GraphPad Software Inc., La Jolla, CA, USA,
http://www.graphpad.com). We considered a p value of ≤0.05 to be statistically significant.

3. Results

3.1. In Vitro Experiments

For RSV-infected HEp-2 cells that were treated with AS1411 or control compound, and analyzed by
using a fluorescent focus assay, the results (Figure 3a) demonstrate a moderate reduction in the number
of fluorescent cells, i.e., virus-infected cells, associated with AS1411 treatment. Results of dose–response
experiments (Figure 3b) showed that even for higher concentrations of AS1411 given (17.5 µM
and 70 µM), RSV infection was only reduced about 60% in comparison to controls. However, for
RSV-infected MDCK cells that were treated with AS1411 or control compound, and analyzed by using
the fluorescent focus assay, the results (Figure 3c) demonstrate a dramatic reduction in the number of

http://www.graphpad.com
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fluorescent cells, i.e., virus-infected cells, associated with AS1411 treatment. Results of dose–response
experiments (Figure 3d) showed that for higher concentrations of AS1411 given (17.5 µM and 70 µM),
RSV infection was reduced on the order of 1–2 logs in comparison to controls. Results of MTS assay,
done in parallel, showed that there was no difference in cell viability, i.e., no significant cytotoxicity,
associated with AS1411 administration for either HEp-2 or MDCK cells (Figure 3c,f).Vaccines 2017, 5, 27  6 of 13 

 

 
Figure 3. In vitro data demonstrating the efficacy of AS1411 in reducing viral infection. Fluorescence 
images of HEp-2 cells (a) or of MDCK cells (d) treated with 17.5 μM AS1411 (bottom) or control (CRO) 
compound (top), given 24 h after RSV challenge. With AS1411 treatment, the reduction in fluorescence 
signal is due to reduction in the overall number of RSV-infected cells; HEp-2 cells (b) or MDCK cells 
(e) infected with virus (MOI = 0.1) 24 h prior to treating with AS1411/CRO (n = 6). A total of 17.5 μM 
of AS1411 is sufficient to obtain a 60% decrease in RSV fluorescence 24 h after it is added to HEp-2 
cells (b) (** p = 0.0039 and * p = 0.01 using Bonferroni procedure; 2-way ANOVA, p < 0.0001). Quantities 
of 17.5 μM and 70 μM of AS1411 are sufficient to obtain a 87% and 97% decrease in RSV fluorescence 
in MDCK cells (e), respectively (** p = 0.003 and * p = 0.03 respectively using Bonferroni procedure; 2-
way ANOVA, p < 0.0001). The MTS assay (PromegaTM, Madison, WI, USA) was performed for both 
HEp-2 (c) and MDCK (f) experiments in parallel to assess for cellular toxicity. No difference is seen 
between AS1411 and CRO in terms of cellular proliferation/health, indicating there was no significant 
cytotoxicity (2-way ANOVA, with no significant difference between each set of points using 
Bonferroni procedure). 

3.2. Mouse Experiments  

The results of mouse experiments are shown in Figure 4. Concerning viral culture results of lung 
homogenates (Figure 4a), intranasal administration of AS1411, given 1 day after RSV challenge, 
resulted in a modest (mean: 0.3 log), statistically significant decrease in lung viral titer on Day 4, in 
comparison to the sham treatment (p = 0.03). 

Figure 3. In vitro data demonstrating the efficacy of AS1411 in reducing viral infection. Fluorescence
images of HEp-2 cells (a) or of MDCK cells (d) treated with 17.5 µM AS1411 (bottom) or control (CRO)
compound (top), given 24 h after RSV challenge. With AS1411 treatment, the reduction in fluorescence
signal is due to reduction in the overall number of RSV-infected cells; HEp-2 cells (b) or MDCK cells
(e) infected with virus (MOI = 0.1) 24 h prior to treating with AS1411/CRO (n = 6). A total of 17.5 µM
of AS1411 is sufficient to obtain a 60% decrease in RSV fluorescence 24 h after it is added to HEp-2 cells
(b) (** p = 0.0039 and * p = 0.01 using Bonferroni procedure; 2-way ANOVA, p < 0.0001). Quantities of
17.5 µM and 70 µM of AS1411 are sufficient to obtain a 87% and 97% decrease in RSV fluorescence
in MDCK cells (e), respectively (** p = 0.003 and * p = 0.03 respectively using Bonferroni procedure;
2-way ANOVA, p < 0.0001). The MTS assay (PromegaTM, Madison, WI, USA) was performed for
both HEp-2 (c) and MDCK (f) experiments in parallel to assess for cellular toxicity. No difference
is seen between AS1411 and CRO in terms of cellular proliferation/health, indicating there was no
significant cytotoxicity (2-way ANOVA, with no significant difference between each set of points using
Bonferroni procedure).
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3.2. Mouse Experiments

The results of mouse experiments are shown in Figure 4. Concerning viral culture results of
lung homogenates (Figure 4a), intranasal administration of AS1411, given 1 day after RSV challenge,
resulted in a modest (mean: 0.3 log), statistically significant decrease in lung viral titer on Day 4,
in comparison to the sham treatment (p = 0.03).

Concerning mouse body weights over the course of the experiment, Figure 4b shows that RSV
infection was associated with significant weight loss in comparison to uninfected animals, and this was
not affected by AS1411 treatment. In uninfected animals, AS1411 administration did not significantly
affect animal body weight.

Histopathological scores of airway inflammation on Day 6 after viral challenge (Figure 4c) were
significantly lower in the RSV-infected, AS1411-treated group as compared to the RSV-infected,
untreated animals (p = 0.009). AS1411 administration to uninfected mice had no significant effects on
airway inflammation compared to those animals given sham inoculum.

On Day 6 post-RSV challenge, in BAL fluid specimens (Figure 4d), there was a significant decrease
in IL-4/IFN-γ protein levels in RSV-infected, AS1411-treated animals in comparison to the group of
infected animals that received sham inoculum (p < 0.05). AS1411 administration to uninfected animals
did not significantly affect IL-4/IFN-γ ratios in BAL fluid specimens. BAL cell counts were also
determined and results are shown in Table 1. RSV challenge was associated with significant increases
in BAL total cells, percentage of granulocytes and lymphocytes, and an accompanying significant
decrease in percentage of macrophages (p < 0.002). These RSV-associated findings were observed
irrespective of AS1411 treatment status. Moreover, administration of AS1411 had no significant
effect on the total cell counts or percentages of granulocytes, lymphocytes, and macrophages in BAL
fluid specimens.

Table 1. BAL cytology for mice and cotton rats a.

RSV (−),
AS1411 (−)

RSV (−),
AS1411 (+)

RSV (+)
AS1411 (−)

RSV (+),
AS1411 (+)

Statistical
Analysis b

Mice Total cell count (×104/mL) 4.47 ± 0.95 5.57 ± 1.18 30.60 ± 11.95 14.48 ± 3.97 S
% granulocytes 1.45 ± 0.66 2.69 ± 0.63 20.32 ± 7.84 23.31 ± 9.26 S
% lymphocytes 9.79 ± 2.36 9.28 ± 2.63 44.99 ± 0.18 37.66 ± 9.33 S
% macrophages 88.72 ± 0.20 88.05 ± 0.19 34.90 ± 0.14 39.00 ± 10.49 S

Cotton
rats

Total cell count (×105/mL) 2.96 ± 0.73 4.56 ± 2.17 2.03 ± 1.18 3.63 ± 0.98 NS
% granulocytes 26.6 ± 12.7 25.14 ± 13.11 21.37 ± 10.80 29.95 ± 13.94 NS
% lymphocytes 1.48 ± 1.01 0.77 ± 0.56 1.12 ± 0.60 2.60 ± 2.06 NS
% macrophages 71.88 ± 13.22 74.09 ± 13.57 77.51 ± 10.99 67.45 ± 12.26 NS

a Results displayed as mean ± SEM; b S: p < 0.002 for RSV (+) vs. RSV (−); p > 0.05 for AS1411 (+) vs. AS1411 (−)
and for the RSV·AS1411 interaction; NS: p > 0.05 for RSV (+) vs. RSV (−), AS1411 (+) vs. AS 1411 (−) and for the
RSV·AS1411 interaction (2-way ANOVA with Bonferroni procedure).
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Results of cotton rat experiments are shown in Figure 5. Concerning viral cultures (Figure 5a), 
the group of cotton rats that received AS1411 treatment 4 h after viral challenge had a pronounced 
(mean: 1 log), statistically significant decrease in lung RSV titer on Day 5 in comparison to RSV-
infected, sham-treated animals (p = 0.002). 

Over the course of the experiment, all animals studied appeared healthy, irrespective of RSV 
exposure status (as expected with this animal model [25]) or AS1411 treatment status. Cotton rats 
showed no significant change in body weight in association with RSV infection, irrespective of 
AS1411 treatment status, over the course of the experiment (Figure 5b). 

Histopathological scoring of cotton rat airways (Figure 5c) revealed two main findings: (1) in 
RSV-infected animals, AS1411 treatment was associated with a significantly decreased airway 
inflammation score on day 5, in comparison to virus-infected animals that did not receive the 
compound (p = 0.04); (2) administration of AS1411 to uninfected animals did not significantly affect 
airway inflammation scores, in comparison to the group receiving buffer only. RSV-infected, AS1411-
treated animals had a significantly lower IL-4/IFN-γ mRNA ratio than the “RSV only” group (Figure 
5d). 

For BAL fluid specimens collected on Day 5, the results (Table 1) indicate no significant 
associations between RSV infection status or AS1411 treatment status on total cell counts, or the 
percentages of macrophages, lymphocytes or granulocytes. 

Figure 4. In Vivo mouse data demonstrating the efficacy of AS1411 in reducing viral infection.
(a) AS1411 (50 mg/kg) given intranasally one day after RSV infection reduced lung virus levels
by 0.3 log (~50%) on Day 4 (Mann–Whitney U test; ** p = 0.03); (b) Similar RSV-associated drop
and recovery in body weight is obtained in infected animals with or without treatment with AS1411.
AS1411 had no effect on body weight in uninfected animals (* p < 0.05, 2-way ANOVA with Bonferroni
procedure). Significant difference seen between sets of points is due to RSV regardless of presence of
absence of AS1411. Square: RSV (+), AS1411 (+); open triangle: RSV (+), AS1411 (−); open diamond:
RSV (−), AS1411 (+); circle: RSV (−). AS1411 (−); (c) AS1411 treatment decreased RSV-associated
airway inflammation (*** p = 0.009; Kruskal–Wallis test with Bonferroni procedure) and did not affect
airway pathology in uninfected animals (NS = not significant); (d) In RSV-infected animals, AS1411
treatment was associated with a significantly decreased IL-4/IFN-γ ratio (* p < 0.05; Mann-Whitney
u test), considered to be a beneficial anti-RSV host response [36,37].

3.3. Cotton Rat Experiments

Results of cotton rat experiments are shown in Figure 5. Concerning viral cultures (Figure 5a),
the group of cotton rats that received AS1411 treatment 4 h after viral challenge had a pronounced
(mean: 1 log), statistically significant decrease in lung RSV titer on Day 5 in comparison to RSV-infected,
sham-treated animals (p = 0.002).

Over the course of the experiment, all animals studied appeared healthy, irrespective of RSV
exposure status (as expected with this animal model [25]) or AS1411 treatment status. Cotton rats
showed no significant change in body weight in association with RSV infection, irrespective of AS1411
treatment status, over the course of the experiment (Figure 5b).

Histopathological scoring of cotton rat airways (Figure 5c) revealed two main findings: (1) in
RSV-infected animals, AS1411 treatment was associated with a significantly decreased airway
inflammation score on day 5, in comparison to virus-infected animals that did not receive the
compound (p = 0.04); (2) administration of AS1411 to uninfected animals did not significantly
affect airway inflammation scores, in comparison to the group receiving buffer only. RSV-infected,
AS1411-treated animals had a significantly lower IL-4/IFN-γ mRNA ratio than the “RSV only”
group (Figure 5d).

For BAL fluid specimens collected on Day 5, the results (Table 1) indicate no significant
associations between RSV infection status or AS1411 treatment status on total cell counts, or the
percentages of macrophages, lymphocytes or granulocytes.
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its relative turnover: HEp-2 cells grow rapidly and are non-polarized, while MDCK cells grow more 
slowly and are polarized with cell surface NCL localized to the apical aspect [19]. In RSV-infected 
mice and cotton rats, AS1411 administration was associated with decreased airway inflammation and 
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Figure 5. In Vivo cotton rat data demonstrating the efficacy of AS1411 in reducing viral infection.
(a) AS1411 (50 mg/kg) given intranasally 4 h after RSV infection reduced lung virus levels by 1 log
(~90%) on Day 5 (*** p = 0.002, Mann–Whitney U test); (b) Measurement of cotton rat body weights
over the course of the experiment. No differences in daily body weights were observed between all
experimental groups (p > 0.05, 2-way ANOVA). Square: RSV (+), AS1411 (+); open triangle: RSV
(+), AS1411 (−); open diamond: RSV (−), AS1411 (+); circle: RSV (−), AS1411 (−); (c) AS1411
treatment decreased RSV-associated airway inflammation (* p = 0.04, 2-way ANOVA with Bonferroni
procedure) and did not affect airway pathology scores in uninfected animals (NS = not significant);
(d) AS1411 treatment significantly decreased RSV-associated lung tissue IL-4/IFN-γ ratio (** p = 0.009,
Mann–Whitney U test).

4. Discussion

The results of this study show that AS1411 treatment is effective at reducing levels of RSV
observed in three different model systems: HEp-2 cell cultures, MDCK cell cultures, and replicating
virus isolated from the lungs of mice and cotton rats. AS1411 administration to HEp-2/MDCK cell
cultures was not associated with significant cytotoxicity over the dose range studied. The difference
in response between the two cell lines is likely due to the amount of cell surface NCL available and
its relative turnover: HEp-2 cells grow rapidly and are non-polarized, while MDCK cells grow more
slowly and are polarized with cell surface NCL localized to the apical aspect [19]. In RSV-infected mice
and cotton rats, AS1411 administration was associated with decreased airway inflammation and with
decreased IL-4/IFN-γ ratios, both of which are considered to reflect a beneficial host response to virus
infection. AS1411 administration to uninfected animals did not significantly affect animal body weight
or BAL cytology in either species. Overall, these findings support the proof of principle of targeting
cell surface NCL for the therapy of RSV infections.
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In addition, our results provide further opportunity to extend previous work comparing the
mouse and cotton rat models of experimental RSV lung infection [38]. In mouse experiments, AS1411
was given 1 day after inoculation with 5 × 106 pfu of RSV. This interval between virus challenge
and drug treatment was associated with a modest (0.3 log) reduction in lung viral titer in AS1411
treated vs. untreated, RSV-infected groups on Day 4, when RSV replication is maximal in the mouse
model. Cotton rats challenged with a lower viral inoculum (1 × 106 pfu) and given the same dose of
AS1411 at an earlier time-point (4 h) than mice after RSV challenge, showed, as might be predicted,
a more profound reduction lung viral titer (1 log) on Day 5. RSV-challenged mice lost approximately
20% of body weight over the course of the experiment, whereas all groups of cotton rats experienced
similar degrees of weight gain. Concerning airway histopathology, both species showed significant
RSV-associated increases in airway inflammation scores that were improved by AS1411 treatment
(Figures 3c and 4c). Of note, baseline airway pathology scores for the uninfected control groups
in the mice were near zero (Figure 3c), whereas cotton rats had some very mild baseline airway
inflammation (Figure 4c) and higher baseline BAL total cell concentrations (Table 1). Mice, but not
cotton rats, showed significant RSV-associated increases in BAL total cell concentrations and changes in
the percentages of infiltrating granulocytes, lymphocytes and macrophages (Table 1). These apparent
species differences may reflect the use of inbred mice and outbred cotton rats, the latter of which
are expected to have greater genetic variability in host inflammatory responses [38]. Irrespective of
the differences observed between mice and cotton rats, the effect of AS1411 treatment was similar in
both species. In particular, the extent of decrease of RSV-associated airway inflammation with AS1411
treatment (~30–40%) was similar in both species, when compared to virus-infected, untreated animals
(Figures 3c and 4c). Further, AS1411-associated decreases in IL-4/IFN-γ ratios were similar in mice
and cotton rats (Figures 3d and 4d), even though the cytokines were measured differently: in mice,
BAL fluid specimens were tested for IL-4 and IFN-γ protein levels while in cotton rats, mRNA levels
in the lungs were measured.

The modest effects observed of treating both mice and cotton rats with relatively large quantities
of AS1411 may relate to the fact that the uptake of AS1411 into the cell is not just through the binding
and internalization of cell surface NCL but also through other mechanisms [39]. In light of this,
it may be advantageous to develop compounds, such as antibodies or other small molecules, that bind
and block cell surface NCL primarily and prevent viral fusion. Also, studies in mice and rats with
radiolabelled AS1411 show that over 63% AS1411 ends up excreted in the urine within hours of a
single intravenous injection [40]. This rapid clearance of AS1411 has meant that, in order to achieve
clinically relevant dosing for cancer therapy, regimens such as 7-day continuous intravenous infusions
have been required [39]. In light of this last point it seems very likely that further optimization of the
dosage regimen of this compound for RSV treatment will be useful.

The mouse and cotton rat experiments involved administration of single doses of AS1411 to
establish proof of concept of this therapeutic strategy. Experiments designed to test different doses
and dosing regimens of AS1411 can lead to a greater understanding of the effectiveness of targeting
NCL in RSV therapy, providing characterization of safety profiles, and determining whether drug
resistance can develop through this approach. For RSV, development of drug resistance is a relevant
consideration, as instances of resistant viruses have been documented in association with the use of the
RSV fusion inhibitor GS-5806 [41], and with palivizumab [4–7], both of which target the viral F protein.

Interestingly, there are an increasing number of reports indicating that NCL is involved in the
replication of a variety of different viruses [42–45]. In particular, AS1411 has also been shown to inhibit
HIV-1 attachment to the host cell [46]. In this work the investigators observed an approximately 60%
inhibition of HIV infection using non-polarized cells, similar to our observations in HEp-2 cells, with
AS1411 administration in the 0.4 µM to 50 µM range. As such, therapeutics developed around NCL
targeting in the host may have broader applications beyond RSV.

Recently, there has been a major resurgence in the area of RSV vaccine development,
and promising candidates continue to be developed [47], such that a successful vaccine may be
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imminent in the next few years. Even so, vaccines will not be useful in cases of acute infection, or in
individuals for whom immunization may be contraindicated. Moreover, as has been established for
other viruses such as HIV [48] and the hepatitis C virus [49], a multi-drug cocktail may well prove
superior to monotherapy for RSV treatment [50]. In conclusion, our current work with AS1411 provides
evidence that targeting host NCL is a novel, potentially viable strategy for treating RSV infections.
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