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Background. The differential diagnosis of subcentimetre lung nodules with a diameter of less than 1 cm has always been one of the
problems of imaging doctors and thoracic surgeons. We plan to create a deep learning model for the diagnosis of pulmonary
nodules in a simple method. Methods. Image data and pathological diagnosis of patients come from the First Affiliated Hospital
of Zhejiang University School of Medicine from October 1, 2016, to October 1, 2019. After data preprocessing and data
augmentation, the training set is used to train the model. The test set is used to evaluate the trained model. At the same time,
the clinician will also diagnose the test set. Results. A total of 2,295 images of 496 lung nodules and their corresponding
pathological diagnosis were selected as a training set and test set. After data augmentation, the number of training set images
reached 12,510 images, including 6,648 malignant nodular images and 5,862 benign nodular images. The area under the P-R
curve of the trained model is 0.836 in the classification of malignant and benign nodules. The area under the ROC curve of the
trained model is 0.896 (95% CI: 78.96%~100.18%), which is higher than that of three doctors. However, the P value is not less
than 0.05. Conclusion. With the help of an automatic machine learning system, clinicians can create a deep learning pulmonary
nodule pathology classification model without the help of deep learning experts. The diagnostic efficiency of this model is not
inferior to that of the clinician.

1. Introduction

Malignant tumours are a type of malady that seriously
threatens human life and health. In China, although the 5-
year survival rate of malignant tumours is increasing year by
year [1], the morbidity and mortality still increase every year
[2]. Among them, lung cancer ranks first in the incidence of
malignant tumours in China [1]. The results of the study show
that screening low-dose spiral CT for people at high risk of
lung cancer can significantly reduce lung cancer mortality
[3]. However, the ensuing problem is that the detection rate
of pulmonary nodules is increased. The differential diagnosis
of subcentimetre lung nodules with a diameter of less than
1 cm has always been one of the problems of imaging doctors
and thoracic surgeons [4].

In recent years, research and application of artificial intel-
ligence based on deep learning are in full swing. In the field of
medicine, the use of deep learning techniques for the diagno-
sis of imaging [5] and pathological [6] images is emerging.

However, deep learning is a subject with a high threshold,
and such research often requires the in-depth participation
of deep learning engineers. In order to further reduce the
threshold of deep learning, people of insight have proposed
the concept of automatic machine learning (AutoML) [7].
AutoML can completely automate the creation of the entire
deep learning process, reducing the knowledge of researchers
in various fields using deep learning for research work.

This study intends to use Microsoft’s Custom Vision [8]
AutoML system to train the model by learning the thin-layer
CT imaging data of the lung nodules and the corresponding
pathological diagnosis. Use the test data set to test the diagnos-
tic model and compare the diagnosis of the clinician. Use the
results to evaluate the effectiveness of the model.

2. Materials and Method

2.1. Training Set and Test Set. Retrieve the pathological diag-
nosis database of surgical specimens from the Department of
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Pathology, the First Affiliated Hospital of Zhejiang Univer-
sity School of Medicine, from October 1, 2016, to October
1, 2019. In the database, screen out the pathological diagnosis
with a higher ranking in the pathological results of pulmo-
nary nodules. According to the patient data selected by the
above diagnosis, the CT images of the patient in the hospital
imaging system are retrieved one by one according to the
patient’s medical record number. The inclusion criteria
include the following:

(a) Must be CT images of lungs within 30 days before
surgery

(b) The CT image of the lungs should be a high-
resolution horizontal sequence CT image (layer
thickness 1.0~1.25mm)

(c) There is no limit to the size of the lung nodule, but
they need to be spherical or quasispherical, the
boundaries can be recognized, and the surroundings
are surrounded by inflatable lung tissue, without
atelectasis

(d) There is only one lesion in the same lung lobe, or
there are multiple lesions, but they are all removed,
and the pathological results after surgery are the
same

Download the patient’s high-resolution CT image
sequence (DICOM format) from the imaging system, and
record the pathological diagnosis corresponding to the nod-
ule. Randomly select 90% of all nodules as the training data
set and 10% as the test data set.

2.2. Data Preprocessing. Convert DICOM format images to
bitmap images. The conversion scheme is as follows: in
DICOM format, each pixel records the CT value whose unit
is the Hounsfield unit. The range of the CT value is from
-1000 to 1000. We specified for each CT value the only colour
corresponding to it. Through this conversion, we get a colour
CT bitmap image (Figure 1).

Select the images in the sequence that contain a lung nod-
ule with the diameter of the lung nodule in the image not less
than 80% of the largest diameter of the nodule. Crop the
selected bitmap image to obtain an approximately square
rectangular image containing the nodule image. The side
length of the cropped image should be between 2 and 3 times
the diameter of the nodule. Moreover, the nodule pattern is
located approximately in the middle.

2.3. Data Augmentation. Perform the following operations
on the training set image: rotate 90 degrees, 180 degrees,
and 270 degrees clockwise, flip horizontally, and flip verti-
cally. The above means make the training data set data
increased by six times.

2.4. Training a Deep Learning Diagnostic Model.Visit https://
www.customvision.ai, register a new account, and log in.
Create a new training project, and select “Classification” for
the “Project Type” option, “Multiclass (Single tag per image)”
for the “Classification Types” option, and “General” for the

“Domains” option. Upload all the training data set images,
and add labels to the images according to the pathology type,
and then start training. Wait for a moment, and record the
training result data after the training is completed.

2.5. Evaluate the Trained Model with Test Data Set Images.
Upload the test data set images on the test page to test the
trained model. Since each nodule contains multiple test
images, upload and test each image, record the percentage
of each diagnosis possibility for each image, and average the
multiple images. The diagnosis with the highest percentage
is the final predicted diagnosis.

Invite three thoracic surgeons. View the lung nodules in
the CT images corresponding to the test data set one by
one, and diagnose according to the pathological grouping
of the training data set. Make statistics after comparing the
actual pathological results.

3. Results

Finally, a total of 2,295 images of 496 lung nodules and their
corresponding pathological diagnosis were selected as a
training set and test set. After data augmentation, the number
of training set images expanded to 6 times before and eventu-
ally reached 12,510 images, including 6,648 malignant nodu-
lar images and 5,862 benign nodular images (Table 1).

The model trained using the training data set without
data augmentation has a training result with a 50% probabil-
ity threshold, the accuracy rate is 69.7%, the recall rate is
67.0%, and the area under the curve is 0.738. The training
results of the model trained with the data augmentation
training data set are as follows: at a 50% probability thresh-
old, the accuracy rate is 78.8%, the recall rate is 76.2%, and
the area under the curve is 0.836. After data augmentation,
the area under the curve of the model is more excellent than
before (Figure 2).

Use the model trained with enhanced data to make diag-
nostic predictions on the test data set. For benign and malig-
nant classification, the model trained after data augmentation
can reach a sensitivity of 88.24%, a specificity of 90.91%, and
an overall accuracy rate of 90.0%. For pathological classifica-
tion, the classification accuracy rate is 78%. For this test data
set, three clinicians judged that the average sensitivity of benign
and malignant classification is 86.27%, the average specificity is
65.66%, the average overall accuracy rate is 72.67%, and the
average pathological accuracy rate is 48.67% (Table 2).

For the model trained after data augmentation and the
three doctors, ROC curves are constructed for the diagnosis
of benign and malignant nodules, which are used to judge
their diagnostic value for the test data set. The area under
the curve (AUC) corresponding to the model was 0.896
(95% CI: 78.96%~100.18%), and the area under the curve
values corresponding to the three doctors were 0.759 (95%
CI: 62.17%~89.70%), 0.775 (95% CI: 63.97%~90.93%), and
0.745 (95% CI: 60.12%~88.90%). The results mean that the
model has a high value for the diagnosis of benign and malig-
nant nodules in test data sets, and the corresponding optimal
cutoff value is 0.791 (at this time, the sensitivity is 88.2% and
the specificity is 90.9%). Moreover, the area under the curve
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is greater than that of the three doctors. However, the P value
is not less than 0.05 (Table 3).

4. Discussion

Since deep learning has shown high accuracy in many com-
puter vision tasks, in recent years, the research field of lung
nodule detection and classification based on deep neural net-
works has rapidly heated up [9]. However, deep learning is a
profession with a high threshold. Such research must rely on
the participation of experienced deep learning engineers. In
this study, the authors did not deeply study deep learning
algorithms and specific operating practices. Only after a
rough understanding of deep learning principles, an auto-
matic deep learning system was used to create a deep learning
diagnostic model. In this study, less than 500 cases of pulmo-
nary nodules were collected as training data sets. Although
the amount of data is not large, the final diagnostic model
is still satisfactory and can be equivalent to the diagnosis of
human doctors.

In previous studies [10], professional deep learning
frameworks were often used to directly read lung nodule data
in DICOM format to train models. However, in this study,
Custom Vision can only read image data for training. To this
end, we must convert DICOM format images into image for-
mat data for model training.

(a) (b)

Figure 1: (a) A grayscale image of lung CT in a lung window and (b) a colour image after conversion.

Table 1: Training set and test set.

Type Nodules Images

Benign or malignant Pathology Training set Test set All Training set Test set All

Malignant

AAH/AIS/MIA 131 6 137 400 18 418

IAC 72 8 80 460 36 496

Metastatic cancer 54 3 57 248 10 258

All 257 17 274 1108 64 1172

Benign

Chronic inflammation/granuloma 91 16 107 556 92 648

Intrapulmonary lymph nodes 42 11 53 119 28 147

Hemangioma 12 1 13 77 2 79

Hamartoma 44 5 49 225 24 249

All 189 33 222 977 146 1123

All 446 50 496 2085 210 2295
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Figure 2: The P-R curve of the trained model with and without data
augmentation.
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In the CT image of lungs in DICOM format, the data of
each pixel is between -1000 and 1000. In other words, the
CT machine can recognize 2000 different density differences
in the human body. The CT values of human organs are
mostly concentrated in a relatively narrow range. In order
to facilitate display and doctor reading, DICOM format
images will be displayed as grayscale images through differ-
ent window width and window level values. The doctor can
very sensitively perceive the difference in the CT value within
the window width by reading the CT image with the naked
eye. The disadvantage is that the CT value outside the win-
dow width will eventually be displayed as completely white
or completely black. This image conversion will lose data.

In order to avoid losing data, we have created an image
conversion method. CT can identify 2000 different gray levels
in the human body. In the computer, taking the 24-bit colour
bitmap as an example, the number of colours that can be dis-
played is 16,777,216. Therefore, each different CT value in
the DICOM format can be given a corresponding colour, so
that all the information in the DICOM format image can be
completely retained. In the colour image after conversion,
human eyes cannot recognize the slight difference between
some colours. However, for computer processing, it has
entirely different colours.

Lung adenocarcinoma is the most common type of
pathology in non-small-cell lung cancer, and it accounts for
about 50% of all lung cancer patients [11]. With the changes
in the epidemiology of lung cancer, the International Associ-
ation for the Study of Lung Cancer (IASLC), the American
Thoracic Society (ATS), and the European Respiratory Soci-
ety (ERS) formed a joint working group in 2011 to announce
a new classification method for lung adenocarcinoma [12]:
atypical adenomatous hyperplasia (AAH), adenocarcinoma
in situ (AIS), minimally invasive adenocarcinoma (MIA),
and invasive adenocarcinoma cancer (IAC). It is generally
believed that AAH, AIS, MIA, and IAC are different stages
of early non-small-cell lung cancer during the progression
of the disease [13]. Statistical analysis of the prognosis of dif-
ferent types of lung adenocarcinoma revealed that AAH, AIS,

and MIA have an excellent prognosis [14], and their 5-year
survival rate can reach almost 100%. The 5-year survival rate
of invasive adenocarcinoma is significantly lower than that of
the previous three types.

In the choice of surgical procedures, for the types of AAH,
AIS, and MIA, recent studies [15] have been more inclined to
perform sublobar resection (pulmonary wedge resection, seg-
mentectomy, and combined subsection resection). The sur-
vival rate and local recurrence rate are not significantly
different from those of lobectomy. Some scholars [16] even
believe that because of the types of AAH, AID, and MIA, the
possibility of lymph node metastasis is extremely low. Stereo-
tactic body radiotherapy (SBRT) treatment of these types of
lesions can achieve similar treatment effect to traditional sur-
gery. After the lesion reaches the level of invasive adenocarci-
noma, lobectomy is more recommended.

In the process of rapid intraoperative pathological diag-
nosis, due to the influence of factors such as the material lim-
itation, it is sometimes difficult for pathologists to distinguish
between AAH, AIS, and MIA [17]. The three types of lesions
have an excellent prognosis, and the clinical significance of
surgical guidance is almost the same. Therefore, these three
types are combined into a group as a low-risk group, and
invasive adenocarcinoma is considered to belong to a high-
risk group. Therefore, the classification model of deep learn-
ing can be more focused on identifying whether the lesion is
invasive adenocarcinoma, which is of great significance for
the formulation of surgical procedures and the prediction
of disease prognosis.

In this study, the number of benign diseases is relatively
small. For example, there are only 13 cases of pulmonary
sclerosing hemangioma. If such a small number of cases are
directly input into the deep learning engine for learning, it
is bound to fail to obtain good results. Therefore, various
forms of data augmentation are necessary. For image data,
pure data augmentation methods generally include geomet-
ric transformation. In this study, the flip and rotation opera-
tions in geometric transformation are used. Rotating and
flipping the image of a lung nodule do not affect the essence

Table 2: Diagnosis results of the trained model and the doctors on the test data set.

Sensitivity (%) Specificity (%) Accuracy rate (%) Pathological accuracy rate (%)

Trained model (data augmentation) 88.24 90.91 90 78

Doctor A 88.24 63.64 72 46

Doctor B 88.24 66.67 74 48

Doctor C 82.35 66.67 72 52

Doctor average 86.27 65.66 72.67 48.67

Table 3: AUC and ROC curve best cutoff of the trained model and the doctors.

AUC Optimal cutoff Sensitivity (%) Specificity (%) P (compared to the trained model)

Trained model (data augmentation) 0.896 0.791 88.2 90.9

Doctor A 0.759 0.519 88.2 63.6 0.1212

Doctor B 0.775 0.549 88.2 66.7 0.1673

Doctor C 0.745 0.490 82.4 66.7 0.0963
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and characteristics of the image. This operation method is
simple, but the effect is pronounced. The model uses the
enhanced image for training, which increases the area under
the curve by about 0.1 compared to the previous one.

The two most basic indicators in the fields of deep learn-
ing related to information retrieval, classification, recogni-
tion, translation, etc. are the recall rate and precision rate.
Recall rate = true positive/ðtrue positive + false negativeÞ, and
precision rate = true positive/ðtrue positive + false positiveÞ.
Therefore, the recall rate is the sensitivity in medical diagno-
sis, but the precision rate is not specific. Nonetheless, the
relationship between the precision rate and recall rate is sim-
ilar to the relationship between sensitivity and specificity:
precision and recall affect each other, and the ideal situation
is, of course, both high precision and recall. But under nor-
mal circumstances, precision rate is inversely proportional
to recall rate.

Therefore, similar to the ROC curve formed by the correla-
tion between sensitivity and specificity, the relationship
between the precision rate and recall rate can also build a P-R
curve, where the recall rate value is used as the x-axis and the
precision rate value is used as the y-axis to indicate the different
relationship between precision and recall. The average preci-
sion rate represents the average value of the precision rate dur-
ing the change of the recall rate from 0 to 1, that is, the
integration of the precision rate during the shift in the recall
rate from 0 to 1, which is equivalent to the area under the PR
. The area surrounded by the x- and y-axes (area under the P
-R curve). In this way, the comparison between multiple
models becomes intuitive. You only need to place the P-R
curves of various models in the same coordinate system and
compare the area under the curve.

By analyzing the diagnosis results, the AUC value corre-
sponding to the ROC curve of the neural network is 0.896,
indicating that the model is of higher value for the diagnosis
of benign and malignant nodules in test data sets. The model
can achieve 90% accuracy for benign and malignant classifi-
cation and 78% accuracy for pathological classification.
Moreover, the AUC value is higher than that of the three doc-
tors. However, the P value is not less than 0.05, indicating
that the model’s diagnostic efficiency of benign and malig-
nant classification is similar to that of the clinician.

When clinicians diagnose lung nodules, the sensitivity is
not much different from that of the diagnostic model, but
the specificity is significantly lower than that of the diagnostic
model. The possible reason is that as a clinician when diag-
nosing pulmonary nodules, they tend to increase sensitivity,
increase the detection rate of potentially malignant tumours,
and reduce the rate of missed diagnosis. As a result, the false
positives are high and the specificity is reduced.

5. Conclusion

This study shows that with the help of an automatic machine
learning system, clinicians can create a deep learning pulmo-
nary nodule pathology classification model without the help
of deep learning experts. The diagnostic efficiency of this
model is not inferior to that of the clinician, but the deep
learning algorithm model will not replace the status of clini-

cians and radiologists. On the contrary, it can effectively help
clinicians and radiologists in clinical work.
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