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Introduction: Only a proportion of triple-negative breast cancer (TNBC) is immunotherapy-responsive. We hypothesized that the
tumor microenvironment (TME) influences the outcomes of TNBC and investigated the relevant signaling pathways.
Materials and Methods: Immune score (IS) and stromal score (SS) were calculated using the ESTIMATE and correlated with the
overall survival (OS) in TNBC. RNA-seq data from 115 TNBC samples and 112 normal adjacent tissues were retrieved. Validations in
the methylation levels in 10 TNBC and five non-TNBC cell lines were obtained. Cox model overall survival (OS) validated the
derived transcription factor (TF) genes in cBioPortal breast cancer patients.
Results: SS-low predicts a higher OS compared with SS-high patients (P = 0.0081 IS-high/SS-low patients had better OS (P = 0.045)
than IS-low/SS-high patients. More macrophages were polarized to the M2 state in patients with IS-low/SS-high patients (P < 0.001).
Moreover, CIBERSORTx showed more CD8+ cytotoxic T-cells in IS-high/SS-low patients (p = 0.0286) and more resting NK cells in
the IS-low/SS-high TME (P = 0.0108). KEGG pathway analysis revealed that overexpressed genes were enriched in the IL-17 and
cytokine-cytokine receptor interaction pathways. The lncRNA DRAIC, a tumor suppressor, was consistently deactivated in the 10
TNBC cell lines. On the cBioPortal platform, we validated that 13% of ER-negative, HER2-unamplified BC harbored IL17RA deep
deletion and 25% harbored TRAF3IP2 amplification. On cBioPortal datasets, the nine altered TF genes derived from the X2K analysis
showed significantly worse relapse-free survival in 2377 patients and OS in 4819 invasive BC patients than in the unaltered cohort.
Conclusion: Of note, the results of this integrated in silico study can only be generalized to approximately 17% of patients with
TNBC, in which infiltrating stromal cells and immune cells play a determinant prognostic role.
Keywords: triple-negative breast cancer, immune cells, tumor microenvironment, IL-17 signaling pathway, immune evasion, in silico
study

Introduction
In 2020, the global incidence of breast cancer was 2,261,419 diagnosed across 185 countries, accounting for 11.7% of all
cancer types.1 Triple-negative breast cancer (TNBC) is characterized as estrogen receptor-negative, progesterone receptor-
negative, and a lack of HER2 expression or amplification and accounts for approximately 15–20% of all breast cancers.2,3

TNBCs are heterogeneous (in terms of genomics, transcriptomics, and histopathology) and demonstrate the heterogeneity of
response to anti-programmed death-1/ligand-1 (anti-PD-1/PD-L1) checkpoint inhibition immunotherapy.3–5

In fact, recent studies by Schmid et al revealed that PD-1 or PD-L1 checkpoint blockade immunotherapy combined
with neoadjuvant chemotherapy (NAC) improved the pathological complete response (pCR) rate in the neoadjuvant
setting; therefore, they proposed such an approach would probably improve the progression-free survival (PFS) of
patients with advanced or metastatic TNBC staining positive for PD-L1 in tumor-infiltrating immune cells, if used as the
first-line therapy.6–8 In contrast, other tumors are weakly immunogenic depending on the composition of the infiltrating
immune cell populations and extrinsic factors (eg different metabolites or specific cytokines) enriched in the immune

Breast Cancer: Targets and Therapy 2022:14 85–99 85
© 2022 Kok et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Breast Cancer: Targets and Therapy Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 21 January 2022
Accepted: 5 April 2022
Published: 12 April 2022

http://orcid.org/0000-0003-3440-8154
http://orcid.org/0000-0002-7305-3061
http://orcid.org/0000-0002-5572-4570
https://www.dovepress.com/terms.php
http://creativecommons.org/licenses/by-nc/3.0/
https://www.dovepress.com/terms.php
http://www.dovepress.com/permissions.php
https://www.dovepress.com


tumor microenvironment (TME). Of note, recent bioinformatics research, based on bulk tumor gene expression data
demonstrated that a low abundance of regulatory CD4+ T cells (Treg) was significantly associated with an increased pCR
rate in TNBC patients after NAC.9

In a TNBC surgical specimen, untreated tumor cells typically represent approximately 60% of the cellular component,
lymphoid and immune cells account for 20%, and stromal cells such as fibroblasts, histiocytes, endothelial cells,
myofibroblasts, and adipocytes represent the remaining 20%.10 The primary function of stromal cells is to establish an
immune response. The TME creates a chemokine-rich milieu inside, promoting the encounter between the boundary
tumor cells and a variety of surrounding infiltrating immune cells in addition to cancer-associated fibroblasts, neo-
vessels, neo-neurites, and other supportive tissues.11 Prior research has demonstrated that the prognosis of TNBC in
terms of disease-free survival and disease-specific survival is worse in the basal-like immunosuppressed subtype and fare
better in the basal-like immune-activated subtype, indicating that the immune TME plays a crucial role in the formation
of either a tumor-permissive or tumor-expulsive milieu4 A clinicopathological study also demonstrated that TNBC with
a high number of tumor-infiltrating CD56-positive natural killer (NK) cells was associated with a more favorable disease-
free survival.12 Additionally, research focusing on cancer-associated chemokines revealed that NK cells expressing
abundant CXCR3 (also known as GPR9 and CD183) molecules on the cell surface are recruited by the chemokines
CXCL9, CXCL10, or CXCL11 secreted by immune cells or stromal cells in the TME.13 However, it is still unclear what
driving force explains the immunogenic or immunosuppressive phenotype in the TME in patients with TNBC.

Recently, there have been marked improvements in the research efficiency using cross-platform in-silico bioinfor-
matics analyses of multi-omics, multi-layer cancer data.4,10,14–17 Hence, here, we leveraged multi-platform in-silico
analyses of genomic data to investigate which infiltrating immune cell populations would be associated with the immune
phenotype, and which signaling pathways could determine a subgroup of TNBC that is strongly immunogenic, thus,
having a better prognosis. Lastly, we also aimed to determine whether transcription factor signatures derived from the
RNA-seq data have prognostic value.

Materials and Methods
Ethics Statement and Study Design
This human data-based research study leveraged multiple publicly accessible RNA-seq datasets containing only mature,
anonymous, and de-identified genetic and demographic data. The Institute Review Board of Kuang Tien General
Hospital approved the study with a Certificate of Approval numbered KTGH-10458. This study was performed in
accordance with the Declaration of Helsinki.

The schematic diagram (Figure 1) shows the study design and methodology adopted in this study. First, we down-
loaded from TCGA, a breast cancer gene expression RNA-seq dataset (TCGA-BRCA). Using this dataset, we sorted 115
patients with non-metaplastic TNBC, characterized by the lack of estrogen receptors, progesterone receptors, and HER2
non-overexpression or HER2-FISH un-amplification.

Estimation of the Immune/Stromal Scores
As mentioned above, the gene expression data and corresponding clinical information from a total of 1222 cases were
retrieved from a publicly available dataset (TCGA-BRCA).18 After extracting the ER, PgR, and HER2 information of
each sample, a total of 115 TNBC cases, 112 normal cases, and 994 non-TNBC cases were identified. To predict TNBC
purity, we applied the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data
(ESTIMATE) algorithm to the normalized expression matrix to determine the immune/stromal scores of each TNBC
patients. The immune score (IS; derived from the immune signature of 141 genes) and stromal score (SS; derived from
the stromal signature of 141 genes) were calculated using the r-ESTIMATE package in R.19 Supplementary Table S1
presents a gene list of these immune-signature and stromal-signature genes. This algorithm rank-normalizes and rank-
orders a set of gene expression values in a given sample and calculates the empirical cumulative distribution function
from the signature gene set of the remaining genes; therefore, ESTIMATE can calculate the SS and IS from the RNA-seq
data. The algorithm also allows the combination of these scores into an estimate score, used to infer DNA copy number-
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based tumor purity, as per the following formula: Fraction of tumor cells in a clinical sample (namely, transcriptomic-
based tumor purity) = cos (0.6049872018 + 0.0001467884 × [combined stromal-immune score]).

Correlation Analyses
The overall survival (primary prognosis endpoint-based) was estimated using Kaplan-Meier survival analysis. Log rank
test was used to compare the survivals stratified by stage. Based on the calculated SS and IS, the corresponding patients
were classified into two groups, and their prognoses were individually examined. A previously published method
(maximally selected rank statistics), was employed for optimal cutoff identification using the survival in R to explore
the relationship between the overall survival and the two groups of TNBC cases.

CIBERSORT Analysis
We used CIBERSORT X (https://cibersort.stanford.edu) to compare the proportion of infiltrating immune cells in the
TME of IS-low/SS-high and IS-high/SS-low TNBC patients.20,21 The CIBERSORT accurately allows the evaluation
of the relative levels of 22 immune cell phenotypes; such and analysis was performed using the immunedeconv
package in R.22 The immune cell fraction level divided by the cutoff value was 0 or 1 in the subsequent scoring
formula.

Differential Expression Analysis
According to the ESTIMATE results, the intersection genes were selected based on the stromal/immune scores. The
limma package in R was used to screen DEGs between normal and TNBC samples.23 Genes with a p-value ≤ 0.0001 and
absolute log2 fold-change ≥ 4 were considered to be differentially expressed and extracted further for network
construction. Heatmaps were generated using the pheatmap package in R.24 The generated heatmaps and volcano plots
show the differentially expressed genes in either the IS-high/SS-low or IS-low/SS-high TNBC groups.

Gene Ontology and KEGG Pathway Enrichment Analyses
Using these DEGs defined as above for the two TNBC groups, we investigated the enriched signaling pathways based on
GO terms and KEGG pathways. Functional enrichment analyses of GO terms, including cellular components, molecular
functions, and biological processes, and KEGG pathways were performed using the clusterProfiler package in R.25 The
functions among genes of interest were adjusted with a cutoff criterion of p < 0.05.

Figure 1 Study flow diagram. The schematic diagram represents the study design and methodology adopted.
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eXpression2Kinases Analysis
We utilized eXpression2Kinases (X2K), as reported elsewhere, to disclose the potential enrichment of transcription
factors.26,27

Gene Set Variation Analysis
Gene set variation analysis (GSVA) is a bioinformatics framework that organizes gene expression data in the form of
a pathway or signature summary.28 GSVA is a popular pathway-related immune infiltration and tumor mutational burden
immune-related analysis. Here, we leveraged GSVA to provide an accurate definition of pathway enrichment between
samples from different groups. We used the GSVA package in R to evaluate the t score and assigned the pathway activity
conditions. We then used the pheatmap package in R to display the distinctions in pathway activation between normal
tissues and those of IS-high/SS-low and IS-low/SS-high patients.

Validation in TNBC Cancer Cell Lines and Non-TNBC Cancer Cell Lines
In the Depmap platform (https://depmap.org/portal/), we used the methylation dataset (1 kb upstream transcription start
sites) to compare the lncRNA methylation between the TNBC cell lines and non-TNBC cell lines (ER+/HER2+ or
HER2-negative). We defined fractional methylation > 0.6 indicates “methylated” and < 0.6 “unmethylated”. Ten TNBC
cell lines used were HCC2157, BT20, MDAMB231, HCC1395, HCC1937, HCC1599, MDAMB436, MDAMB468,
HCC1806, and HCC1143. Five non-TNBC cell lines were BT474, UACC812, EFM192A, EFM19, and ZR751.

Validation in cBioPortal for Cancer Genomics
Finally, we validated our findings in a different, more extensive dataset of breast cancer via cBioPortal analysis.29,30

Statistical Analyses
We used the R package statistical software to implement the survival analysis with relevant R functions as survfit(),
survdiff(), coxfit1. In addition, we used the StatsDirect version 3.3 to compute the Mann–Whitney U-test and the grouped
linear regression. Finally, the built-in default statistical software performed all other statistical analyses on each platform.

Results
From the TCGA Breast Cancer dataset, gene expression data for 115 patients with triple-negative breast cancer and 112
normal adjacent tissues were retrieved. Figure 1 demonstrates the study design, flow, and methodology used in the
current study. In this cohort of 115 TNBC patients, favorable overall survival as per the Kaplan-Meier curves was
significantly correlated with an earlier disease stage (P = 0.0012; Figure 2).

The ESTIMATE algorithm computationally estimates the fraction of stromal and immune cells in the TME of all the 115
TNBC patients. The SS was high (SS-high) in 10 patients, and the IS was high (IS-high) in the ten other patients. There were
no significant correlations between the SS or IS and the cancer stage in all the 115 patients (Supplementary Figure S1).
However, as per the Kaplan-Meier analyses, SS-low patients showed a higher overall survival (OS) than that of SS-high
patients (P = 0.0081; Supplementary Figure S2), while IS-high patients showed a higher OS than that of IS-low patients (P =
0.2; too few cases in the IS-high; Supplementary Figure S3). Of note, a strong correlation between both the SS and IS and
the patients’ overall prognosis was observed. Expectedly, when compared with IS-low/SS-high patients, IS-high/SS-low
patients showed a better OS (P = 0.045) (Figure 3). Cytoscape revealed the immune cell infiltration levels between samples
grouped by IS-high/SS-low or IS-low/SS-high (Supplementary Figure S4). Interestingly, grouped linear regression showed
a statistically significant increase in M2 macrophages in TNBC patients with the IS-high/SS-low phenotype. In line with
these results, in the tumor microenvironment (TME), a higher proportion of M2 was also found in IS-low/SS-high patients,
as estimated by CYBERSORTx (P < 0.001) (Supplementary Figure S5). Additionally, significantly more CD8+ cytotoxic
T-cells, memory B cells (P = 0.0304), activated CD4+ memory T cells (P = 0.0056), follicular helper T cells (P = 0.0044),
and activated NK cells (P = 0.0511) were also observed in IS-high/SS-low patients (14% vs 5.3%, p = 0.0143) (Table 1). On
the other hand, more resting NK cells were observed in IS-low/SS-high patients (P = 0.0108).
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Figure 2 Overall survival of 115 patients with triple-negative breast cancer stratified by cancer stage at diagnosis. Kaplan-Meier curves referring to different overall TNBC
stages. Log rank test was used to compare the survivals stratified by stage. The higher stage correlates significantly with poorer survival (P = 0.0012).

Figure 3 Overall survival of 115 patients with triple-negative breast cancer stratified by the combination of the Stromal Score and Immune Score. Both scores were inferred
by the ESTIMATE gene expression signatures. SS-low/IS-high patients were associated with excellent overall survival, whereas SS-high/IS-low patients showed the worst
overall survival.
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Moreover, DEG analysis showed 651 DEGs (284 upregulated, and 367 downregulated) in IS-high/SS-low patients, and
370 DEGs (187 upregulated, and 183 downregulated) in IS-low/SS-high patients (Supplementary Figure S6). Heatmaps and
volcano plots of the DEGs in the context of these two groups are shown in Figure 4A–D. DESeq2 uses theWald test to identify
differentially expressed genes by comparing the immunogenic or immunotolerant classes and the normal adjacent tissue. To
put things in context, we displayed the top 30 DEGs ranked by the Wald statistic for the four categories by the combined
immune and stromal scores. In IS-high/SS-low TNBC tumors, the top 30 upregulated DEGs were LAG3, CCNE1, GBP5,
CDCA8, ETV7, CDCA3, CXCL10, KCNJ10, IDO1, PTTG1, SKA1, CXCL11, IFNG, LOC105373098, TPX2, PLK1,
WFDC21P, A2ML1, KIF2C, MMP11, IL21R, NDC80, IL4I1, AIM2, CXCL9, CDC20, CCL25, RTP3, NUF2, and CENPA;
in contrast, the downregulated DEGs were MAMDC2, FAXDC2, VEGFD, TGFBR3, NOVA1, ADAMTS5, ECRG4, LMOD1,
CAVIN2, ADAM33, TMTC1, DACH1, RERGL, MAB21L1, SLC7A2, AGTR1, PGR, SCN2B, PAMR1, MYH11, ATP1A2,
ADAMTS9-AS2, CD300LG, CA4, CHL1, GPC3, ARHGAP20, CCL14, ABCA8, and ADGRL3. In IS-low/SS-high TNBC
tumors, the top 30 upregulated DEGs were MMP11, CEMIP, COL11A1, COL10A1, CA9, LOC101929128, LOC157273,

Table 1 Comparison of the Immune Cell Profiles in the Tumor Microenvironment (TME) of IS-High/SS-Low and IS-Low/SS-High
Triple-Negative Breast Cancer Patients, Estimated Using CYBERSORTx

Immune Cell Type in the
TME

Immune Score-High/Stromal
Score-Low TNBC (n = 10)

Immune Score-Low/Stromal
Score-High TNBC (n = 10)

P-value*

Naive B cells 0.0363 ± 0.0532 0.0258 ± 0.0263 0.9288

Memory B cells 0.0168 ± 0.0121 0.0061 ± 0.0153 0.0304

Plasma cells 0.0162 ± 0.0376 0.0148 ± 0.0397 0.7599

CD8+ T cells 0.1403 ± 0.0934 0.0531 ± 0.0616 0.0143

Naive CD4+ T cells 0 0 -

Resting CD4+ memory T cells 0.0956 ± 0.0557 0.1604 ± 0.1036 0.2176

Activated CD4+ memory T cells 0.0441 ± 0.0316 0.0176 ± 0.0159 0.0056

Follicular helper T cells 0.0700 ± 0.0235 0.0379 ± 0.0305 0.0044

Regulatory T cells 0.0517 ± 0.0409 0.0271 ± 0.0219 0.8767

Gamma delta T cells 0.0421 ± 0.0361 0.0259 ± 0.0268 0.2454

Resting NK cells 0 0.0199 ± 0.0395 0.0108

Activated NK cells 0.0360 ± 0.0257 0.0178 ± 0.0256 0.0511

Monocytes 0.0009 ± 0.0030 0.0164 ± 0.0428 0.2105

M0 macrophages 0.1196 ± 0.0540 0.1979 ± 0.1377 0.2799

M1 macrophages 0.1497 ± 0.0789 0.1357 ± 0.0670 0.8534

M2 macrophages 0.1043 ± 0.0628 0.1534 ± 0.0939 0.1431

Resting dendritic cells 0.0395 ± 0.0663 0.0211 ± 0.0178 0.5889

Activated dendritic cells 0.0001 ± 0.0004 0.0008 ± 0.0026 0.5

Resting mast cells 0.0344 ± 0.0214 0.0681 ± 0.0466 0.123

Activated mast cells 0 0 -

Eosinophils 0.0008 ± 0.0028 0 > 0.9999

Neutrophils 0.0013 ± 0.0032 0.0002 ± 0.0006 0.582

Notes: Bold text denotes statistical significance. (%) Mean±SD; *Using Mann–Whitney U-test. CYBERSORTx: https://cibersortx.stanford.edu/index.php.
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Figure 4 Heatmaps and volcano plots of the differentially expressed genes in SS-low/IS-high (A and B) and SS-high/IS-low (C and D) TNBC patients, and the corresponding
KEGG pathway analysis (E). We labeled the DEGs satisfying the conditions of having an adjusted P-value < 0.0001 and |log2FoldChange| ≥ 5 in panels (B and D). The
overexpressed DEGs in the context of both phenotypes are enriched in the IL-17 and cytokine-cytokine receptor interactions’ signaling pathways.
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INHBA, CCL11, OLAH, CILP2, LYPD1, MMP1, HAPLN1, HOXB9, LINC02487, EPYC, GBP5, TDO2, CCKBR, CCN4,
CXCL11, LIPG, LINC01615, ANLN, GJB2, LINC00511, LINC00673, CXCL10, and SHISAL1; whereas, the downregulated
DEGs were ABCA10, CAVIN2, ECRG4, SCN2B, ANGPTL7, VEGFD, MYH11, CD300LG, SCARA5, HPSE2, MYOC,
HEPACAM2, LINC00993, HIF3A, SLC16A12, ATP1A2, PGM5-AS1, BTNL9, TNXB, ANKRD30A, GDF10, PGR, PTPRQ,
B3GALT1, NPY2R, PLPPR1, HSD17B13, DEFB132, LEP, and GLYAT.

KEGG pathway enrichment analysis showed that the overexpressed DEGs from both phenotypes were enriched in the
IL-17 signaling pathway and viral protein interaction cytokine and cytokine receptor genes. Notably, the overexpressed
DEGs in the context of the SS-low/IS-high phenotype were also enriched in other two cytokine-related pathways:
cytokine-cytokine receptor interactions pathway and chemokine signaling pathway (Figure 4E).

Using X2K, we also inferred the transcription factors associated with the two immune phenotypes. In SS-high/IS-low
TNBC patients, the inferred TFs were PPARG, HNF4A (also known as farnesoid X receptor, FXR), NR1H4, NR0B2, and
MLXIPL, whereas the TF signature of SS-low/IS-high TNBC patients was composed of the PPARG, CEBPA, and MLXIPL
TFs (Figure 5). Additionally, we performed a literature search on PubMed and discovered nine TF genes linked to IL-17-
mediated signaling, including PPARG, CEBPA, MEOX1, KLF15, CD36, ZNF750, EZH2, HNF4A, and NR0B2 (Table 2).

In addition, GSVA also suggested the involvement of additional pathways, including the JAK-STAT signaling, T cell
receptor signaling, B cell receptor signaling, cytokine-cytokine receptor interaction, TGF-β signaling, and PPAR
signaling pathways (Supplementary Figure S7; Figure S7A shows the GSVA of the 370 DEGs of the SS-high/IS-low
subgroup and Figure S7B shows the GSVA of the 651 DEGs of the SS-low/IS-high subgroup).

Validation of the Results in the TNBC Cell Lines
IL-17 signaling will kick off the NFκB signaling and induce M1 to M2-like transformation in TME macrophages.42 Long
non-coding RNA, DRAIC, a tumor suppressor, would interact with the IκB kinase (IKK) to inhibit NFκB activation.43 In
the Depmap platform, we used the methylation dataset (1 kb upstream transcription start sites) to compare the lncRNA
DRAIC methylation between the ten TNBC cell lines and five non-TNBC cell lines (ER+/HER2+ or HER2-negative).
We defined fractional methylation > 0.6 indicates “methylated” and < 0.6 “unmethylated”. Our study results showed that
10 TNBC cell lines had methylated lncRNA DRAIC, whereas all five non-TNBC cell lines were unmethylated
(Figure 6). Therefore, the lncRNA DRAIC tumor suppressor was consistently deactivated in the 10 TNBC cell lines.

Validation of the Results in the cBioPortal
IL-17 is a proinflammatory cytokine that signals mainly via the TRAF3 Interacting protein 2 (TRAF3IP2), as reported
previously.44,45 TRAF3IP2 is an inflammatory mediator and upstream regulator of several crucial transcription factors,

Figure 5 Transcription factors inferred from the X2K in the context of SS-high/IS-low or SS-low/IS-high TNBC patients.
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such as AP-1 and NF-κB.45 Act1, an essential component in IL-17 signaling complex, is encoded by the gene TRAF3IP2.
Finally, we used the Oncoprint from cBioPortal to validate the frequency of IL-17 genes in TNBC. We discovered that
13% of ER-negative and HER2-FISH unamplified breast cancers harbored IL17RA deep deletions and 25% harbored
TRAF3IP2 amplifications (Supplementary Figure S8).

Interestingly, we also discovered using the cBioPortal platform that aberrations in the nine TF genes mentioned above
are associated with a worse prognosis, as per the relapse-free survival of 2377 patients (log-rank, P = 0.00007) and the
overall survival of a larger group of 4819 patients (log-rank, P = 0.001697) (Figure 7). Finally, we interrogated the
differential expression of all the related genes of the IL-17 signaling pathway in the two polarized immune-stroma-scored
TNBCs. The hierarchical clustering heatmaps show evidence in supporting that most IL-17 pathway genes had differen-
tially expressed in the tumor specimens than the normal adjacent tissue counterparts (Supplementary Figure S9). In
addition, it is notable that IL-17D and IL-17F were more differentially expressed than the normal adjacent tissues in the
stromal-low immune-high tumors.

Discussion
Several recent studies have shed light on the pivotal role of the TME in the shaping of the tumor behavior in TNBC.46–53

Notably, Karn et al reported that lymphocyte-rich TNBC with high immune metagene expression had lower clonal
heterogeneity, fewer somatic mutations, decreased somatic copy number alteration levels, and lower neoantigen counts.52

Table 2 Selection of the Transcription Factors Linked to Interleukin-17-Mediated Signaling

Transcription Factor
(TF)

Investigated Relationship References

PPARG PPARγ-induced SOCS3 expression prevents IL-17-mediated cancer growth. [31]

CEBPA (=C/EBPα) Transcription factor that coordinates proliferation arrest and the differentiation of myeloid
progenitors, adipocytes, hepatocytes, and cells of the lung and the placenta.

IL-17 suppresses expression of several pro-adipogenic TFs, including PPARγ and CEBPA.

[32,33]

MEOX1 TGF-β1 transcriptionally regulates MEOX1 expression via Smad2/3 in adult human dermal fibroblasts,
thus promoting cell migration.

[34]

KLF15 Specifically, IL-17 suppresses KLF15, a pro-adipogenic TF, and enhances expression of KLF2 and KLF3,

which are anti-adipogenic. Thus, IL-17 suppresses adipogenesis at least in part through the combined
effects of TFs that regulate adipocyte differentiation.

[32]

CD36 In the presence of palmitic acid (PA), IL-17a could directly increase the cellular uptake of PA, leading
to the proliferation of ovarian cancer cells via the IL-17a/IL-17RA/p-STAT3/FABP4 axis rather than via

CD36.

[35]

ZNF750 ZNF750 is the p63 target gene. The levels of inflammatory cytokines (IL17d and Tnfsf15) were

significantly reduced by Rbm38 deficiency in senescence-resistant Rbm(38-/-);TAp63(+/-) mouse livers

and MEFs. Rbm38 and p63 function as intergenic suppressors in aging and tumorigenesis.

[36]

EZH2 EZH2 positively regulate the expression of IL-17a and IL-17f. The inducible binding of EZH2 at the IL-

17a promoter was dependent on signaling pathways downstream of the TCR.
IL-17f bears 50% homology to IL-17a and has recently been suggested to play a role in inflammation.

[37,38]

HNF4A (= farnesoid
X receptor, FXR)

In addition to the classical Jak-Stat antiviral signaling pathway, IFN-λ1 inhibits hepatitis C virus
replication through the suppression of miRNA-122 transcription via an inflammatory Stat 3-HNF4A

feedback loop. Inflammatory feedback circuits activated by IFNs during chronic inflammation expose

non-responders to the risk of hepatocellular carcinoma.

[39]

NR0B2 (= SHP) This TF is a tumor suppressor. Both FXR (-/-) and NR0B2(-/-) mice develop spontaneous

hepatocellular carcinoma.
Upregulated NR0B2 will regulate the IL-6-dependent pathway.

[40,41]
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Figure 6 Methylation fraction of the lncRNA DRAIC was compared between 10 TNBC cancer cell lines and 5 non-TNBC cancer cell lines. Long non-coding RNA, DRAIC,
a tumor suppressor, would interact with IKK to inhibit NFκB activation. In the Depmap platform, we used the methylation dataset (1 kb upstream transcription start sites) to
compare the PPARG methylation between the TNBC cell lines and non-TNBC cell lines (ER+/HER2+ or HER2-negative). We defined fractional methylation > 0.6 indicates
“methylated” and < 0.6 “unmethylated”. Our study results showed that 10 TNBC cell lines (HCC2157, BT20, MDAMB231, HCC1395, HCC1937, HCC1599, MDAMB436,
MDAMB468, HCC1806, and HCC1143) had methylated lncRNA DRAIC, whereas all five non-TNBC cell lines (BT474, UACC812, EFM192A, EFM19, and ZR751) were
unmethylated.

Figure 7 Validation using the cBioPortal demonstrates the relapse-free survival in 2377 patients and the overall survival in 4819 patients with invasive breast carcinoma
stratified based on the alteration of the transcription factor genes PPARG, CEBPA, MEOX1, CD36, ZNF750, KLF15, EZH2, HNF4A, and NR0B2. The altered group refers to
any alteration in one of these transcription factors.
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Given the paucity of studies investigating the mechanism behind the strikingly different prognoses of immunosuppres-
sive or immunogenic TNBCs, our study aimed to explore the differences in stromal cells (particularly immune cells)
within the TME, as well as in the enriched DEGs in the search for the driving force behind the formation of these two
different phenotypes. Interestingly, we discovered that the composition of immune cells reacting to TNBC tumor cells
was strikingly different in the highly immuno-weak stromal TME and the strong stromal-weak immunogenic TME.
Additionally, we discovered that the immunosuppressive type (SS-high/IS-low) showed gene signatures enriched in the
IL-17, and viral-cytokine and cytokine receptor interactions’ pathways. Of note, this study is unique considering the
demonstration that altered TF genes derived from IL-17-mediated signaling showed strong significance with respect to
both the relapse-free and overall survival, as per the analysis of another extensive dataset.

More than 1600 known (or likely) human TF genes represent approximately 8% of the human genes.54 Mutations in
TF genes are often highly deleterious in humans.54 Nine TF genes, PPARG, CEBPA, MEOX1, CD36, ZNF750, KLF15,
EZH2, HNF4A, and NR0B2, were enriched in our bioinformatics analysis. Importantly, this is the first time that the
alteration in one or more of the nine TF in the context of TNBC was linked to the IL-17 signaling pathway and associated
with significantly poorer prognosis in terms of relapse-free survival and overall survival in a large number of breast
cancer patients, excluding ER-positive and HER2-amplified cases.

In cancer tissues, activated Tcells secrete the proinflammatory cytokine IL-17, which through the regulation of theMAPKs
and NF-κB activities, gives rise to the increased expression of IL-6 and cyclooxygenase-2.55 A score of research recapitulated
these observations and revealed a more detailed mechanistic understanding. A plethora of studies have revealed increased IL-
17A levels in ER-negative or triple-negative breast cancer.56 In fact, the upregulation of IL-17A signaling is associated with
increased expression of programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) in breast cancer with
low ER expression, which may elevate the infiltration of CD8+ T cells in the tumor tissues.56 Of note, CD4+ T cells among
tumor-infiltrating lymphocytes in the TME are the main source of IL-17.57,58 IL-17-mediated downstream signaling plays
a critical role in the TME, inducing the expression of different genes either to switch on pro-tumor effector cytokines or to
inhibit tumor growth in a context- and system-dependent manner.57 For example, IL-17 induces the production of IL-6, which
in turn induces STAT3 (signal transducer and activator of transcription 3);57 in fact, IL-6 orchestrates both the increase in the
recruitment of suppressive tumor-associated myeloid cells (MDSCs) and impacts their ability to inhibit anti-tumor T-cell
responses.59 Early on, a recent study uncovered how an IL-17–mediated paracrine network could recruit immature myeloid
cells into the TME, causing tumor progression; this study demonstrated that through NF-κB and ERK signaling, tumor-
infiltrating T helper type 17 (Th17) cells and IL-17 would induce granulocyte colony-stimulating factor expression, which is
crucial for the mobilization of immature myeloid cells into the TME.47 A recent study of the role IL-17A plays in the TNBC’s
TME identified that IL-17A stimulates the angiogenic andmigratory activity of TNBC cells andmodulates the TME’s immune
landscape towards a pro-metastatic phenotype.55 In contrast, Bianchini et al demonstrated that a subset of highly proliferative,
ER-negative breast cancers with high expression of a B-cell/plasma cell stromal metagene corresponding to immune functions
and extracellular matrix components were associated with a favorable prognosis.10 These studies lend support to the
composition of cellular constituents in the TME, and their association with the patient’s prognosis.

Using the methylation dataset, our in-silico cell line study in the DepMap platform demonstrates that 10 TNBC cell
lines had methylated lncRNA DRAIC. In contrast, all five non-TNBC cell lines were unmethylated. This tumor
suppressor, consistently deactivated in the 10 TNBC cell lines, shall require further research and investigation into its
clinical significance.

Still, regarding the TF genes associated with TNBC, a previous study suggested that EZH2 plays decisive roles in
immune cells (eg, T cells, NK cells, dendritic cells, and macrophages) in the tumor microenvironment.60 Liu et al
demonstrated a novel function of PPARγ in lymphocyte trafficking and the cross-talk between Th17 and B cells.61

Additionally, investigators from the Institut Curie and INSERM found that a high Th17 metagene was associated with
a good prognosis in T cell non-inflamed type TNBC, suggesting Th17 is a novel prognostic composite biomarker.
Altogether, these studies clearly support the notion that integrating immune cells and tumor molecular diversity is an
efficient strategy for the prognostic stratification of cancer patients.62

Several recently published studies provide some functional data to show how the IL-17-mediated signaling pathway
drives immune response and modulates the therapeutic response to chemotherapy or immunotherapy in solid tumors,
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including breast cancers.63–70 These data will inform future therapeutic strategy design both pre-clinically and
clinically. Some exciting and relevant research findings are discussed. In the TME, adenosine is a well-known
immunosuppressive molecule. Adenosine and adenosine triphosphate (ATP) are the most abundant metabolites within
a cell and extracellular space, acting as an autocrine and paracrine messenger. While ATP acts as an accelerator to
promote proinflammatory activities, adenosine, via the Gs-coupled A2a and A2b receptors, suppresses various immune
cells.11 Thibaudin et al identified that in breast cancer tumors, Th17 cells would express the ectonucleotidases, CD73
and CD39, which are the enzymes that degrade extracellular ATP into adenosine. The investigators further observed
that the adenosine molecule would suppress T cell immune responses.69 Wang et al investigated how IL-17A regulated
natural killer (NK) cell activity and found that by restraining IL-15-driven NK cell terminal maturation, IL-17A
constrained the NK cell’s anti-cancer activity.70 Th17 cells also contribute to the acquired resistance to PD-L1 blockade
immunotherapy and MEK inhibitor in KRAS/p53-mutant lung cancers.66,68 Th17 cells create resistance by secreting
IL-17 and IL-22 cytokines. The investigators established an in vivo model to prove the principle that through antibody
depletion of IL-17A, combining the MEK inhibition and PD-L1 blockade markedly reduce the therapy-induced
acquired resistance.68

Finally, the purpose of the current research was neither to develop a predictive molecular panel biomarker, nor to
identify innate resistance versus sensitive phenotypes to checkpoint inhibitor immunotherapy; we aimed to investigate
the factors behind the TME’s immune-stromal state and to look for the systemic functions of the involved molecular
signaling pathways. However, this study is not without limitations. One of them is the available low number of cases
used to separate tumors into two extreme immune-stromal phenotypes.

Conclusions
Overall, our data suggest that the disclosure of the distinct molecular anatomy of the TME in patients with TNBC (not of
the cancer cells per se) will assist in the determination of the ultimate tumor behavior. Of note, the results of this
integrated in silico study can only be generalized to approximately 17% of patients with TNBC, in which infiltrating
stromal cells and immune cells play a determinant prognostic role. Remarkably, our data suggest that the determining
factor for the differences in the tumor immune microenvironment (immunogenic versus immunosuppressive) can be
explained by IL-17 signaling and its paracrine network.

Data Sharing Statement
The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable
request.

Acknowledgments
The results published here are based on data generated by the TCGA Research Network: https://www.cancer.gov/tcga.
Part of the results in this study were presented as an e-poster at the American Association for Cancer Research 2021
Annual Meeting, held during April 10–15, 2021. The prior version without peer review has been posted as a preprint with
DOI: 10.21203/rs.3.rs-495771/v1.

Funding
This study was partly supported by a research fund from the Ministry of Science and Technology, Taiwan, with the grant
number as MOST 109-2321-B-468-001. The funder had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Disclosure
The authors declare that they have no competing interests in this work.

https://doi.org/10.2147/BCTT.S359346

DovePress

Breast Cancer: Targets and Therapy 2022:1496

Kok et al Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.cancer.gov/tcga
https://www.dovepress.com
https://www.dovepress.com


References
1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660

2. Glodzik D, Bosch A, Hartman J, et al. Comprehensive molecular comparison of BRCA1 hypermethylated and BRCA1 mutated triple negative
breast cancers. Nat Commun. 2020;11(1):3747. doi:10.1038/s41467-020-17537-2

3. Marra A, Trapani D, Viale G, Criscitiello C, Curigliano G. Practical classification of triple-negative breast cancer: intratumoral heterogeneity,
mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer. 2020;6:54. doi:10.1038/s41523-020-00197-2

4. Burstein MD, Tsimelzon A, Poage GM, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast
cancer. Clin Cancer Res. 2015;21(7):1688–1698. doi:10.1158/1078-0432.Ccr-14-0432

5. Kok VC. Hepatic metastasectomy and paclitaxel provide long-term survival for a young woman with recurrent triple-negative metastatic breast
cancer: 16 years follow-up. J Cancer Res Ther. 2018;14(3):722–723. doi:10.4103/0973-1482.179087

6. Schmid P, Adams S, Rugo HS, et al. Atezolizumab and Nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 2018;379
(22):2108–2121. doi:10.1056/NEJMoa1809615

7. Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382(9):810–821. doi:10.1056/
NEJMoa1910549

8. Schmid P, Rugo HS, Adams S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic
triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, Phase 3 trial. Lancet
Oncol. 2020;21(1):44–59. doi:10.1016/s1470-2045(19)30689-8

9. Oshi M, Asaoka M, Tokumaru Y, et al. Abundance of regulatory T cell (Treg) as a predictive biomarker for neoadjuvant chemotherapy in
triple-negative breast cancer. Cancers (Basel). 2020;12(10). doi:10.3390/cancers12103038

10. Bianchini G, Qi Y, Alvarez RH, et al. Molecular anatomy of breast cancer stroma and its prognostic value in estrogen receptor-positive and -
negative cancers. J Clin Oncol. 2010;28(28):4316–4323. doi:10.1200/jco.2009.27.2419

11. Kok VC. Current understanding of the mechanisms underlying immune evasion from PD-1/PD-L1 immune checkpoint blockade in head and neck
cancer. Front Oncol. 2020;10:268. doi:10.3389/fonc.2020.00268

12. Bouzidi L, Triki H, Charfi S, et al. Prognostic value of natural killer cells besides tumor-infiltrating lymphocytes in breast cancer tissues. Clin
Breast Cancer. 2021;21(6):e738–e747. doi:10.1016/j.clbc.2021.02.003

13. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol.
2017;17(9):559–572. doi:10.1038/nri.2017.49

14. Sivadas A, Kok VC, Ng KL. Multi-omics analyses provide novel biological insights to distinguish lobular ductal types of invasive breast cancers.
Breast Cancer Res Treat. 2022. doi:10.1007/s10549-022-06567-7

15. Mapiye DS, Christoffels AG, Gamieldien J. Identification of phenotype-relevant differentially expressed genes in breast cancer demonstrates
enhanced quantile discretization protocol’s utility in multi-platform microarray data integration. J Bioinform Comput Biol. 2016;14(5):1650022.
doi:10.1142/s0219720016500220

16. Lehmann BD, Colaprico A, Silva TC, et al. Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat
Commun. 2021;12(1):6276. doi:10.1038/s41467-021-26502-6

17. De Mattos-arruda L, Sammut SJ, Ross EM, et al. The genomic and immune landscapes of lethal metastatic breast cancer. Cell Rep. 2019;27
(9):2690–2708.e10. doi:10.1016/j.celrep.2019.04.098

18. Wang CCN, Li CY, Cai JH, et al. Identification of prognostic candidate genes in breast cancer by integrated bioinformatic analysis. J Clin Med.
2019;8(8). doi:10.3390/jcm8081160

19. Yoshihara K, Shahmoradgoli M, Martinez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat
Commun. 2013;4:2612. doi:10.1038/ncomms3612

20. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–457.
doi:10.1038/nmeth.3337

21. Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol.
2019;37(7):773–782. doi:10.1038/s41587-019-0114-2

22. Sturm G, Finotello F, List M. Immunedeconv: an R package for unified access to computational methods for estimating immune cell fractions from
bulk RNA-sequencing data. Methods Mol Biol. 2020;2120:223–232. doi:10.1007/978-1-0716-0327-7_16

23. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.
2015;43(7):e47. doi:10.1093/nar/gkv007

24. Galili T, O’Callaghan A, Sidi J, Sievert C. heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics.
2018;34(9):1600–1602. doi:10.1093/bioinformatics/btx657

25. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16(5):284–287.
doi:10.1089/omi.2011.0118

26. Chen EY, Xu H, Gordonov S, Lim MP, Perkins MH, Ma’ayan A. Expression2Kinases: mRNA profiling linked to multiple upstream regulatory
layers. Bioinformatics. 2012;28(1):105–111. doi:10.1093/bioinformatics/btr625

27. Clarke DJB, Kuleshov MV, Schilder BM, et al. eXpression2Kinases (X2K) Web: linking expression signatures to upstream cell signaling networks.
Nucleic Acids Res. 2018;46(W1):W171–w179. doi:10.1093/nar/gky458

28. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7.
doi:10.1186/1471-2105-14-7

29. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.
Cancer Discov. 2012;2(5):401–404. doi:10.1158/2159-8290.Cd-12-0095

30. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6
(269):pl1. doi:10.1126/scisignal.2004088

31. Berger H, Vegran F, Chikh M, et al. SOCS3 transactivation by PPARgamma prevents IL-17-driven cancer growth. Cancer Res. 2013;73
(12):3578–3590. doi:10.1158/0008-5472.CAN-12-4018

Breast Cancer: Targets and Therapy 2022:14 https://doi.org/10.2147/BCTT.S359346

DovePress
97

Dovepress Kok et al

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41467-020-17537-2
https://doi.org/10.1038/s41523-020-00197-2
https://doi.org/10.1158/1078-0432.Ccr-14-0432
https://doi.org/10.4103/0973-1482.179087
https://doi.org/10.1056/NEJMoa1809615
https://doi.org/10.1056/NEJMoa1910549
https://doi.org/10.1056/NEJMoa1910549
https://doi.org/10.1016/s1470-2045(19)30689-8
https://doi.org/10.3390/cancers12103038
https://doi.org/10.1200/jco.2009.27.2419
https://doi.org/10.3389/fonc.2020.00268
https://doi.org/10.1016/j.clbc.2021.02.003
https://doi.org/10.1038/nri.2017.49
https://doi.org/10.1007/s10549-022-06567-7
https://doi.org/10.1142/s0219720016500220
https://doi.org/10.1038/s41467-021-26502-6
https://doi.org/10.1016/j.celrep.2019.04.098
https://doi.org/10.3390/jcm8081160
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1007/978-1-0716-0327-7_16
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btx657
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/bioinformatics/btr625
https://doi.org/10.1093/nar/gky458
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1158/2159-8290.Cd-12-0095
https://doi.org/10.1126/scisignal.2004088
https://doi.org/10.1158/0008-5472.CAN-12-4018
https://www.dovepress.com
https://www.dovepress.com


32. Ahmed M, Gaffen SL. IL-17 inhibits adipogenesis in part via C/EBPalpha, PPARgamma and Kruppel-like factors. Cytokine. 2013;61(3):898–905.
doi:10.1016/j.cyto.2012.12.007

33. Pabst T, Mueller BU, Zhang P, et al. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in
acute myeloid leukemia. Nat Genet. 2001;27(3):263–270. doi:10.1038/85820

34. Wei ZY, Li HS, Zhou JY, et al. [Mechanism of transcriptional regulation of Meox1 by transforming growth factor beta (1) and its effect on cell
migration of adult human dermal fibroblasts]. Zhonghua Shao Shang Za Zhi. 2020;36(3):224–233, Chinese. doi:10.3760/cma.j.cn501120-
20200109-00014

35. Yu C, Niu X, Du Y, et al. IL-17A promotes fatty acid uptake through the IL-17A/IL-17RA/p-STAT3/FABP4 axis to fuel ovarian cancer growth in
an adipocyte-rich microenvironment. Cancer Immunol Immunother. 2020;69(1):115–126. doi:10.1007/s00262-019-02445-2

36. Jiang Y, Xu E, Zhang J, Chen M, Flores E, Chen X. The Rbm38-p63 feedback loop is critical for tumor suppression and longevity. Oncogene.
2018;37(21):2863–2872. doi:10.1038/s41388-018-0176-5

37. Burns LA, Maroof A, Marshall D, et al. Presence, function, and regulation of IL-17F-expressing human CD4(+) T cells. Eur J Immunol. 2020;50
(4):568–580. doi:10.1002/eji.201948138

38. Hod-Dvorai R, Jacob E, Boyko Y, Avni O. The binding activity of Mel-18 at the Il17a promoter is regulated by the integrated signals of the TCR
and polarizing cytokines. Eur J Immunol. 2011;41(8):2424–2435. doi:10.1002/eji.201141620

39. Aboulnasr F, Hazari S, Nayak S, et al. IFN-lambda inhibits MiR-122 transcription through a Stat3-HNF4alpha inflammatory feedback loop in an
IFN-alpha resistant HCV cell culture system. PLoS One. 2015;10(12):e0141655. doi:10.1371/journal.pone.0141655

40. Kim YD, Kim YH, Cho YM, et al. Metformin ameliorates IL-6-induced hepatic insulin resistance via induction of orphan nuclear receptor small
heterodimer partner (SHP) in mouse models. Diabetologia. 2012;55(5):1482–1494. doi:10.1007/s00125-012-2494-4

41. Li G, Kong B, Zhu Y, et al. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor
knockout mice. Toxicol Appl Pharmacol. 2013;272(2):299–305. doi:10.1016/j.taap.2013.06.016

42. Shen J, Sun X, Pan B, et al. IL-17 induces macrophages to M2-like phenotype via NF-κB. Cancer Manag Res. 2018;10:4217–4228. doi:10.2147/
cmar.S174899

43. Saha S, Zhang Y, Wilson B, Abounader R, Dutta A. The tumor-suppressive long noncoding RNA DRAIC inhibits protein translation and induces
autophagy by activating AMPK. J Cell Sci. 2021;134(24). doi:10.1242/jcs.259306

44. Alt EU, Wörner PM, Pfnür A, et al. Targeting TRAF3IP2, compared to Rab27, is more effective in suppressing the development and metastasis of
breast cancer. Sci Rep. 2020;10(1):8834. doi:10.1038/s41598-020-64781-z

45. Herjan T, Hong L, Bubenik J, et al. IL-17-receptor-associated adaptor Act1 directly stabilizes mRNAs to mediate IL-17 inflammatory signaling. Nat
Immunol. 2018;19(4):354–365. doi:10.1038/s41590-018-0071-9

46. Bareche Y, Buisseret L, Gruosso T, et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized
treatment approach. J Natl Cancer Inst. 2020;112(7):708–719. doi:10.1093/jnci/djz208

47. Chung AS, Wu X, Zhuang G, et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med.
2013;19(9):1114–1123. doi:10.1038/nm.3291

48. Deng J, Thennavan A, Shah S, et al. Serial single-cell profiling analysis of metastatic TNBC during Nab-paclitaxel and pembrolizumab treatment.
Breast Cancer Res Treat. 2020;185:85–94. doi:10.1007/s10549-020-05936-4

49. Deng L, Lu D, Bai Y, Wang Y, Bu H, Zheng H. Immune profiles of tumor microenvironment and clinical prognosis among women with
triple-negative breast cancer. Cancer Epidemiol Biomarkers Prev. 2019;28(12):1977–1985. doi:10.1158/1055-9965.Epi-19-0469

50. Vangangelt KMH, van Pelt GW, Engels CC, et al. Prognostic value of tumor-stroma ratio combined with the immune status of tumors in invasive
breast carcinoma. Breast Cancer Res Treat. 2018;168(3):601–612. doi:10.1007/s10549-017-4617-6

51. Zheng S, Zou Y, Xie X, et al. Development and validation of a stromal immune phenotype classifier for predicting immune activity and prognosis
in triple-negative breast cancer. Int J Cancer. 2020;147(2):542–553. doi:10.1002/ijc.33009

52. Karn T, Jiang T, Hatzis C, et al. Association between genomic metrics and immune infiltration in triple-negative breast cancer. JAMA Oncol. 2017;3
(12):1707–1711. doi:10.1001/jamaoncol.2017.2140

53. Deng J, Thennavan A, Shah S, et al. Serial single-cell profiling analysis of metastatic TNBC during Nab-paclitaxel and pembrolizumab treatment.
Breast Cancer Res Treat. 2021;185(1):85–94. doi:10.1007/s10549-020-05936-4

54. Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors. Cell. 2018;172(4):650–665. doi:10.1016/j.cell.2018.01.029
55. Tsai YF, Huang CC, Lin YS, et al. Interleukin 17A promotes cell migration, enhances anoikis resistance, and creates a microenvironment suitable

for triple negative breast cancer tumor metastasis. Cancer Immunol Immunother. 2021;70(8):2339–2351. doi:10.1007/s00262-021-02867-x
56. Shuai C, Yang X, Pan H, Han W. Estrogen receptor downregulates expression of PD-1/PD-L1 and infiltration of CD8(+) T cells by inhibiting IL-17

signaling transduction in breast cancer. Front Oncol. 2020;10:582863. doi:10.3389/fonc.2020.582863
57. Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med.

2009;206(7):1457–1464. doi:10.1084/jem.20090207
58. Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng G. Tumor microenvironments direct the recruitment and expansion of human Th17 cells.

J Immunol. 2010;184(3):1630–1641. doi:10.4049/jimmunol.0902813
59. Ruhland MK, Loza AJ, Capietto AH, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat

Commun. 2016;7:11762. doi:10.1038/ncomms11762
60. Gan L, Yang Y, Li Q, Feng Y, Liu T, Guo W. Epigenetic regulation of cancer progression by EZH2: from biological insights to therapeutic potential.

Biomark Res. 2018;6:10. doi:10.1186/s40364-018-0122-2
61. Liu YH, Tsai YS, Lin SC, et al. Quantitative PPARγ expression affects the balance between tolerance and immunity. Sci Rep. 2016;6:26646.

doi:10.1038/srep26646
62. Faucheux L, Grandclaudon M, Perrot-Dockès M, et al. A multivariate Th17 metagene for prognostic stratification in T cell non-inflamed triple

negative breast cancer. Oncoimmunology. 2019;8(9):e1624130. doi:10.1080/2162402x.2019.1624130
63. Chen J, Ye X, Pitmon E, et al. IL-17 inhibits CXCL9/10-mediated recruitment of CD8(+) cytotoxic T cells and regulatory T cells to colorectal

tumors. J Immunother Cancer. 2019;7(1):324. doi:10.1186/s40425-019-0757-z
64. Dadaglio G, Fayolle C, Oberkampf M, et al. IL-17 suppresses the therapeutic activity of cancer vaccines through the inhibition of CD8(+) T-cell

responses. Oncoimmunology. 2020;9(1):1758606. doi:10.1080/2162402x.2020.1758606

https://doi.org/10.2147/BCTT.S359346

DovePress

Breast Cancer: Targets and Therapy 2022:1498

Kok et al Dovepress

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1016/j.cyto.2012.12.007
https://doi.org/10.1038/85820
https://doi.org/10.3760/cma.j.cn501120-20200109-00014
https://doi.org/10.3760/cma.j.cn501120-20200109-00014
https://doi.org/10.1007/s00262-019-02445-2
https://doi.org/10.1038/s41388-018-0176-5
https://doi.org/10.1002/eji.201948138
https://doi.org/10.1002/eji.201141620
https://doi.org/10.1371/journal.pone.0141655
https://doi.org/10.1007/s00125-012-2494-4
https://doi.org/10.1016/j.taap.2013.06.016
https://doi.org/10.2147/cmar.S174899
https://doi.org/10.2147/cmar.S174899
https://doi.org/10.1242/jcs.259306
https://doi.org/10.1038/s41598-020-64781-z
https://doi.org/10.1038/s41590-018-0071-9
https://doi.org/10.1093/jnci/djz208
https://doi.org/10.1038/nm.3291
https://doi.org/10.1007/s10549-020-05936-4
https://doi.org/10.1158/1055-9965.Epi-19-0469
https://doi.org/10.1007/s10549-017-4617-6
https://doi.org/10.1002/ijc.33009
https://doi.org/10.1001/jamaoncol.2017.2140
https://doi.org/10.1007/s10549-020-05936-4
https://doi.org/10.1016/j.cell.2018.01.029
https://doi.org/10.1007/s00262-021-02867-x
https://doi.org/10.3389/fonc.2020.582863
https://doi.org/10.1084/jem.20090207
https://doi.org/10.4049/jimmunol.0902813
https://doi.org/10.1038/ncomms11762
https://doi.org/10.1186/s40364-018-0122-2
https://doi.org/10.1038/srep26646
https://doi.org/10.1080/2162402x.2019.1624130
https://doi.org/10.1186/s40425-019-0757-z
https://doi.org/10.1080/2162402x.2020.1758606
https://www.dovepress.com
https://www.dovepress.com


65. Kaewkangsadan V, Verma C, Eremin JM, Cowley G, Ilyas M, Eremin O. Crucial contributions by T lymphocytes (effector, regulatory, and
checkpoint inhibitor) and cytokines (TH1, TH2, and TH17) to a pathological complete response induced by neoadjuvant chemotherapy in women
with breast cancer. J Immunol Res. 2016;2016:4757405. doi:10.1155/2016/4757405

66. Li Q, Ngo PT, Egilmez NK. Anti-PD-1 antibody-mediated activation of type 17 T-cells undermines checkpoint blockade therapy. Cancer Immunol
Immunother. 2021;70(6):1789–1796. doi:10.1007/s00262-020-02795-2

67. Moaaz M, Lotfy H, Motawea MA, Fadali G. The interplay of interleukin-17A and breast cancer tumor microenvironment as a novel immunother-
apeutic approach to increase tumor immunogenicity. Immunobiology. 2021;226(2):152068. doi:10.1016/j.imbio.2021.152068

68. Peng DH, Rodriguez BL, Diao L, et al. Th17 cells contribute to combination MEK inhibitor and anti-PD-L1 therapy resistance in KRAS/p53
mutant lung cancers. Nat Commun. 2021;12(1):2606. doi:10.1038/s41467-021-22875-w

69. Thibaudin M, Chaix M, Boidot R, et al. Human ectonucleotidase-expressing CD25(high) Th17 cells accumulate in breast cancer tumors and exert
immunosuppressive functions. Oncoimmunology. 2016;5(1):e1055444. doi:10.1080/2162402x.2015.1055444

70. Wang X, Sun R, Hao X, Lian ZX, Wei H, Tian Z. IL-17 constrains natural killer cell activity by restraining IL-15-driven cell maturation via
SOCS3. Proc Natl Acad Sci U S A. 2019;116(35):17409–17418. doi:10.1073/pnas.1904125116

Breast Cancer: Targets and Therapy Dovepress

Publish your work in this journal
Breast Cancer - Targets and Therapy is an international, peer-reviewed open access journal focusing on breast cancer research, identification of
therapeutic targets and the optimal use of preventative and integrated treatment interventions to achieve improved outcomes, enhanced survival
and quality of life for the cancer patient. The manuscript management system is completely online and includes a very quick and fair peer-review
system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/breast-cancer—targets-and-therapy-journal

Breast Cancer: Targets and Therapy 2022:14 DovePress 99

Dovepress Kok et al

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1155/2016/4757405
https://doi.org/10.1007/s00262-020-02795-2
https://doi.org/10.1016/j.imbio.2021.152068
https://doi.org/10.1038/s41467-021-22875-w
https://doi.org/10.1080/2162402x.2015.1055444
https://doi.org/10.1073/pnas.1904125116
https://www.dovepress.com
http://www.dovepress.com/testimonials.php
https://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
https://www.dovepress.com

	Introduction
	Materials and Methods
	Ethics Statement and Study Design
	Estimation of the Immune/Stromal Scores
	Correlation Analyses
	CIBERSORT Analysis
	Differential Expression Analysis
	Gene Ontology and KEGG Pathway Enrichment Analyses
	eXpression2Kinases Analysis
	Gene Set Variation Analysis
	Validation in TNBC Cancer Cell Lines and Non-TNBC Cancer Cell Lines
	Validation in cBioPortal for Cancer Genomics
	Statistical Analyses

	Results
	Validation of the Results in the TNBC Cell Lines
	Validation of the Results in the cBioPortal

	Discussion
	Conclusions
	Data Sharing Statement
	Acknowledgments
	Funding
	Disclosure
	References

