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A B S T R A C T   

The aim of this study is to explore the characteristics of an active Free-Piston Stirling Engine 
(AFPSE) through the use of machine learning methods. Due to the time-intensive nature of 
extracting simulation results from complex thermal equations, an Artificial Neural Network 
(ANN) is utilized to expedite the process. To construct a nonlinear model, 5000 samples are 
extracted from simulation results. Input parameters included in the model are the hot and cold 
source temperatures, the voltage given to the DC motor, spring stiffness, and the mass of the 
power piston, while output parameters are the amplitude and frequency of power piston 
displacement. The proposed ANN model structure comprises two hidden layer with 10 and 20 
neurons, respectively, indicating the applicability of the ANN model in estimating significant 
parameters of AFPSE in a shorter amount of time. The firefly optimization algorithm is utilized to 
determine the unknown input parameters of ANN and maximize the output power. Results 
indicate that a maximum output power of 23.07 W can be attained by applying 8.5 V voltage on 
the DC motor. This study highlights the potential of machine learning techniques to explore the 
primary features of AFPSE.   

1. Introduction 

The Stirling engine is an external combustion engine which was introduced by Robert Stirling. One notable advantage of the 
Stirling engine is its versatility in utilizing different heat sources, including solar energy [1], biomass, and fossil fuels. Active 
free-piston Stirling engine (AFPSE) is considered an advanced type of dynamic Stirling engine. Free Piston Stirling Engines (FPSEs) 
belong to the family of Stirling engines, which operate based on the Stirling thermodynamic cycle comprising compression, heating, 
expansion, and cooling of a sealed working gas to generate power. FPSEs are characterized by their closed-cycle operation, where the 
working gas remains enclosed within the engine and is continuously cycled. Typically, an FPSE includes two pistons: the power piston 
and the displacer. The displacer moves the working gas between the hot and cold regions of the engine, while the power piston 
generates mechanical work by responding to pressure variations due to gas expansion and contraction. In FPSEs, both the power piston 
and the displacer move in a linear motion, distinct from the rotary motion in many other engine types. The absence of a mechanical 
linkage, like a crankshaft, connecting the pistons to external components is a fundamental principle of FPSEs. Instead, the piston 
motion is solely dictated by pressure differentials in the working gas. To enhance thermal efficiency, Stirling engines, including FPSEs, 
often incorporate a regenerator. This device stores and releases heat within the engine to reduce energy losses and optimize overall 
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performance. FPSEs require an external combustion chamber and a heat sink to maintain the necessary temperature gradient for the 
Stirling cycle. FPSEs are renowned for their high thermal efficiency and low emissions, making them an environmentally friendly 
choice suitable for diverse applications such as power generation and waste heat recovery. They have found use in electricity gen-
eration, combined heat and power systems [2], and solar power applications, particularly when reliability and efficiency are 
paramount. 

One of the main advantages of AFPSE is the ability to manually adjust the operating frequency, which allows for better adaptability 
to varying conditions. Numerous researchers have conducted studies on the design, development, key characteristics, and important 
parameters of Stirling engines. These investigations aim to optimize engine performance, improve efficiency, and explore potential 

Nomenclature 

cp Specific heat 
C Damping Coefficient (N.s.m− 1) 
Dh Hydraulic diameter (m) 
hC Cold cylinder’s convective heat transfer coefficient (W/m2 k) 
hH Convective heat transfer coefficient in the hot cylinder (W/m2 k) 
I Intensity of the received light 
I0 Intensity of the main light source 
Ie Equivalent Inertia 
IL Inertia of rod 
Im Inertia of DC motor’s armature 
IR Inertia of crank 
Kb Back electromotive force constant 
KT Torque constant 
k Spring stiffness of power piston (N.m− 1) 
L Length (m) 
L1 Inductance (H) 
M Total mass of the power piston, rod, and magnet (kg) 
m Mass of the gas in engine (kg) 
P Pressure (pa) 
Pr Prandtl Number 
Re Resistance (Ω)

Rem Average Reynolds 
r Ideal gas constant 
Sd Cross-sectional area of displacer piston (m2) 
Sp Cross-sectional area of power piston (m2) 
St Piston Stroke (m) 
TC Sink temperature (K) 
Tc Gas temperature in compression space (K) 
TH Source temperature (K) 
Th Gas temperature in expansion space (K) 
Tm Dc motor torque (N.m) 
V Applied voltage to DC motor 
W Work (J) 
x Power position of the piston (m) 
ẋ Power piston velocity (m.s− 1) 
ẍ Power piston acceleration (m.s− 2) 
y Displacer piston position (m) 
γ Heat capacity ratio 
ν Kinematic viscosity of working gas (m2s-1) 
ηreg Efficiency of regenerator 
Δ Difference 
θ Angle of rotation of DC motor (degree) 
μ Gas viscosity (pa.s) 
ω Engine frequency (rad.s− 1) 
vco Initial volume of compression space (m3) 
vho Initial volume of expansion space (m3) 
β Received attractiveness 
β0 attractiveness of the source  
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applications in various fields. Buscemi et al. [3] focused on optimizing the collector aperture area of the solar dish-Stirling engine to 
increase its diffusion. The study showed that an optimized dish-Stirling system could produce approximately 80 MWhe/year in areas 
with direct irradiation ranging from 2000 to 25000 kWh/m^2. Carrillo Caballero et al. [4] explored a multi-objective optimization 
approach for the dish Stirling engine. They used a detailed mathematical model to estimate efficiency and output power. Employing 
the NSGAII optimization algorithm, they successfully minimized heat loss and maximized power, resulting in substantial reductions in 
heat loss and impressive efficiency and output power figures of 21% and 11.1 kW, respectively. Wenlian Ye et al. [5] conducted 
multi-objective optimization for the free-piston Stirling engine. The goal of the optimization process was to concurrently enhance 
output power, thermal efficiency, and exergy efficiency. Various factors, such as gas pressure, piston frequency, temperatures, link 
size, and phase angle, were taken into consideration. The outcomes revealed optimal parameters, highlighting the significance of high 
charge pressure, elevated hot end temperature, optimal operating frequency, suitable cooler length, and a specific phase angle. As a 
result, the predicted efficiencies reached 136 W for output power, 38% for thermal efficiency, and 62% for exergy efficiency. Mingjiang 
Ni et al. [6] explored the Improved Simple Analytical Model for predicting heat and power loss in Stirling engines. They considered 
nitrogen and helium gases at varying flywheel speeds and gas pressures. Results indicated that higher flywheel speeds reduced work 
and the PV diagram area, while increased mean gas pressure enhanced efficiency and power output. The study achieved peak effi-
ciency and output power at 12.2% and 139 W for nitrogen, and 16.5% and 165 W for helium. Schiessler et al. [7] combined the genetic 
algorithm with a neural network to find a suitable number of layers and neurons for surgery data. The study achieved an accuracy 
increase of more than 40% and reduced the network size to 15% by using an optimization algorithm. In a separate study [8], an 
artificial neural network modeled wind turbine power, utilizing wind direction, wind speed, and yaw angle as inputs, and total power 
as the output. A genetic algorithm optimized the yaw angle, achieving a maximum total power ratio of 0.96 across various operating 
conditions. Masoumi et al. [9] used an ANN to approximate the function of a solar asphalt collector, improving data extraction ef-
ficiency compared to computational fluid dynamics (CFD) simulations. The ANN model effectively predicted key characteristics under 
various conditions, achieving thermal efficiency predictions of 45% in August and 35% in November. Furthermore, ANN has found 
extensive application as an intelligent controller in complex mechatronic devices. Tavakolpour-Saleh et al. [10] created an ANN-based 
controller for a fluidyne Stirling solar engine. This ANN predicted the optimal DC motor frequency for maximizing power output in 
varying conditions. Experiments confirmed the feasibility and effectiveness of this ANN controller. For example, under specific con-
ditions (390 K, 294 K, 1.5 m), the ANN predicted an optimal frequency of approximately 0.18 Hz, while experimental results found 2.1 
Hz to be optimal. This ANN can be integrated with other control methods, such as Model Predictive Control (MPC). Xiao Wu et al. [11] 
studied a neural network model for dynamic combustion CO2 process (PCC) performance. Their ANN model had six inputs and one 
output, predicting key PCC characteristics like response time and dynamic trends. The ANN was integrated into Model Predictive 
Control (MPC), employing a particle swarm optimization algorithm to identify optimal controller parameters. Tavakolpour-Saleh et al. 
[12] introduced an AFPSE with a mathematical model that optimized power and efficiency. The best results occurred at a specific DC 
motor frequency, chamber temperatures, spring stiffness, and piston mass, reaching 7.1W power at 9.2 Hz frequency. In a later project 
[13], a genetic algorithm optimized heat transfer and damping coefficients for an air-fluid-piston Stirling engine (AFPSE) to improve 
performance estimation. These coefficients were predicted as nonlinear functions based on DC motor frequency. This approach 
significantly enhanced simulation accuracy, with maximum estimation errors of 4.4% for gas pressure, 3.7% for power piston 
movement amplitude, and 2.6% for power piston movement frequency compared to experimental data. Hooshang and colleagues [14] 
introduced a rapid optimization method tailored for Stirling engines. Utilizing a combination of neural networks and experimental 
data, the researchers aimed to pinpoint crucial design variables like phase angle, displacer stroke, and working frequency specifically 
for the ST500 Stirling engine. These variables were optimized using the Multi-Layer Perception (MLP) to maximize the engine’s power 
output and efficiency. Wenlian Ye et al. [15] used an artificial neural network to predict a beta-type free piston Stirling engine’s 
dynamic performance, studying the impact of six input parameters. Spring stiffness and piston mass significantly affected the operating 
frequency. Post-training, high correlation coefficients (R2) were achieved for both training and testing data. Mean relative errors 
during training were low: 0.85% for operating frequency, 2.78% for amplitude ratio, and 3.19% for phase angle. This highlights the 
ANN’s strong predictive ability for the engine’s dynamic performance. Özgören et al. [16] developed an ANN model for predicting 
torque and power in a helium-fueled beta-type Stirling engine. They achieved excellent results with 5-11-7-1 and 5-13-7-1 network 
architectures for torque and power prediction, respectively. After training, both engine performance values showed strong correlations 
(R2 ≈ 1) for both testing and training data, with minimal RMSE and MEP values (RMSE <0.02% and MEP <3.5%). Toghyani [17] 
developed an ANN model for estimating the power and torque of the Philips M102C Stirling heat engine, where the initial weights were 
determined by particle swarm optimization. Ahmadi et al. [18] proposed a feed-forward ANN model to predict the Stirling engine’s 
power, demonstrating the effectiveness of the ANN model. 

Analyzing the performance of an AFPSE can be a time-consuming process, as it involves solving highly nonlinear equations for each 
time step. To expedite the calculations, researchers have explored the use of machine learning techniques such as artificial neural 
networks (ANNs) and optimization algorithms. The primary goal of this study was to investigate the performance of an AFPSE using 
these machine learning methods. To do so, five key parameters were selected as input data for the ANN: hot and cold chamber 
temperatures, spring stiffness, mass, and voltage of the DC motor. The ANN was then trained to predict several output parameters, 
including the amplitude and frequency of power piston displacement, output power, maximum gas pressure, and amplitude of the 
power piston. Assessing the precision of the Artificial Neural Network (ANN) model involved gauging its performance through output 
versus target comparisons and error histogram analysis. Further validation ensued by scrutinizing the forecasted frequency and 
amplitude of the power piston against experimental data. To maximize output power, the firefly optimization algorithm was employed 
to ascertain the optimal values for input parameters. The study’s findings underscore the efficacy of machine learning algorithms in 
expeditiously exploring the intricate dynamics of complex systems like AFPSE. By combining ANN and optimization algorithms, 
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researchers can quickly identify optimal operating conditions and design parameters, leading to improved performance and efficiency. 
Descriprion, advantages and disavantages of diffferent optimization algorithms are presented in Table 1. 

Section 2 introduces the mathematical model governing mechanical, electrical, and thermal equations. Section 3 covers the firefly 
algorithm, a powerful optimization algorithm used to find optimal parameters. Section 4 discusses the ANN modeling structure, 
showing predictive frequency and amplitude of power piston displacement based on various inputs. Section 5 integrates the firefly 
algorithm with the ANN model of the AFPSE to predict maximum output and determine optimal variables. 

2. Mathematical background 

The open loop AFPSE is a complex system that comprises several interconnected components, including power and displacer 

Table 1 
Descriprion, advantages and disavantages of diffferent optimization algorithms.  

Aspect Firefly Optimization Algorithm (FOA) Genetic Algorithm (GA) Teaching-Learning-Based Optimization 
(TLBO) 

Description FOA is inspired by the mating behavior of 
fireflies. It uses the concept of attractiveness 
to simulate light intensity. Fireflies are 
attracted to brighter fireflies, and their 
positions are updated accordingly. 

GA is a population-based search algorithm 
that uses the principles of natural selection, 
crossover, and mutation to evolve a 
population of potential solutions. 

TLBO is based on a teaching-learning model. 
It involves two phases: the teacher phase 
(exploitation) and the learner phase 
(exploration). Students learn from teachers 
to improve solutions. 

Advantages  • Fast convergence.  
• Population size independence.  
• Fewer algorithm-specific parameters.  
• Effective balance of global and local search.  
• Inspired by real-world behavior.  

• Versatility for various problems.  
• Parallelizable for faster optimization.  
• Diverse exploration via crossover and 

mutation.  
• Population-based for maintaining 

diversity.  

• Effective population dynamics.  
• Fewer algorithm-specific parameters.  
• No need for crossover and mutation.  
• Adaptability for dynamic problems. 

Disadvantages  • -May not perform well for all problem 
types.  

• -Sensitive to parameter settings.  
• Limited scalability for very large 

populations.  

• Requires tuning of various parameters.  
• Can get stuck in local optima.  
• Slow convergence for complex problems 

with high-dimensional search spaces.  

• May have limited applicability for certain 
problem types.  

• Limited exploration due to lack of 
crossover and mutation.  

• Requires careful handling of the teacher- 
student dynamics.  

Fig. 1. The active free piston Stirling engine a) The prototype AFPSE b) A schematic overview.  
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pistons, a DC motor, a slider-crank mechanism, expansion and compression chambers, and a mass-spring system. Fig. 1 illustrates these 
components and their arrangement within the AFPSE. 

The DC motor is a crucial element in the AFPSE’s operation as it drives the displacer piston through a slider-crank mechanism, 
which converts the motor’s rotational motion into reciprocating motion. The slider-crank mechanism, on the other hand, is responsible 
for converting the rotary motion of the DC motor into the reciprocating motion of the displacer piston. The reciprocating motion of the 
displacer piston inside the cylinder has a direct impact on the working gas displacement, leading to pressure fluctuations that affect the 

Fig. 2. Open-loop block diagram of the AFPSE.  

Table 2 
Governing equations of AFPSE.  

Modeling of DC 
motor [12]  

V − Kb
dθ
dt

=
Re

KT
Tm +

L1

KT

dTm

dt
(1)   

Kinematic 
relation of 
slider crank 
[12]  

y=Rm(1 − cos θ) − β+ L where β= L

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

(
Rm

L
sin θ

)2
√

(2)   

Dynamic relations 
of slider 
crank [12]  

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Tm = IeӪ

Ie = Im + IR + IL

(
R cos θ

β

)2

+ mL

[(
R cos θ

2

)2

+

(

R sin θ +
σL
2

)2
]

+ mD(R sin θ + σ L)2

σ =
R2 sin θ cos θ

βL

(3)   

Thermal 
modeling 
[12]  

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2π hh

ωspe(TH − Th) =
mrTcTh

Tc − Th

(

ln
Thvco + Tc(Sdy0 + vho)

Th(Sdy0 + vco) + Tcvho
+ ln

Th
(
Sdy0 + Spx0 + vco

)
+Tcvho

Th
(
Spx0 + vco

)
+ Tc(Sdy0 + vho)

)

+ Δm
r

Υ − 1
(Th − Tc)

(
1 − ηreg

)

2π hc

ωsde(TC − Tc) = −
mrTcTh

Tc − Th

(

ln
Thvco + Tc(Sdy0 + vho)

Th(Sdy0 + vco) + Tcvho
+ ln

Th(Sdy0 + vco)+Tc
(
Spx0 + vho

Thvco + Tc
(
Sdy0 + Spx0 + vho

)

)

+ W − Δm
r

Υ − 1
(Th − Tc)

(
1 − ηreg

)
(4)   

Estimated heat 
transfer 
coefficient in 
hot and cold 
chamber [13]  

hh =
0.0090Re1.4892

m μcp

2Dh Pr

hc =
0.0035Re2.0048

m μcp

2Dh Pr

(5)   

Pressure equation 
[12]  

p(x, y)=
mrThTc

Th
(
sd(y0 − y) + spx + vh0

)
+ Tc(sdy + vh0)

(6)   

Mass spring 
damper 
mechanism 
[12]  

m
d2x
dt2 + c

dx
dt

+ kx=(p(x, y) − p0)sp (7)   

Estimated 
damping 
coefficient 
[13]  

C(ω)= 0.0618ω7 − 1.56ω6 + 15.79ω5 − 80.23ω4 + 207.11ω3 − 212.50ω2 − 88.24ω + 270.37 (8)      
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gas pressure inside the cylinder. Gas pressure is closely related to gas temperature, and accurately estimating temperature is crucial for 
predicting performance accurately. The pressure fluctuations resulting from gas pressure variations excite a 1-DOF mass-spring- 
damper system that governs the power piston’s dynamics. Fig. 2 and Table 2 represent the open-loop block diagram and mechani-
cal, electrical, and thermal equations governing the AFPSE, respectively [12]. Equations (1)–(8) represent the required governing 
equations for the AFPSE. The simulation considers DC motor voltage, hot and cold temperatures, spring stiffness, and Mass as sig-
nificant inputs, while the amplitude and frequency of the power piston displacement are considered important output features. As 
evident from the thermal model, the simulation is highly nonlinear, which makes it challenging to analyze and predict the AFPSE’s 
behavior accurately in the less of the time. 

This section provides an overview of the mathematical equations governing the AFPSE’s key components, including the DC motor, 
slider-crank mechanism, thermal model, pressure model, and mass-spring system [12]. To expedite the time-intensive model calcu-
lations, a neural network model is proposed. The amplitude and frequency of the power piston displacement are used to determine 
important characteristics such as gas pressure and power output. In section 4, an open-loop block diagram with a fast Fourier transform 
(FFT) is utilized to calculate these parameters. 

3. Firefly optimization algorithm 

Optimization algorithms are powerful tools used to minimize or maximize objective functions in various applications [1]. Three 
commonly used optimization algorithms are the genetic algorithm, firefly optimization algorithm (FOA), and teaching-learning based 
optimization algorithm. In a previous study, an optimization algorithm was used to minimize the discrepancy between experimental 
and simulation data, enabling the estimation of two unknown coefficients. Among these algorithms, the firefly optimization algorithm 
(FOA) stands out as a practical toolbox in the field of artificial intelligence. FOA was proposed by Xin-She Yang and has gained 
recognition for its effectiveness in solving optimization problems. 

The main idea of FOA is based on the attractiveness of fireflies. In nature, if the fireflies produce more light and the distance 
between fireflies is less, they can attract each other more. In computer science, some artificial populations are created that encompass 
the main information of unknown parameters. The light source is assumed to be in the form of a point. According to the physics law, 
the intensity of the pointed light has reverse relation with the square of the distance between two fireflies [19]. Equation (9) computes 
the intensity of the pointed light as: 

Fig. 3. Standard flowchart of firefly algorithm.  
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I =
I0

r2 (9)  

where I is the intensity of the received light, I0 is the light intensity of the main source of light and r is the distance between the light 
source and the firefly. 

Firefly’s attractiveness is proportional to the light intensity seen by adjacent fireflies. The attractiveness of a firefly can be expressed 
by equation (10) as [19]: 

β(r)= β0e− γrM
≈

β0

1 + γrM (M ≥ 1) (10)  

where β refers to the received attractiveness, β0 is the maximum attractiveness of the source (attractiveness at r = 0) and γ is the light 
absorption coefficient. Equation (11) presents a new position of each firefly [19]: 

xnew
n = xold

n + β0e− γr2
mn (xm − xn) + αεn (11)  

where α is a random number, ε is a random vector, and r is defined using equation (12): 

r=‖xm − xn ‖ (12) 

The main steps of this algorithm can be seen as the Pseudo code of the firefly algorithm in Fig. 3. 
In this section, the basic concept of the firefly optimization algorithm is reviewed. The main duty of using an optimization algo-

rithm is to find unknown parameters with the aim of minimizing or maximizing the cost function. In section 5, the firefly algorithm will 
be used to find the unknown initial condition of working the AFPSE in order to maximize the output power. 

4. Artificial neural network modeling and validation 

Artificial Neural Networks (ANNs) emerge as a formidable tool in the domain of artificial intelligence, finding widespread 

Fig. 4. Schematic of an artificial neuron.  

Fig. 5. Artificial neural network structure.  
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application across diverse articles in various fields. Modeled after the intricate structure of neurons in the human brain, ANNs exhibit 
the capacity to discern relationships between input and output variables without relying on prior knowledge of the underlying 
mathematical model. This methodology, known for its speed and relative simplicity, is depicted in Fig. 4, illustrating the schematic of a 
neuron’s mathematical model. Equation (13) further elucidates the mathematical interrelation within an individual neuron. 

Y= f

(
∑n

i=1
xi ×wi + b

)

(13) 

Various activation functions are employed in Artificial Neural Networks (ANNs). In this article, the chosen activation function is the 
hyperbolic tangent sigmoid function, as defined by equation (14): 

y=
1

1 + exp (− 2x)
− 1 (14)  

4.1. Artificial neural network structure 

Within the ANN algorithm, there are typically three layers, visually depicted in Fig. 5. Each layer comprises multiple neurons. The 
initial layer is the input layer, positioned at the forefront of the ANN, featuring a predetermined number of neurons, precisely mir-
roring the input layer’s neuron count. The subsequent layer, termed the hidden layer, assumes a pivotal role in processing weights and 
biases to generate outputs. The determination of the hidden layer’s neuron count relies on manual adjustments through trial and error, 
considering the data complexity. Lastly, the third layer, recognized as the output layer, should ideally house neurons equal to the 
desired quantity. 

4.2. Training phase 

The first step in creating an artificial neural network (ANN) is to prepare the training data. It is important to note that the 
effectiveness of an ANN depends on the quantity and diversity of the data used for training. If the training data is selected appro-
priately, the ANN can accurately predict outcomes within the specified ranges. For this particular study, 5000 samples were obtained 
from Simulink and the input range was determined based on the potential conditions outlined in Table 3. 

For the training part of the algorithm 70% of the data is selected randomly. The remaining data is also divided by two. Half is used 
for validation and the other half is used for the test part. Another critical part is to normalize and scale the data to keep it between − 1 
and +1. 

Table 3 
Input data ranges for ANN.  

Parameters Ranges 

Voltage (v) [4–13] 
Hot temperature (Co) [250–1000] 
cold temperature (Co) [10–40] 
Stiffness of spring (N. m− 1) [200–1000] 
Mass (kg) [0.6–1.5]  

Fig. 6. Proposed artificial neural network modeling for AFPSE.  
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Fig. 7. Convergence of MSE for the proposed ANN model of AFPSE.  

Table 4 
Detailed information on how to achieve the appropriate ANN model.  

Neural network 
Architechture 

MSE Epoch Regression analysis of Trainig data Regression analusis for Validation data Regression analusis for test data 

Amplitude frequency Amplitude frequency Amplitude frequency 

5-5-2 0.0043 608 0.9822 0.9998 0.9832 0.9998 0.9845 0.9998 
5-10-2 0.001 200 0.9964 0.9998 0.9964 0.9998 0.996 0.9998 
5-15-2 0.0006 462 0.9982 0.9998 0.998 0.9998 0.9978 0.9998 
5-20-2 0.0008 938 0.9972 0.9998 0.9972 0.9998 0.9971 0.9998 
5-25-2 0.0003 586 0.9988 0.9999 0.9987 0.9999 0.9987 0.9999 
5-30-2 0.0003 521 0.9989 0.9999 0.9988 0.9999 0.9986 0.9999 
5-35-2 0.0004 783 0.9986 0.9999 0.998 0.9999 0.9985 0.9999 
5-40-2 0.0002 417 0.9991 0.9999 0.999 0.9999 0.9989 0.9999 
5-45-2 0.0003 733 0.9989 0.9999 0.9989 0.9999 0.9987 0.9999 
5-50-2 0.0003 354 0.999 0.9999 0.9988 0.9999 0.9988 0.9999 
5-55-2 0.0002 714 0.9992 0.9999 0.9989 0.9999 0.9986 0.9999 
5-60-2 0.0002 943 0.9993 0.9999 0.999 0.9999 0.9989 0.9999 
5-5-5-2 0.0007 999 0.9972 0.9999 0.9976 0.9999 0.9972 0.9998 
5-5-10-2 0.0004 817 0.9985 0.9999 0.9984 0.9999 0.9983 0.9999 
5-5-15-2 0.0003 670 0.9989 0.9999 0.999 0.9999 0.9989 0.9999 
5-5-20-2 0.0002 994 0.9991 0.9999 0.999 0.9999 0.9992 0.9999 
5-5-30-2 0.0002 776 0.9995 0.9999 0.9994 0.9999 0.9994 0.9999 
5-5-40-2 0.0002 213 0.9995 0.9999 0.9993 0.9999 0.9994 0.9999 
5-5-50-2 0.0002 679 0.9995 0.9999 0.9994 0.9999 0.9994 0.9999 
5-10-5-2 0.0003 927 0.9988 0.9999 0.9986 0.9999 0.9986 0.9999 
5-10-10-2 0.0002 654 0.9992 0.9999 0.9991 0.9999 0.9991 0.9999 
5-10-15-2 0.0002 322 0.9993 0.9999 0.9991 0.9999 0.9992 0.9999 
5-10-20-2 0.0001 296 0.9995 0.9999 0.9994 0.9999 0.9994 0.9999 
5-10-30-2 0.0001 716 0.9996 0.9999 0.9994 0.9999 0.9993 0.9999 
5-10-40-2 0.0001 885 0.9996 0.9999 0.9994 0.9999 0.9995 0.9999 
5-10-50-2 0.0001 929 0.9996 0.9999 0.9994 0.9999 0.9993 0.9999 
5-15-5-2 0.0002 702 0.9992 0.9999 0.999 0.9999 0.9991 0.9999 
5-15-10-2 0.0001 813 0.9995 0.9999 0.9993 0.9999 0.9994 0.9999 
5-15-15-2 0.0002 533 0.9993 0.9999 0.9992 0.9999 0.9992 0.9999 
5-15-20-2 0.0002 971 0.9993 0.9999 0.999 0.9999 0.9992 0.9999 
5-15-30-2 0.0001 502 0.9997 0.9999 0.9994 0.9999 0.9994 0.9999 
5-15-40-2 0.0001 298 0.9997 0.9999 0.9995 0.9999 0.9994 0.9999 
5-15-50-2 0.0001 963 0.9996 0.9999 0.9994 0.9999 0.9995 0.9999 
5-20-5-2 0.0002 843 0.9993 0.9999 0.9991 0.9999 0.9991 0.9999 
5-20-10-2 0.0001 471 0.9994 0.9999 0.9992 0.9999 0.9992 0.9999 
5-20-15-2 0.0001 488 0.9996 0.9999 0.9994 0.9999 0.9994 0.9999 
5-20-20-2 0.0001 407 0.9996 0.9999 0.9995 0.9999 0.9995 0.9999 
5-20-30-2 0.0001 559 0.9994 0.9999 0.9991 0.9999 0.9992 0.9999 
5-20-40-2 0.0001 802 0.9998 0.9999 0.9995 0.9999 0.9994 0.9999 
5-20-50-2 0.0001 441 0.9997 0.9999 0.9994 0.9999 0.9994 0.9999  
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4.3. Learning algorithm 

The performance of the designed ANN is investigated by comparing the difference between the predicted and target output data. 
Mean Square Error is used here as the objective function. Also Levenberg-Marquardt algorithm (LM) which is a combination of 
gradient descent and Gauss Newton method is utilized in this study. More details on the learning algorithms can be found in Ref. [19]. 

4.4. Test phase and evaluation 

In this subsection, a feed-forward artificial neural network (ANN) with a structure of 5-10-20-2 (as shown in Fig. 6 is proposed. The 
ANN model is trained using the Levenberg-Marquardt (LM) learning algorithm available in Matlab software, which enables the 
determination of the unknown weights and thresholds of the ANN model.The neural network toolbox provided by Matlab is used for 
training the ANN model. Fig. 7 depicts the training process of the AFPSE ANN model, where the mean square error (MSE) is used as the 
performance metric. The plot demonstrates the MSE values for the training, validation, and test datasets as the training progresses 
through epochs. It can be observed from Fig. 7 that the ANN model achieves an acceptable MSE value of approximately 10e-2 after 296 
epochs for all three datasets (training, validation, and test). This indicates that the ANN model has successfully learned the patterns and 

Fig. 8. Predicted output vs target and error histograms for the amplitude of the ANN model (a) training data (b) validation data (c) test data.  
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relationships within the AFPSE data and can provide accurate predictions for unseen samples. Table 4 presents information to find the 
proper ANN model. 

Regression plots serve as tools to anticipate the output parameter. Examining Figs. 8 and 9 reveals the results of regression and error 
histograms across training, validation, and test data. These visualizations effectively highlight any outliers present in the data. In terms 
of regression plots, the rank correlations (R) approach 1, indicating a close alignment between the predicted outputs from the ANN 
model and the actual experimental data. Furthermore, the error distribution, as evidenced by the histograms, displays symmetry, with 
both the mean error (μ) and standard deviation (σ) nearing 0. This alignment underscores the effective performance of the ANN model 
across training, validation, and testing datasets. 

4.5. Experiments and model validation 

The experimental configuration used to measure power piston displacement and estimate output power at different DC motor 
frequencies is depicted in Fig. 10. To predict the thermodynamic work and output power of AFPSE, it is crucial to determine the 

Fig. 9. Predicted output vs target and error histograms for power piston frequency of the ANN model (a) training data (b) validation data (c) 
test data. 
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vibration amplitude and frequency of the power piston. This quantity was measured using an ultrasonic sensor with a resolution of 1 
mm. In addition, a type K thermocouple was used to measure the temperatures of the hot and cold chambers, and an Arduino Uno 
collected the data with a sampling period of 0.01 s, satisfying the Nyquist sampling criterion for the engine’s maximum frequency. 

The experiments were done with 450Co and 245Co, spring stiffness of 260 N.m-1, a mass of 0.65 kg. and different frequency of DC 
motor. Then, the maximum amplitude of the power piston motion is measured and compared with the proposed ANN results. The 
maximum amplitude comparison can be seen in Fig. 11. The results clearly show that the proposed ANN can predict the amplitude of 
power piston vibration under different DC motor frequencies. 

In this section, we propose a neural network to predict the amplitude and frequency of power piston displacement. While the 
mathematical model developed in previous work [13] was accurate, solving the thermal equation was time-consuming. To overcome 
this challenge, we employ an ANN and use simulation results to train the model. We propose an ANN with a 5-10-20-2 structure and 
plot regression and error histograms to show the model’s performance. Subsequently, we conduct experiments to validate the output of 

Fig. 10. Experimental AFPSE with an ultrasonic sensor to measure amplitude and power piston displacement.  

Fig. 11. Experimental and ANN simulated power piston displacement for different frequencies of DC-motor at TH = 245Co and TH = 450Co.  
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the ANN. In the next section, we will use the proposed ANN model to investigate the main features of AFPSE. 

5. Results and discussion 

This section employs the proposed ANN model obtained in section 4 to evaluate the performance of an AFPSE. The ANN model 
takes five inputs, including the voltage applied to the DC motor, hot and cold chamber temperatures, spring stiffness, and power piston 
mass. Its output is the frequency and amplitude of power piston displacement. The pressure-volume (P–V) plot is an essential figure to 
investigate Stirling engines. The area enclosed by the P–V curve represents the work done by the engine. To draw the P–V diagram, the 
sine function is used to simulate the power piston displacement. Equation (15) is used to show the real-time power piston displace-
ment. The time step for estimating the displacement versus time is 0.01. 

X =Amplitude × sin(2π × frequency× time) (15) 

Fig. 12. Free body diagram of the power piston.  

Fig. 13. Steps through the calculation of predicting the performance of AFPSE.  
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Then, newton’s second law is used in equation (16) to calculate the gas pressure inside the engine using the power piston 
displacement, velocity, and acceleration (see Fig. 12). 

p(x)=

(

M d2x
dt2 + c dx

dt + kx
)

sp
+ p0 (16) 

By predicting the power piston displacement and gas pressure, the P–V diagram can be plotted for more investigation. Afterward, 
the trapezoidal rule is employed to calculate the area of the P–V diagram. The calculated area of the P–V diagram is viewed as the work 
done by the thermodynamic cycle [20]. The output power of the Stirling engine can be determined by multiplying the work by the 
frequency of power piston displacement. Equation (17) illustrates the output power relation. Fig. 13 depicts the steps for predicting the 
P–V diagram, work, gas pressure, and output power of AFPSE. 

Output power=Areap − v × power piston frequency (17) 

In the following, the P–V diagram with different initial conditions is calculated and plotted. Fig. 14 shows the P–V diagram based on 
the proposed ANN and block diagram. The initial conditions for simulation can be seen in Table 5. The P–V diagrams in four different 
conditions are plotted in Fig. 14. Table 6 provides information about predicting the work and output power based on the obtained P–V 
diagram. 

As can be seen in Fig. 14 and Table 6, the P–V diagrams provide information about the performance of AFPSE. In other words, ANN 
can be used as a nonlinear model to estimate the main feature of the Stirling engine such as optimal frequency, gas pressure, work, and 
output power in various working conditions in less time. Therefore, more investigations are being done to deeply understand the 

Fig. 14. Predicted P–V diagram of the AFPSE by proposed ANN a) DC motor frequency variable b) hot temperature variable c) mass variable d) 
stiffness offspring variable. 

Table 5 
Initial inputs for investigating the p-v diagram.  

Number of Cases parameters 

Frequency of DC motor (Hz) TH (Co) Mass (kg) Spring stiffness (N.m− 1) TC (Co) 

Case (a) Variable 500 Co 0.8 kg 200 N m− 1 10 Co 

Case (b) 4.27 Hz Variable 1.3 kg 300 N m− 1 15 Co 

Case (c) 4 Hz 800 Co Variable 400 N m− 1 20 Co 

Case (d) 3.17 Hz 400 Co 1.5 kg Variable 13 Co  
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behavior of AFPSE. Figs. 15–18 show the maximum amplitude, maximum gas pressure, and output power versus different voltage and 
frequencies of the DC motor. 

By altering the temperatures of the hot and cold sources, observable trends emerge. Specifically, elevating the hot temperature 
while concurrently reducing the cold temperature results in an upswing in both the maximum gas pressure and output power. Notably, 
throughout these temperature variations, the optimal frequency or voltage of the DC remains consistent. Changing the cold tem-
perature has slight effects on the output power. With regard to Figs. 16 and 17, changing the power piston mass and spring stiffness 
directly influences the optimal voltage of the DC motor. Increasing the power piston mass results in a decrease in the optimal DC motor 
voltage. The optimal DC motor voltage decreased from 9.6V to 7.5 V, while the power piston mass increased from 0.6 kg to 1.5 kg. 
Increasing the spring stiffness also leads to an increase in the optimal frequency of the DC motor. Based on Fig. 17, the optimal fre-
quency of the DC motor decreases from 6.1 Hz to 3.9 Hz when the spring stiffness declines from 1000 N m− 1 to 200 N m− 1. 

5.1. Firefly optimization algorithm applied to ANN 

In this subsection, the focus is on applying the firefly optimization algorithm to the proposed ANN model of AFPSE with the aim of 
determining the optimal unknown parameters. figures 15–18 illustrate that AFPSE has the highest output power at a specific frequency 
of the DC motor based on the initial parameters. Therefore, it is crucial to find the optimal DC frequency and voltage, hot and cold 

Table 6 
Predicting the work and output power according to the p-v diagram. 

Fig. 15. (a) Maximum amplitude of power piston displacement, (b) gas pressure, and (c) Output power predicted by ANN with M = 1.3 kg, k = 800 
N m− 1, and, TC = 20Co. 
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source temperature, mass of the power piston, and spring stiffness. To facilitate this process of finding the optimal parameters, an 
optimization algorithm is used. The cost function of FOA is set as the output power (see equation (17)), and all input parameters of the 
ANN model are treated as unknown parameters. FOA is employed to determine the initial condition of AFPSE in order to maximize its 
output power. To this end, 20 artificial fireflies with 300 iterations are utilized to find the optimal parameters. The block diagram of the 
firefly optimization algorithm combined with the ANN model of AFPSE is shown in Fig. 19. The convergence plot and the highest cost 
for the optimization algorithm can also be seen in Fig. 20. 

As can be seen from, the maximum output power is approximately 23 W and about 150 iterations are required to reach this value. 

Fig. 16. (a) Maximum amplitude of power piston displacement, (b) gas pressure, and (c) Output power predicted by ANN with TH = 500Co K =
250N. m− 1 and, TC = 28Co. 

Fig. 17. (a) Maximum amplitude of power piston displacement, (b) gas pressure, and (c) Output power predicted by ANN with TH = 500 Co, M = 1 
kg, and, TC = 12Co. 

Fig. 18. (a) Maximum amplitude of power piston displacement, (b) gas pressure, and (c) Output power predicted by ANN with TH = 700Co and M 
= 0.7 kg, and k = 400 N.m− 1.. 
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For more investigation, this test was run 10 times and the same result occurred. The optimal value obtained from the firefly opti-
mization algorithm can be seen in Table 7. Furthermore, the optimal P–V diagram is depicted in Fig. 21. The results show that 
increasing the temperature differences between chambers, power piston mass, and stiffness spring paves the way to reach the 
maximum output power. 

In this section, the proposed ANN model in section 4 was used for the parametric study. First, the P–V diagrams were investigated 
under different initial conditions. Afterward, the amplitudes of the power piston displacement, maximum gas pressure, work, and 
output power were investigated. The results clearly showed that changing the mass of the power piston and spring stiffness had a 
significant influence on the optimal frequency of the DC motor that maximizes the output power. In addition, changing the tem-
perature difference had no impact on the optimal frequency, but increasing it leads to an increase in the output power. In the end, the 

Fig. 19. Steps through the calculation of finding optimal parameters of AFPSE using the firefly optimization algorithm.  

Fig. 20. Convergence plot and the highest Cost for the firefly optimization algorithm.  

Table 7 
Optimal parameters obtained from the firefly optimization algorithm.  

parameters Optimal value parameters Optimal value 

TH 1000o mass 1.5 kg 
TC 10Co Spring stiffness 1000 N m− 1 

Output power 23.07 W Frequency of power piston displacement 5.33 Hz 
work 4.33 J The amplitude of power piston displacement 3.4 cm 
Maximum pressure 138.89 kPa The voltage of the DC motor 8.5 V  
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firefly optimization algorithm was added to the ANN model in order to find the optimal unknown parameters to maximize the output 
power. 

6. Conclusion and recommendation 

This study employed a neural network to predict crucial parameters of an AFPSE, including power piston displacement amplitude 
and frequency, maximum gas pressure, work, optimal DC motor voltage, and output power under varying operational conditions. 
While a detailed analytical model for the mechatronic system was previously established and demonstrated in Ref. [12], it had lim-
itations such as slow convergence due to solving highly nonlinear thermal equations in each Simulink time step, making it unsuitable 
for parametric studies. To address this challenge, an Artificial Neural Network (ANN) was introduced as a nonlinear model to expedite 
predictions. A three-layer feed-forward ANN with a structure of 5-10-20-2 was suggested to learn the power piston displacement 
characteristics with five variable inputs. Out of various ANN structures, the 5-10-20-2 configuration exhibited the lowest mean square 
error and the least complexity. Subsequently, the AFPSE’s performance was forecasted, and key features such as output power, 
maximum gas pressure, power piston displacement amplitude and frequency, P–V (Pressure-Volume) diagram, and work were 
examined in detail. The results clearly demonstrate the feasibility of utilizing the ANN model for efficient performance analysis. 
Notably, the findings reveal that temperature differences between the hot and cold chambers have a significant impact on output 
power. An increase in the hot source temperature and a decrease in the cold source temperature result in a substantial rise in output 
power. For instance, when parameters are set to M = 1.3 kg, k = 300 N.m-1, and Tc = 15 ◦C, increasing the hot temperature from 
200 ◦C to 1000 ◦C increases output power from 1.07 W to 6.11 W. Furthermore, it was observed that temperature has a minor influence 
on the optimal frequency of the DC motor. In other words, changes in temperature differences between sources do not significantly 
alter the DC motor’s optimal frequency. Increasing the mass of the power piston displacement lowers the optimal frequency of the DC 
motor while boosting output power. Conversely, increasing spring stiffness reduces the optimal frequency. 

In the end, the Firefly Optimization Algorithm was integrated with the proposed neural network model for the AFPSE to determine 
the optimal initial parameters. The optimization algorithm’s cost function was defined as the output power, calculated by multiplying 
the area enclosed by the closed-loop thermodynamic cycle with the frequency of power piston displacement. The unknown parameters 
included the temperatures of the hot and cold sources, the mass of the power piston, spring stiffness, and the voltage applied to the DC 
motor. The Firefly Optimization Algorithm was specifically applied to the neural network model of the engine to maximize the output 
power. To achieve this, FOA was executed with an initial population size of 20 and 300 iterations. Multiple simulations were carried 
out to ensure the algorithm didn’t get stuck in a local extremum. The final outcomes revealed that the optimal parameters led to an 
output power of 23.42 W, a DC motor frequency of 5.27 Hz, and a maximum gas pressure of 138.27 kPa. 

The primary utilization of the suggested AFPSE lies within renewable energy systems for the conversion of energy. Biofuels, 
biomass, solar energy, geothermal sources are well-suited for supplying heat to the proposed Stirling converter, facilitating electricity 
generation. Nevertheless, there is an ongoing need for further development to scale up and industrialize this converter. Future research 
endeavors will focus on enhancing output power by implementing model predictive control for the converter, mitigating engine vi-
brations, and designing a more efficient linear alternator based on the ANN model. 
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[16] Y.Ö. Özgören, S. Çetinkaya, S. Sarıdemir, A. Çiçek, F. Kara, Predictive modeling of performance of a helium charged Stirling engine using an artificial neural 

network, Energy Convers. Manag. 67 (2013) 357–368. 
[17] S. Toghyani, M.H. Ahmadi, A. Kasaeian, A.H. Mohammadi, Artificial neural network, ANN-PSO and ANN-ICA for modelling the Stirling engine, Int. J. Ambient 

Energy 37 (5) (2016) 456–468. 
[18] M.H. Ahmadi, S. Sorouri Ghare Aghaj, A. Nazeri, Prediction of power in solar stirling heat engine by using neural network based on hybrid genetic algorithm 

and particle swarm optimization, Neural Comput. Appl. 22 (6) (2013) 1141–1150. 
[19] X. Wang, X. Lin, X. Dang, Supervised learning in spiking neural networks: a review of algorithms and evaluations, Neural Network. 125 (2020) 258–280. 
[20] H. Yousefzadeh, A.R. Tavakolpour-Saleh, A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic 

Stirling engines, Energy 224 (2021) 120222. 

A.P. Masoumi et al.                                                                                                                                                                                                   

http://refhub.elsevier.com/S2405-8440(24)04418-9/optFOiq9JZfTd
http://refhub.elsevier.com/S2405-8440(24)04418-9/optFOiq9JZfTd
http://refhub.elsevier.com/S2405-8440(24)04418-9/optd6yWOM1Pn0
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref1
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref1
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref2
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref2
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref3
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref3
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref4
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref5
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref6
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref6
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref7
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref7
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref8
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref9
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref9
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref10
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref10
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref11
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref11
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref12
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref12
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref13
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref13
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref14
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref14
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref15
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref15
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref16
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref16
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref17
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref18
http://refhub.elsevier.com/S2405-8440(24)04418-9/sref18

	Performance investigation of an active free-piston Stirling engine using artificial neural network and firefly optimization ...
	1 Introduction
	2 Mathematical background
	3 Firefly optimization algorithm
	4 Artificial neural network modeling and validation
	4.1 Artificial neural network structure
	4.2 Training phase
	4.3 Learning algorithm
	4.4 Test phase and evaluation
	4.5 Experiments and model validation

	5 Results and discussion
	5.1 Firefly optimization algorithm applied to ANN

	6 Conclusion and recommendation
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	References


