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Abstract

Recent research has revealed various molecular markers in lung cancer. However, the organizational principles underlying
their genetic regulatory networks still await investigation. Here we performed Network Component Analysis (NCA) and
Pathway Crosstalk Analysis (PCA) to construct a regulatory network in human lung cancer (A549) cells which were treated
with 50 uM motexafin gadolinium (MGd), a metal cation-containing chemotherapeutic drug for 4, 12, and 24 hours. We
identified a set of key TFs, known target genes for these TFs, and signaling pathways involved in regulatory networks. Our
work showed that putative interactions between these TFs (such as ESR1/Sp1, E2F1/Sp1, c-MYC-ESR, Smad3/c-Myc, and
NFKB1/RELA), between TFs and their target genes (such as BMP41/Est1, TSC2/Myc, APE1/Sp1/p53, RARA/HOXA1, and SP1/
USF2), and between signaling pathways (such as PPAR signaling pathway and Adipocytokines signaling pathway). These
results will provide insights into the regulatory mechanism of MGd-treated human lung cancer cells.
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Introduction

Lung cancer is a worldwide leading cause of cancer-related

death with a 5-year survival rate of less than 15% [1]. Several

molecular markers associated with lung cancer progression have

been identified, including TGF, MET, TP53, HIF1A, APC,

KRAS, and EGFR [2].

Transcription factors (TFs) and pathways play critical roles in

etiologies of lung cancer. For example, the transcription factor

E2F-1 is over-expressed in lung cancer cell, and the level is

enhanced by deregulated pRb-p53-MDM2 circuitry [3]. Tran-

scriptional regulation analysis has shown that the promoter activity

and expression level of Sp1 are regulated by Ets-1 in A549 lung

cancer cells. Functional analysis of two Ets-1-binding sites in Sp1

promoter suggests that only Ets-1-binding site 2413 to 2404 is

involved in the activation of Sp1 promoter [4]. It has also been

well-documented that the expression of cPLA2 is critical for the

transformed growth of lung cancer and for phorbol 12-myristate

13-acetate (PMA)-activated signal transduction pathway which is

involved in enzymatic activation of cPLA2. Studies reveal that c-

Jun/nucleolin and c-Jun/Sp1 complexes play an important role in

PMA-regulated cPLA2a gene expression [5]. In addition, several

pathways involved in lung cancer progression have been

demonstrated, such as PI3K/AKT pathway, TGF-beta signaling

pathway, Wnt pathway, JAK/STAT pathway, and MAPK/ERK

pathway [6,7,8,9].

High-throughput techniques in biology, such as microarray,

have generated a large amount of data that can potentially provide

systems-level information regarding the underlying dynamics

mechanisms [10]. To extract meaningful information (TFs and

pathways information) from high-throughput expression data, we

employed NCA and PCA to construct and analyze the dynamic

regulatory network in MGd-treated human lung cancer cells.

NCA, developed by James Liao [10], is a network structure-

driven framework for deducing regulatory signal dynamics. NCA

models the expression of a gene as a linear combination of the

activity of each transcription factor that controls the expression of

the gene. NCA makes use of the connectivity structure from

transcriptional regulatory networks and a set of gene expression

data to infer dynamics of transcription factor activities. NCA has

been successfully applied in inferring a transcriptional regulatory

network of the cytokinesis-related genes [11] and phase-specific

control elements of its cell cycle in yeast [12]. In this study, we

built an integrated dynamic model of the human lung cancer in

response to MGd, which consisted of the calculated transcription
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factor activities, transcription factor regulatory influences on each

gene.

Given the complex nature of biological systems, more than one

pathway may be involved in any given complex disease. Two or

several pathways may interact with each other to cause the disease.

This is very likely because functional important proteins may be

involved in multiple pathways [13]. Therefore, besides the

identification of specific pathways, we also take a further step by

exploring the interaction and crosstalk between pathways that

related to MGd-treated lung cancer. In this study, we used a

computational approach to detect crosstalk among pathways based

on a protein-protein interaction (PPI) network, the co-expressed

significance of each gene pair, and a scoring scheme which is used

to define a function [14].

We defined the dynamic regulated network using NCA which

requires two inputs: a set of gene expression profiles and a pre-

defined matrix containing the influence of each transcription

factor on its estimated or identified target genes. Two outputs of

NCA (predicted factor activities and regulatory influences) have

added additional insights to gene expression data where the

underlying regulatory network structure is partially known. In

order to interpret transcription factor activities and regulation

strength(influences), the correction between TF activities and

expression, hierarchical clustering were calculated. Finally, the

dynamic regulated networks were constructed. Beside, PCA was

used to detect the relationship among pathways.

In brief, our study aims to reveal molecular mechanism of

MGd-treated human lung cancer cells from a dynamic and

systematic perspective by PCA and NCA. Our results should

provide new avenues for more advanced investigation into the

biological role of TFs and pathways in MGd-treated human lung

cancer cells.

Methods

Human lung cancer (A549) cells [15] were treated with 50 uM

metal cation-containing chemotherapeutic drug motexafin gado-

linium (MGd) for 4, 12, or 24 hours. Their expression profiles were

compared with those of the control cells treated by 5% mannitol

with the same incubation time. The detail of the samples was

shown in Table 1. The limma method [16] was used to identify

differentially expressed genes (DEGs) in the expression profile

(GSE2189). The DEGs with fold change .1.5 and p-value ,0.05

were selected for further analysis. Each selected DEG must be

differently expressed in more than one stage. In addition, 6328

regulatory relationships between 250 TFs and 2255 target genes

were collected from TRED [17] and TRANSFAC [18].

In order to add more regulation relationships between TF and

target genes, a total of 250 TFs and 144 DEGs were selected to be

hierarchically clustered by hcluster of R language. For each pair of

TF and its target gene, only the target gene in the sub-tree of the

TF-node with a coefficient larger than 0.8 (threshold |r|.0.8) was

selected for NCA.

Finally, 627 TF-target genes regulation relationships (contain-

ing the TF-TF interactions) were identified based on 164 TFs and

83 DEGs.

Network Component Analysis
NCA uses the standard log-linear model to approximate the

relationship between levels of TFs activity and that of the target-

gene expression by assuming the Hill cooperation between TFs on

the promoter region of target genes. Formally,

Ei(t)

Ei(0)
~ P

L

j~1

TFAj(t)

TFAj(0)

� �CSij

ð1Þ

where t represents the time stage, Ei(t) is the gene expression level

and TFAj(t) is TF j’s activities and CSij reflects the control

strength of TF j on gene i.

Then, the equation (1) is linearized as (in matrix form):

log½Er�~½CS� log½TFAr� ð2Þ

The matrix ½Er� consists of elements ½Er�ij = Eij(t)=Eij(0), and

similarly ½TFAr�ij = TFAij(t)=TFAij(0) represents the relative

gene expression levels and TFs’ activities. The dimension of ½Er� is
N|M(N genes and M samples or conditions) while that of ½TFAr�
is L|M (L TFs). They respectively indicate the time courses of

relative gene expression levels and TFs’ activities. Finally, the size

of ½CS� is N|L, which is the control strength for L TFs on each of

N genes. The equation (2) above can be further simplified as:

½E�~½S�½A� ð3Þ

Here, we have the strength matrix,½S�, which corresponds to the

term of ½CS� in equation (2) and the TFs’ activity matrix½A�, which

is the equivalent of log½TFAr� in the equation (2), and finally, the

gene expression matrix of ½E� corresponding to the term of log½Er�
in equation (2).

Based on the above preparation, the decomposition of ½E� into

½S� and ½A� can be achieved by minimizing the following object

function:

min DD(½E�{½S�½A�)DD ð4Þ

Subject to. S[Z0

In NCA, the above target function is estimated by using the

bootstrap algorithm and the value of ½S� and ½A� can be

normalized through a nonsingular matrix of ½X � according to

½E�~½S�½A�~½S�½X �½X{1�½A� ð5Þ

Specifically, to guarantee uniqueness of the solution for the

matrix decomposition of Eq. 4, the network topology needs to

satisfy some criteria [19]: (i) the connectivity matrix [A] must have

full-column rank. (ii) When a node in the regulatory layer is

removed along with all of the output nodes connected to it, the

Table 1. The description of samples in GSE2189.

Samples
Sample
replicates Treated time (hr) Treatment

4_Hr_+MGd 3 4 50 uM MGd

12_Hr_+MGd 3 12 50 uM MGd

24_Hr_+MGd 3 24 50 uM MGd

4_Hr_No_MGd 3 4 5% mannitol

12_Hr_No_MGd 3 12 5% mannitol

24_Hr_No_MGd 3 24 5% mannitol

doi:10.1371/journal.pone.0031984.t001

Lung Cancer Dynamic Network and Pathway Crosstalk
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resulting network must be characterized by a connectivity matrix

that still has full-column rank. (iii) [P] must have full row rank.

The NCA algorithm implemented in MATLAB by the authors

is downloadable at http://www.seas.ucla.edu/˜liaoj/. In this

study, we followed the manual of this package.

Pathway Enrichment Analysis
Pathway information was collected from KEGG (Kyoto

Encyclopedia of Genes and Genomes), a collection of online

databases dealing with genomes, enzymatic pathways, and

biological chemicals [20]. DAVID [21], a high-throughput and

integrated data-mining environment, was utilized to analyze gene

lists derived from high-throughput genomic experiments. Signif-

icant pathways that have at least two members and p-value ,0.1

were thus selected.

Pathway Crosstalk Analysis
PPI data were collected from the HPRD [22] and BIOGRID

[23]. A total of 326119 unique PPI pairs were collected to

construct the PPI network. Limma eBayes method [16] was used

to measure the differential expression status of genes. Pearson

correlated coefficient test was employed to determine the co-

expressed significance of each gene pair. The above two types of

values were mapped to the nodes and edges in the PPI network.

The following formula was used to define a function as the

combination of statistical significance of an interaction by a

scoring scheme [24]. The detail could be seen in Liu et al [14].

S(e)~f (diff (x), corr(x,y), diff (y))

~{2
Xk

i~1
log e(pi)

The diff(x) and diff(y) are differential expression assessments of

gene x and gene y, respectively. Corr(x’ y) represents the

correlation between gene x and gene y. f is a general data

integration method that can handle multiple data sources differing

in statistical power. Where k = 3, p1 and p2 are the p-values of

differential expression of two nodes, and p3 is the p-value of their

co-expression.

To define the interaction significance between pathways, we

summarized all the scores of edges S(e) of all non-empty overlaps.

Specifically, the interaction score between two pathways was

estimated according to their overlapping status of weighted

pathways in the following formula:

C(pi, pj)~
X
e[Oij

S(e)

where Pi and Pj are two pathways and Oij is their overlapping. To

estimate the significance of the overlapping between different

pathways, we randomly sampled 16106 times of the two same size

pathways in the edges of pathway network and calculated their

overlapping scores. The frequency larger than a C score denoted

significant interaction between Pi and Pj.

Results and Discussion

Transcription Factor Activities
The schematic of our approach was shown in Figure 1. Based

on NCA method, 16 TFs were screened to construct a dynamic

regulatory network. Figure 2A and 2B showed the estimated

activities of the 16 TFs. Transcription factor activities clearly

showed early-, mid-, and late-phase action in response to MGd.

SP1, RARA, RELA, TP53, ETS1, and SMAD3 were activated

within 4 hours after the MGd was injected. SP1 activation peaked

at 4 hours and HIF1A, CREB1 and SPI1 were predicted to be

somewhat deactivated over 12 hours (Figure 2A). Research found

that Sp1 level accumulated strongly in early stage and then

declined in late stage [25] and Aryl hydrocarbon receptor in

association with RelA modulates IL-6 expression in non-smoking

lung cancer [26]. These are evidence which could improve the

reliable of research.

The calculated transcription factor activities were compared

with the gene expression data for each transcription factor

(Figure 2B).TP53, SMAD3, and HIF1A showed strong positive

correlation between activities and expression (correlation coeffi-

cient r.0.8) (Figure 2B). However, transcription factor activities

were sometimes, but not always, correlated with the gene

expression of the TFs.

We also compared the significant correlation between tran-

scription factor activities with published protein-protein interac-

tions catalogued in the HPRD [22] and BIOGRID [23].

Interestingly, TFs known to act together showed high correlation

in their activity profiles (Figure 2C). For example, the highly

correlated TFs SP1 and RELA regulated their target genes

together [27].

Our results also revealed several interactions between TFs

(Figure 2D). The transcription factor Sp1 regulates expression of

numerous genes involved in various cellular processes, and

dysregulation of Sp1 is observed in many cancers and diseases

[28]. Involvement of ESR1 in lung cancer has also been observed

[29]. Interaction of SP1 with ESR1 has been demonstrated in

breast cancer cells [30]. In addition, E2F1 and SP1 participate in

cell proliferation and viability via regulating phosphocholine

cytidylyltransferase alpha (CCTa) [31]. Thus the predicted

ESR1/Sp1 and E2F1/Sp1 interactions may suggest their regula-

tion role in the pathogenic process. Estrogen stimulation can

enhance the c-MYC-ESR1 interaction and facilitate the associa-

tion of ESR1, c-MYC, and the co-activator TRRAP with these

estrogen-responsive promoters, resulting in chromatin remodeling

and transcription increase in breast cancer. These suggest ESR1

and c-MYC may physically interact to stabilize the ESR1-

coactivator complex, thereby permitting other signal transduction

pathways to fine-tune estrogen-mediated signaling networks [32].

C-Myc, an oncogene, has also been demonstrated to interact

specifically with Smad3, one of the signal transducers involved in

TGF-b signaling which is involved in cancer development [33]. As

for NFKB1/RELA, NFKB1 or NFKB2 could bind to RELA,

RELB or REL to form the NFKB family of TFs. These hetero-

dimers participate in controlling a wide variety of genes, and are

important in embryonic development, apoptosis, immune, inflam-

matory and stress responses. The NFKB1/RELA complex is the

most abundant form of NFKB. In HeLa cells, RELA phosphor-

ylation could result in increased transcription of NFKB target

genes and inhibiting apoptosis [34].

Significant Regulation Relationships between TFs and
Target Genes

In Figure 3A, target genes were hierarchically clustered with the

adjusted strengths of TFs and shown with gene expression. We

identified several major clusters, which were correlated to the

coordinated action of TFs to regulate gene expression. We found

that MYBL2, DDX11, LAMP1, ETV4, and BMP4 were

regulated by MYC and ETS1. The MYC independently regulated

BAZ1B, ZFP36L2, DPM2, TSC2, ZNF274, and STAT6.

MYOD1 and ACP5 were regulated by the NFKB1. APEX1

Lung Cancer Dynamic Network and Pathway Crosstalk
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and POLG2 were regulated by SP1 and CREB1. Target genes

were hierarchically clustered with the expression of TFs Figure 3B.

Some of them in Figure 3B haven’t been emerge in Figure 3A.

The clusters shown in Figure 3A suggested that we might be able

to use our cluster information to discover new regulatory

relationships.

We found five significant regulation relationships which were

proved by the previous research: BMP4/Est1, TSC2/myc, APE1/

Sp1/p53, RARA/HOXA1, and SP1/USF2. BMP4 signaling

induces senescence and modulates the oncogenic phenotype of

lung cancer cell [35]. BMP4 promoter has two Ets-1 binding sites,

and Ets-1 activity is increased in hepatocellular carcinoma cells

under hypoxic conditions. Thus over-expression of Ets-1 markedly

enhances BMP4 promoter activity [36]. In addition, BMP4 is

associated with Smad and p38 MAPK pathway in lung cancer cell,

which was also observed in our regulatory network [28].

MYC could directly affect transcription of tuberous sclerosis 2

(TSC2), as shown by quantitative mRNA analyses and by Myc

binding to its promoter in chromatin immunoprecipitation assays.

Importantly, myc-null experiments have shown that Myc acts as a

strong and direct repressor for TSC2 expression because its loss

results in increased TSC2 mRNA. This finding shows that

regulation of TSC2 may contribute to the effects of MYC on

cell proliferation and neoplastic growth [37,38].

The putative promoter region of the Apex1 gene contains

CCAAT boxes and a CpG island possessing putative binding sites

Figure 1. Flowchart of dynamic transcriptional regulatory network construction.
doi:10.1371/journal.pone.0031984.g001

Lung Cancer Dynamic Network and Pathway Crosstalk
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for several TFs, such as Sp1 [39]. The Sp1 site upstream of the

transcription start, together with an adjacent CCAAT element,

establishes a protein-DNA complex required for basal transcrip-

tion of APEX1 [40]. Further study indicates that p53 provides a

mechanism for the down-regulation of APE1 by interfering with

Sp1 binding to the APEX1 promoter. These findings demonstrates

that p53 is a negative regulator of APE1 expression in response to

DNA damage [41].

RARA is one ligand dependent inducible transcription factor.

The RARs family can activate gene expression directly through

RA responsive elements (RAREs) localized in their target genes.

Functional RAREs are currently known for only a few HOX

genes, including HOXA1, HOXB and HOXC [42].

As a member of the bHLH family, USF-2 has been

demonstrated to specifically bind with E-box motif A, located

between 2147 and 2142 in the human [Arginine]vasopressin

Figure 2. Transcription factor activities calculated using NCA. (A) Predicted activities of the 16 TFs used in this study. Rows represented
progression in time and columns corresponded to the activities. Activities of each column were normalized to the zero time point. (B) Transcription
factor activities (blue) compared with gene expression (green), with Pearson correlation coefficients noted. Both activity and expression at each time
point were averages normalized to the time zero values. (C) Correlation matrix between transcription factor activities. Red represented positive
correlation and blue represented negative correlation. (D) Inferred combinatorial regulation pairs of TFs. Green solid line indicated that the pair was
supported by protein-protein interaction information from HPRD, BIOGRID and high correlation of their activities (.0.6). Black solid line indicated that
the pair was only supported by high correlation, and a green dotted line indicated that the pair was only supported by the interaction database.
doi:10.1371/journal.pone.0031984.g002

Lung Cancer Dynamic Network and Pathway Crosstalk
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promoter to be involved in small cell lung cancer [43,44].

However, there was evidence that a physical interaction between

USF2 and Sp1/Sp3 [45], suggesting USF-2 may exert important

roles in lung cancer through interaction with E-Box or GC box.

Overall Regulatory Dynamics in Response to MGd
We built an integrated dynamic model of the human lung

cancer in response to MGd (Figure 4), which consisted of the

calculated transcription factor activities, transcription factor

regulatory influences on each gene, subcellular location, and the

gene expression data. During the first 4-hour period, TP53, SP1,

E2F1, ETS1, SMAD3 and RELA were activated and interacted to

regulate gene expression. These TFs had already affected gene

expression including the genes in the Nucleus and Cytoplasm after

4 hours. SMAD3, also expressed in the Nucleus and Cytoplasm,

showed peak activity at 12 hours and then at 24 hours returned to

the previous 4 hours level. By contrast, E2F1 activation rapidly

returned to the base level of activity.

Pathway Crosstalk Analysis
Most of the significant pathways (p-value ,0.1 using the

hypergeometric test) were cancer related signaling pathways

(Table 2), including Pathways in cancer, Small cell lung cancer,

Non-small cell lung cancer, Pancreatic cancer, Jak-STAT signal-

ing pathway, PPAR signaling pathway and so on. These pathways

have been demonstrated involved in lung cancer in previous

works. For example, BMP4 treatment (enriched in the Pathways in

cancer) has been suggested to induce a senescent morphology in

Figure 3. Hierarchical clustering in the context of a defined regulatory network. (A) The adjusted strength matrix was used for clustering,
with the gene expression matrix appended. Four major clusters, which have more than three associated genes, were highlighted. In the adjusted
strength matrix heatmap, white indicated a weak regulatory influence. (B) Clustering with gene expression.
doi:10.1371/journal.pone.0031984.g003

Lung Cancer Dynamic Network and Pathway Crosstalk
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A549 lung cancer cells [35]. Unphosphorylated signal transducers

and activators of STAT6 (enriched in the Jak-STAT signaling

pathway) may transcriptionally up-regulate cyclooxygenase-2

expression and protect against apoptosis in NSCLC cells [46].

PPARc has been suggested to modulate the proliferation and

apoptosis of lung cancer cell through interaction with its ligand.

PPARc expression is found higher in lung cancer cell patients

when compared with normal surrounding tissue. The treatment of

lung adenocarcinoma cells (A549) with troglitazone (a PPARc
ligand) can enhance PPARc transcriptional activity and induce a

dose-dependent inhibition of A549 cell growth [47,48,49]. In brief,

activation of PPARc impedes lung tumor progression and PPARc
ligands may serve as potential therapeutic agents for lung cancer.

In this study, we found PPAR signaling pathway was an important

pathway in response to MGd-treatment, suggesting MGd may be

one potential PPARc ligand as troglitazone.

Figure 4. A dynamic network of transcription in response to MGd. Target genes were noted with circles, and TFs with triangle. The 4
subcellular locations (Nucleus; Cytoplasm; Plasma membrane; Extracelluar) were grouped in 4 cycles. Green dotted lines denoted of a target gene
which may transfer between two subcellular locations. Red and blue lines showed the influence of a transcription factor on a target gene.
doi:10.1371/journal.pone.0031984.g004

Lung Cancer Dynamic Network and Pathway Crosstalk
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We further analyzed the pathway’s interactions and calculated

a C score of each pair of pathways. PPAR signaling pathway

(hsa03320) was found cross-talking with the pathway of Non-

small cell lung cancer (hsa05223; p-value = 0.056135), Pancreatic

cancer (hsa05212; p-value = 0.056145), Bladder cancer

(hsa05219; p-value = 0.056165), Adipocytokine signaling pathway

(hsa04920; p-value = 0.056214), and Chronic myeloid leukemia

(hsa05220; -value = 0.056214) after 4-hour MGd treatment

(Figure 5). But this crosstalking was not significant at the 12-

hour and 24-hour stages with the p-value .0.1.

Overall, we suggest PPAR signaling pathway (hsa03320) plays

an important role in the pathways crosstalk.

There was evident of interaction relationship between PPAR

signaling pathway and Adipocytokines signaling pathway in

previous study [50,51]. Among them, adipocytokines, secreted

from adipocytes, such as tumor necrosis factor-alpha (TNF-a),

plasminogen activator inhibitor type 1 (PAI-1), interleukin 6 (IL-6),

leptin, resistin, and adiponectin, play a significant role in normal

metabolic homeostasis and in the development of several diseases.

Leptin could be decreased regulation by PPAR-c agonists. PPAR-

c and liver receptor homolog-1 (LRH-1) play significant roles in

adiponectin transcriptional activation by means of PPRE and

LRH-RE in its promoter [50,51].

However, there are still some limitations in our research. Our

study is based on an assumption that mRNA expression levels are

controlled entirely by transcriptional regulation. However, mRNA

stability is also a less informative factor to the mRNA expression

levels [52,53]. If an mRNA whose expression level is determined

by mRNA stability can also express in the control cells, we can

exclude the influence of mRNA stability by comparison when their

degradation rates are similar. If such an mRNA cannot express in

the control cells, we ignore the mRNA stability. This may bring

systematic errors to this study. In addition, the quality and

quantity of Protein-protein interaction (PPI) data is one of the

problems for the PCA. PCA was based on a PPI interaction data

[24]. Protein-protein interactions provide valuable information

about how genes carry out their biological functions. It is expected

that protein-protein interaction data information will be widely

accessible in the near future by using various experiment methods.

Conclusion
We managed to interpret the molecular mechanism of lung

cancer from a systematic and dynamic perspective by NCA. We

took the control strength (only as positive or negative) as the

regulatory relationships between TFs and their target genes

(including TFs), and the TFs activities was substituted for their

Table 2. Significant pathways.

Pathway ID Description P-value

hsa05200 Pathways in cancer 2.97E-07

hsa05222 Small cell lung cancer 1.55E-04

hsa05223 Non-small cell lung cancer 3.28E-04

hsa05212 Pancreatic cancer 9.85E-04

hsa05215 Prostate cancer 0.002168

hsa05221 Acute myeloid leukemia 0.005524

hsa04110 Cell cycle 0.007346

hsa05220 Chronic myeloid leukemia 0.011247

hsa05216 Thyroid cancer 0.014013

hsa04630 Jak-STAT signaling pathway 0.015367

hsa05219 Bladder cancer 0.028249

hsa05214 Glioma 0.059075

hsa04920 Adipocytokine signaling pathway 0.065857

hsa03320 PPAR signaling pathway 0.069342

hsa05218 Melanoma 0.072888

doi:10.1371/journal.pone.0031984.t002

Figure 5. Dynamic of pathway-crosstalk. The red line indicated the p-value of cross-talking between two pathways less than 0.1. The blue line
indicated the cross-talking was not significant with the p-value large than 0.3.
doi:10.1371/journal.pone.0031984.g005

Lung Cancer Dynamic Network and Pathway Crosstalk
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gene expression to construct the dynamic network. Using NCA,

the significant TFs and their target genes were detected, the

control strength of TFs to their target genes was recalculated, and

the activities of the TFs were estimated.

NCA and PCA methods were applied to explore the

transcription response mechanism in MGd-treated human lung

cancer cells based on the assumption that lung cancer is a

contextual attribute of distinct patterns of interactions between

multiple elements. The results identified a set of key TFs, target

genes for these TFs and signaling pathways involved in regulatory

networks. Through the activity of TFs, we found that transcription

factor activities clearly showed early-, mid-, and late-phase action

in response to MGd. We also identified several major clusters,

which were correlated to the coordinated action of TFs to regulate

gene expression. Besides, pathway-crosstalk analysis indicated

there was an interaction relationship between PPAR signaling

pathway and Adipocytokines signaling pathway in our study.

Finally, an integrated dynamic model of the human lung cancer

was built in response to MGd (Figure 4), which consisted of the

calculated transcription factor activities, transcription factor

regulatory influences on each gene, subcellular location, and the

gene expression data.

The development of new high-throughput technologies greatly

produces great amounts of biology data. Then how to mine

meaning information from the data become necessary. Our studies

revealed that NCA and PCA could be successfully applied for

inferring the transcriptional regulatory network of MGd-treated

human lung cancer.
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