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Abstract This paper should be read as addendum to Dieckmann et al. (J Theor Biol
241:370–389, 2006) and Parvinen et al. (J Math Biol 67: 509–533, 2013). Our goal
is, using little more than high-school calculus, to (1) exhibit the form of the canonical
equation of adaptive dynamics for classical life history problems, where the examples
in Dieckmann et al. (J Theor Biol 241:370–389, 2006) and Parvinen et al. (J Math Biol
67: 509–533, 2013) are chosen such that they avoid a number of the problems that
one gets in this most relevant of applications, (2) derive the fitness gradient occurring
in the CE from simple fitness return arguments, (3) show explicitly that setting said
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1126 J. A. J. Metz et al.

fitness gradient equal to zero results in the classical marginal value principle from
evolutionary ecology, (4) show that the latter in turn is equivalent to Pontryagin’s
maximum principle, a well known equivalence that however in the literature is given
either ex cathedra or is proven with more advanced tools, (5) connect the classical
optimisation arguments of life history theory a little better to real biology (Mendelian
populations with separate sexes subject to an environmental feedback loop), (6) make
a minor improvement to the form of the CE for the examples in Dieckmann et al. and
Parvinen et al.

Keywords Canonical equation of adaptive dynamics · Function valued traits ·
Pontryagin’s maximum principle · Age-dependent resource allocation · Mendelian
take on life history theory · Evolution in periodic environments

Mathematics Subject Classification 92D15 · 92D40 · 37N25 · 49K15 · 49N90

1 Introduction

In their recent paper “Function-valued adaptive dynamics and optimal control theory”,
Parvinen et al. (2013) give (i) an abstract recipe for calculating the selection gradi-
ent for function valued traits affecting the i(ndividual)-dynamics of physiologically
structured populations for use in the canonical equation of adaptive dynamics (in the
terminology of Metz and Diekmann (1986); Parvinen et al. refer to these models as
process-mediated) and (ii) a recipe for calculating the corresponding evolutionarily
steady strategies (ESS-es) by using Pontryagin’s maximum principle (c.q. evolution-
arily singular strategies (ess-es) if we confine ourselves to the first order condition
derived from this principle). They subsequently apply these recipes to derive concrete
expressions for three sample models. However, they do not explicitly consider the
relationship between (i) and (ii) but for numerically demonstrating that for their spe-
cial models the adaptive trajectories approach the ess. In this note we (i) demonstrate
how the selection gradient can be calculated from a concrete starting point by using
the idea of fitness returns, which gives an interpretation to the components of the
resulting formulas, and (ii) show that setting the selection gradient equal to zero leads
to a classical marginal value argument which turns out to be equivalent to the local
version of Pontryagin’s maximum principle.

Terminology We employ the term fitness return here for a concept that is widely used
in evolutionary ecology, often also under this name, but for which we failed to find an
explicit definition. If some fitness proxy can be decomposed as the sum of a number of
terms that supposedly stand for the contributions of different pathways bywhich fitness
can accrue, we call the effect of a strategy change on the contribution of a pathway
the fitness return through that pathway. For a global ESS the sum of all fitness returns
is non-positive whatever the strategy change. For local ESS-es we consider only the
fitness returns of infinitesimal strategy changes. To accord with common usage these
should be called marginal returns. However, as these are the only returns that we
consider we shall drop the epithet. When the attention is confined to an infinitesimal
neighbourhood of a reference strategy far more fitness proxies allow a conceptually
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The canonical equation of adaptive… 1127

useful additive decomposition thanks to the rules of differential calculus. All that is
needed is a biologically interpretable way in which the proxy can be decomposed
as a differentiable function of a number of differentiable functions of the strategy.
The (marginal) fitness return through one of these functions is then defined as the
sensitivity of the proxy to the strategy change in a thought experiment in which we
keep the argument of all other functions unchanged. The fitness returns from state
dependent decisions are usually determined from first principles conditional on the
state under consideration. The epithet conditional is customarily dropped in this case.
The (marginal) fitness return from a compound decision involving more than one state
is calculated by summing the fitness returns for the separate states weighted with their
lifetime occurrence frequencies or duration.

To keep the arguments accessible for evolutionary ecologists, we restrict our calcu-
lations from the start to themost commonly encountered class of life historymodels and
use the simplest possible mathematical arguments rather than a more advanced func-
tional analytical approach. In the appendices we will sketch how the same arguments
can be obtained more rigorously. Basically we assume our readers to be knowledge-
able only about demography and the attendant elementary results from probability
theory, but not about systems theory or dynamic optimisation.

2 On selection gradients, canonical equations, and evolutionarily
singular strategies, a summary

Below we consider a life history model in which individuals are characterised by two
dynamical variables, a physiological state, assumed to move deterministically, and
a probability of still being alive, in addition to an inherited strategy u influencing
their dynamics. The strategy u (or ures if we talk specifically about the resident’s
strategy, or umut if we talk about a mutant strategy) is supposed to be a function of
the state of the individual taking values in [0, 1]. To make our life simple we assume
that on the population dynamical time scale the community dynamics converges to
an equilibrium, which generates the non-fluctuating environment Eres = Eattr (ures),
with ures the strategy currently in residence. This assumption of a non-fluctuating
environment allows us to make use of the fitness proxy R0 (umut; Eres), the average
lifetime offspring production of a mutant in the environment Eres, calculated e.g.
by integrating the average rate of producing offspring over the age of an individual.
Consistency requires that R0(ures; Eres) = 1. If R0 (umut; Eres) > 1, a mutant has a
positive probability to invade, else it cannot invade. The invasion fitness F (umut; Eres)

of a mutant is by definition equal to the asymptotic exponential growth rate of a mutant
population in the environment Eres (Metz et al. 1992; Metz 2008). For R0 close to 1
this invasion fitness is well approximated by

F(umut; Eres) = ln(R0(umut; Eres))

Tr (ures)
+ O(ln2(R0(umut; Eres))), (1)

where Tr (ures) is the average age at which the residents give birth in the environment
Eres (Metz and Diekmann 1986; Durinx et al. 2008).
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1128 J. A. J. Metz et al.

Remark 1 Dieckmann et al. (2006) and Parvinen et al. (2013) consider seasonal
differential-equation-basedmodels where it is possible to calculate the invasion fitness
directly by subtracting the time-averaged death rate from the time-averaged birth rate.
For such models fitness takes the explicit form of an integral over the year cycle, and
there is no need to fall back on an approximation. However, in the usual continuous
time life history models only R0 can be expressed explicitly as an integral. The avail-
ability of such an integral-based expression formed the basis for the developments in
Parvinen et al. (2013), and will also be the cornerstone for our calculations.

The so-called selection gradient G tells how the invasion fitness of a umut close to
ures depends on the difference umut − ures. Mathematically, the selection gradient is
the derivative of the invasion fitness for umut evaluated at umut = ures = u. From the
previous approximation formula for the invasion fitness it follows that we can calculate
G as

G(u) = 1

Tr(u)

dR0

dumut
(u; Eattr(u)) (2)

(Durinx et al. 2008; Metz 2008). In this formula dR0
dumut

is an abstract differential quo-
tient, i.e. a linear map transforming functions of the physiological state into a number
that linearly approximates the nonlinear dependence of R0 on umut.

In view of our stress on life history models, let us moreover assume that u is
an allocation, so that u takes values in [0, 1]. The assumptions of a non-fluctuating
resident environment and a deterministically moving physiological state moreover
allow us to represent the strategy u as a function of the age a of an individual, i.e.,
u : R+ → [0, 1]. In that case we can write for a function x : R+ → R:

G(u)x = 1

Tr(u)

∞∫

0

g(a; u)x(a) da (3)

(c.f., Parvinen et al. 2013). Hence the problem of calculating G reduces to that of
calculating the function g. On the assumption that mutations are rare and mutational
steps small the dynamics of u can on the evolutionary time scale be described by the
so-called canonical equation (CE) of adaptive dynamics (Dieckmann and Law 1996;
Champagnat 2003; Dieckmann et al. 2006; Parvinen et al. 2006, 2013; Durinx et al.
2008; Méléard and Tran 2009; Champagnat and Méléard 2011; Gupta et al. 2014)

du

dt
(a)

⎧⎪⎪⎨
⎪⎪⎩

= σ−2(u)
Ts(u)

n (u) μ
∫ ∞
0 c(a, α) g(α; u) dα,

if
∫ ∞
0 c(a, α) g(α; u) dα > 0 and u(a) ∈ [0, 1),

or
∫ ∞
0 c(a, α) g(α; u) dα < 0 and u(a) ∈ (0, 1],

= 0 otherwise,

(4)

with Ts the average age atwhich the residents die,σ 2 the between individual variance of
their offspring numbers (i.e., ifmi is a lifetime offspring number of the i-th individual,
σ 2 = Var (mi )), n their equilibrium population size,μ the (small) probability at a birth
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The canonical equation of adaptive… 1129

event of a mutation affecting u, and c the (small) covariance kernel of the mutational
steps, i.e., if x denotes a mutational step in u, then

Cov

⎛
⎝

a2∫

a1

x(α) dα,

a4∫

a3

x(ζ ) dζ

⎞
⎠ =

a2∫

a1

a4∫

a3

c(α, ζ ) dζ dα. (5)

The form of the CE given above is the one for clonally reproducing organisms (the
customary assumption in most of life history theory which, however, usually is left
implicit). In Appendix 1 we briefly consider its extension to Mendelian diploids.

Our formula for the CE is slightly more complicated than the one in Dieckmann
et al. (2006) and Parvinen et al. (2013). The reason is that these authors did not
consider local constraints on the strategy, whereas in our case u(a) ∈ [0, 1], for each
possible age a > 0. See Appendix 2 for further information. Another difference is
that Dieckmann et al. (2006) and Parvinen et al. (2013) have set the factor σ 2 equal
to 2, in keeping with the idea that for the i-models underlying the standard ordinary
differential equation (ODE) models the distribution of the lifetime offspring number
is geometric. Moreover, for the standard ODE models Tr = Ts and since the g in

Dieckmann et al. (2006) and Parvinen et al. (2013) corresponds to our f
def= g/Tr, the

Ts in (4) cancels. Appendix 3 treats the corresponding considerations for the periodic
ODE case considered by Dieckmann et al. (2006) and Parvinen et al. (2013), with
as outcome that in this case their n should be interpreted as a harmonic death-rate
weighted mean of the population sizes over a cycle.

The equilibria of the CE are the so-called ess-es. If these strategies are moreover
(local) fitness maxima for the corresponding Eres then they are also evolutionary
equilibria, to which we refer as (local) ESS-es. (An alternative is that at an attracting
ess the population starts to accumulate variation, so that it no longer stays quasi-
monomorphic as is supposed in the derivation of the CE. (The latter on good grounds:
see Geritz et al. 2002; Geritz 2005; Dercole and Rinaldi 2008, Appendix 2).) Another
way to calculate ESS-es is to maximise the invasion fitness, or alternatively R0, over
umut, leading to a function-valued map1 u∗

mut(ures), followed by solving the equation
u∗
mut(ures) = ures. It is here that Pontryagin’s maximum principle is encountered (e.g.,

Pontryagin et al. 1964; Intrilligator 1971). This principle is derived by considering
the differential equations for the i-states as constraints on their time development,
and to extend the idea of Lagrange multipliers as encountered in finite dimensional
optimisation problems to this case. The Lagrangemultipliers then become functions of
time, which can be shown to satisfy a set of differential equations, and for this reason
are referred to as co-states (or adjoints). In Sect. 6 we give explicit expressions for the
life history models described in the next section. Appendix 5 shows how Pontryagin’s
maximum principle can be derived directly from aweak variant of Bellman’s principle
of optimality, which is rather better known among ecologists.

1 Here star denotes optimality.
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1130 J. A. J. Metz et al.

3 Model ingredients

Before we get to the specifics we first introduce some notational conventions in order
to keep our formulas from becoming too unwieldy.

Conventions

1. The argument Eres will be usually hidden.
2. Similarly we shall often hide the argument u in expressions like P(a; u) for the

probability that an individual survives till age a, orm(a; u) for its body size at that
age.

3. When we use the argument u, then u stands either for umut, ures, or umut = ures,
with the context making clear which is the case.

4. For a function of a single scalar variable we use a prime to indicate its derivative.
A superscript dot indicates a derivative for age, also when a function has other
arguments as well.

The two dynamical variables characterising an individual are (i) one i-state variable,
to wit its body mass m, increasing from a fixed birth mass m(0) = m0, and (ii) its
probability P to be still alive, starting from P(0) = 1. The energy intake by an
individual with body mass m will be denoted by e(m). The strategy of an individual
will be denoted by u : R+ → [0, 1] : a �→ u(a), where u(a) determines which
fraction of the energy intake at age a is used for reproduction while the remains are
used for growth. The body mass just increases with (1−u)e(m), while the birth rate is
assumed to depend monotonically on the available energy u e(m) as b : R+ → R+ :
u(a) e (m(a)) �→ b (u(a) e (m(a))). Finally, the energy allocation is assumed also to
affect the death rate d : [0, 1] → R+ : u(a) �→ d (u(a)). All three functions e, b, and
d also implicitly depend on Eres. In this model the average lifetime offspring number
of a mutant strategy umut equals

R0 =
∞∫

0

P(a)b (umut(a)e (m(a))) da,

with m and P solving

ṁ = (1 − umut) e(m), m(0) = m0,

Ṗ = −d(umut)P, P(0) = 1. (6)

Note that if umut = ures, due to the value of Eres necessarily R0 = 1. Moreover, we
assume that the tail of P is bounded by a negative exponential and that b and e are
bounded. These assumptions derive from the biology behind the example and imply
that the improper integral in (6) exists.

4 Calculating the selection gradient from a fitness-returns argument

We shall express g fromEq. (3) in terms of the fitness returns r , that is, the proportional
effects of small local changes in u on the total future reproduction. To calculate r(a; u)
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a+δa

ũ= u+ ε

ε

ε

ũ= u

age

u

Fig. 1 Illustration of the fitness-returns argument where u is any control path. The idea is to do a thought
experiment in which we increase u between a and a + δ with a block B of height ε, and observe its effect
on fitness

we proceed by means of a thought experiment. For a living individual aged a we
increase u between a and a+δ by an amount ε, i.e., we construct a function ũ = u+B,
B : R+ → R, B(α) = ε for a ≤ α < a + δ and 0 elsewhere (see Fig. 1),

Calculate the resulting expected change in the expected life-time offspring number,
multiply this number with (εδ)−1 and let both ε and δ go to zero. Since the fitness
return by definition is calculated conditional on an individual surviving to a, only the
fraction P(a; u) surviving till age a contributes in this manner to R0. Hence

g = P r. (7)

To calculate those expected additional offspring numbers we proceed in the spirit of
the marginal value theorem, that is, we calculate and then add the components of r
contributed by different routes. These components include the immediate additional
number of offspring coming from the temporary increase in energy allocation to repro-
duction and the decreases in future offspring numbers caused by the future smaller
size and lesser survival caused by the temporary decrease in allocation to growth and
to staving off death. We start with the calculation of the second and third components.
Let Δm and ΔP denote the differences m(ũ) − m(u) and P(ũ) − P(u), respectively.
Then, by a first-order Taylor expansion of P(α) and m(α) with respect to u(α), we
obtain for a ≤ α < a + δ

Δ̇m ≈ (1 − u)e′(m)Δm − ε e(m), Δm(a) = 0,

Δ̇P ≈ −d(u)ΔP − d ′(u) P ε, ΔP (a) = 0, (8)
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1132 J. A. J. Metz et al.

which implies

Δm(a + δ) ≈ −e(m(a))ε δ, ΔP (a + δ) ≈ −d ′(u(a))P(a) ε δ. (9)

The immediate offspring gain from this strategy change over the time interval [a, a+δ)

(for an individual that survived till a) is

εδ[b′(u(a)e(m(a)))e(m(a))]. (10)

From a + δ onwards Eq. (8) apply with ε set to zero and with initial condition (9).
The future loss of offspring from this change in strategy for an individual that

already has survived till a is

− 1

P(a)

∞∫

a

(
ΔP (α) b (u(α) e(m(α)))+P(α) b′ (u(α) e(m(α))) u(α) e′(m(α))Δm(α)

)
dα.

(11)

The linearity of Eq. (8) with ε = 0 implies that ΔP(α) and Δm(α) are linearly
dependent on the initial conditions given by (9), and therefore the outcome (11) is
proportional to εδ. To make the coming calculation more transparent we introduce
new functions P̂(α; a), Δ̂m(α; a), α ≥ a, defined by

d P̂

dα
= −d(u)P̂, P̂(a; a) = 1,

dΔ̂m

dα
= (1 − u)e′(m) Δ̂m, Δ̂m(a; a) = 1, (12)

where P̂(α; a) can be interpreted as the conditional survival of an individual that
has already survived to age a, i.e., P̂(α; a) = P(α)/P(a), given the strategy u,
and Δ̂m(α;α + δ) = Δm(α)/Δm(a + δ) as the relative amount by which a small
perturbation inm present at age a+ δ will propagate into the future given u. Similarly
P̂(α; a + δ) allows an alternative interpretation as relative amount by which a small
perturbation inm present at age a+ δ will propagate into the future given u. For ε ↓ 0
and δ ↓ 0 we can then express the fitness return r(a; u) as follows:

r(a; u) = b′(u(a)e(m(a)))e(m(a))

− e(m(a))

∞∫

a

P̂(α; a)b′(u(α)e(m(α)))u(α)e′(m(α))Δ̂m(α; a)dα

− d ′(u(a))

∞∫

a

P̂(α; a) b(u(α)e(m(α)))dα. (13)

At an ess u∗ the return r(a) should be 0 when u∗(a) ∈ (0, 1), non-positive when
u∗(a) = 0 and non-negative when u∗(a) = 1.
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5 The other ingredients of the canonical equation

To complete the canonical equation we need to find expressions for Tr, Ts, and σ 2.
Since R0(u; Eattr(u)) = 1, the expression P(α; u)b(u(α)e(m(α; u))) is a probability
density. Furthermore,

−
∞∫

0

Ṗ(α; u) dα = P(0) − lim
A→∞ P(A) = 1, (14)

thus also −Ṗ(α; u) is a probability density. Therefore, Tr and Ts can be expressed
directly:

Tr(u) =
∞∫

0

αP(α; u)b(u(α)e(m(α; u)))dα, (15)

Ts(u) = −
∞∫

0

α Ṗ(α; u)dα = − lim
A→∞ αP(α)|Aα=0 +

∞∫

0

P(α; u)dα =
∞∫

0

P(α; u)dα,

(16)

where the last equation comes from integratingbyparts andusing limA→∞ (AP(A)) =
0.

To calculate σ 2 we have to be more specific about the microstructure of the repro-
duction process. The assumption that naturally leads to (5) is that for an individual that
is still alive the births come in a Poisson process with rate b(ue(m)), or, slightly more
generally, in clutches of average size C(u, e(m)) produced according to a Poisson
process with rate b(ue(m))

C(u,e(m))
. We confine ourselves here to the former option. In such a

case, for a given age at death a the total offspring number is Poisson distributed with
mean

λ(a; u) =
a∫

0

b (u(α)e(m(α; u))) dα. (17)

In general, a is a realisation of a random variable a. Hence, the lifetime offspring
number is a mixture of Poisson random variables. The mean of λ = λ(a; u) is nothing
but the average lifetime offspring number2

E(λ) = R0 (u; Eattr(u)) = 1. (18)

2 Using integration by parts, E(λ) = − ∫ ∞
0 Ṗ(α; u) λ(α; u)dα = P(0)λ(0) − limT→∞ P(T ) limT→∞

λ(T ) + R0 = R0, because P(0)λ(0) = limT→∞ P(T ) limT→∞ λ(T ) = 0.
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1134 J. A. J. Metz et al.

Therefore, σ 2
λ = E(λ2) − (E(λ))2 = E(λ2) − 1, with

E(λ2) = −
∞∫

0

Ṗ(α; u) λ(α; u)dα = 2

∞∫

0

λ(α; u)P(α; u)b(u(α)e(m(α; u)))dα

(19)

(integration by parts).
Finally, from the general rules for mixtures of distributions3

σ 2 = σ 2
λ + 1 = E(λ2). (20)

6 Locating fitness maxima by means of Pontryagin’s maximum principle

The equilibria of the canonical equation are called ess-es. The reason for this from
a differential equations viewpoint unusual terminology is that among the ess-es only
the ESSes, characterised by the fact that they are also maxima of the current fitness
landscapes, are immune to evolutionary change. One way of calculating ESSes for
life history problems is to make use of Pontryagin’s maximum principle to locate the
fitness maxima in umut that go with a given ures and then to set umut = ures.

In contrast to the canonical equation, Pontryagin’smaximumprinciple, at least in its
original formandwith a number of standard assumptions satisfied, is textbookmaterial.
In this sectionwewill just in thewake of Intrilligator (1971) state the conditions that an
optimal u has to satisfy. For a discussion of different variants of Pontryagin’smaximum
principle and its connection to the Bellman’s principle of optimality (Bellman 1957),
see Appendix 5. In the notation of Intrilligator (1971), Eq. (6) can be rewritten in the
following form:

x =
(
m
P

)
, I (x, u) = P b(ue(m)), J = R0, f(x, u) =

(
(1 − u)e(m)

−d(u)P

)
,

(21)

with x the state vector, J the quantity to be optimised, calculated as the lifetime
integral of I , and f the right hand side of the differential equation for x. Pontryagin’s
maximum principle then says that if u∗ maximises J , then at each age a ∈ [0,∞) it
also maximises the so-called Hamiltonian, defined as

H
def= I + yT f, (22)

with y =
(
y1
y2

)
being the so-called co-state (or adjoint) vector, where its components

satisfy the differential equations

3 Let m be the lifetime offspring number. Then 1 = R0
def= E(m) = E(m|a) = E(λ(a)). Since for a

Poisson random variable with mean λ its variance also equals λ, σ 2 = Var(m) = E(m2) − (E(m))2 =
E(E(m2|a)) − 1 = E(Var(m|a) + (E(m|a))2) − 1 = E(λ(a)) + E(λ2(a)) − 1 = E(λ2(a)) = E(λ2).
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The canonical equation of adaptive… 1135

ẏ1 = −∂ H

∂ m
, ẏ2 = −∂ H

∂ P
, (23)

with final conditions limA→∞ y1(A) = limA→∞ y2(A) = 0. If u∗ maximises R0 in
(6), then it also maximises

H(m(a), P(a), u(a)) = P(a) b (u(a)e (m(a)))

+y1(a) (1 − u(a)) e (m(a)) − P(a) y2(a)d (u(a)) ,

subject to

ẏ1 = − (1 − u) e′ (m) y1 − Pb′ (ue (m)) ue′ (m) ,

ẏ2 = d (u) y2 − b (ue (m)) ,

ṁ = (1 − u) e (m) , Ṗ = −d (u) P,

lim
A→∞ y1(A) = lim

A→∞ y2(A) = 0, m(0) = m0, P(0) = 1. (24)

In other words, if J is maximised by u∗, then

u∗(a) = arg max
u(a)∈[0,1] H (m(a), P(a), u(a)) , (25)

at each a ∈ [0,∞). This implies that

gH (a)
def= ∂H(m(a), P(a), u(a))

∂u(a)
= P(a)b′ (u(a) e(m(a))) e (m(a))

−y1(a)e (m(a)) − y2(a)d ′ (u(a)) P(a) = 0

when u∗(a) ∈ (0, 1),

gh(a) ≥ 0 when u∗(a) = 1,

gh(a) ≤ 0 when u∗(a) = 0. (26)

Obviously, to assure that u∗(a) is a local maximum of J , resp. H , the derivative of
gH (a) with respect to u(a) has to be negative whenever 0 < u(a) < 1.

The co-states y1(a) and y2(a) in (26) can be expressed from (24) as follows:

y1(a) = y1(0)exp

⎛
⎝−

a∫

0

(1 − u(α))e′(m(α))dα

⎞
⎠

−
a∫

0

(P(α) b′(u(α) e(m(α)))u(α)e′(m(α))) exp

⎛
⎝−

a∫

α

(1 − u(τ ))e′(m(τ ))dτ

⎞
⎠ d α

y2(a) = y2(0)exp

⎛
⎝−

a∫

0

d(u(α))dα

⎞
⎠

−
a∫

0

b (u(α) e (m(α))) exp

⎛
⎝

a∫

α

(d(u(τ )))dτ

⎞
⎠ d α, (27)

123



1136 J. A. J. Metz et al.

where y1(0) and y2(0)have tobe chosen such that limA→∞ y1(A) = limA→∞ y2(A) =
0. In Appendix 4 we show that:

(i)

y1(a)

P(a)
=

∞∫

a

(P̂(α; a) b′(u(α) e (m(α)))u(α)e′(m(α)))Δm(α) dα, (28)

which can be interpreted as the marginal loss or gain per unit weight change
(sensitivity) of lifetime offspring due to lower subsequent weights, and

(ii)

y2(a)

P(a)
=

∞∫

a

(P̂(α; a) b(u(α) e (m(α))) dα, (29)

which can be interpreted as the sensitivity of lifetime offspring due to lower
subsequent survival.
Moreover, in the same appendix we show that Formulas (12)–(13) for calculating
the fitness returns (c.q. the selection gradient) and Formulas (26)–(27) for the
derivative of the Hamiltonian with respect to u, are equivalent.

The detailed match between the results from the two approaches more generally
follows from the correspondence between Bellman’s principle of optimality and Pon-
tryagin’s maximum principle that we work out in some detail in Appendix 5.

On the practical side we point at the fact that even when one is only interested
in calculating an ESS with the help of Pontryagin’s maximum principle, and has no
particular interest in the evolutionary trajectories by which this ESS may be reached,
running some discretised variant of the canonical equation can still provide an effective
computational implementation of that principle as used in ESS calculations.

7 Discussion

The main contribution of this note is that we carefully set up the CE for life history
decisions. As it turned out, a few details had to be added to the exposition in Parvinen
et al. (2013). In particular, it was necessary to extend the canonical equation so as to
be able to handle inequality constraints. In addition, there was the small detail of the
appearance of an additional multiplicative factor accounting for the difference in the
initial branching process that mutants have to get through before getting established
compared to the linear birth and death process that appears in this role for ODE
population models (c.f. Durinx et al. 2008).

Given the venerable history of Pontryagin’smaximumprinciple and its applications
to life history theory it should raise no wonder that interpreting the co-states is not
new. In particular, Jesus Alberto Leon already did so in the nineteen-seventies (Leon
1976); see also Perrin and Sibly (1993). However, in those days there was no canonical
equation aroundandhencenoneed tomake a connection.Moreover, these early authors
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put forward the interpretation seemingly ex cathedra, and only post hoc and summarily
related it to a marginal value argument, without exhibiting the explicit connection
made in our Sects. 4 and 6 and Appendices 4 and 5. In particular, they did not consider
“co-state variables” for other u than the optimal one. Precisely these “generalised co-
state variables” occur as ingredients of the selection gradient. Although such variables
are already used in numerical approaches to Pontryagin’s maximum principle (e.g.
Näslund et al. 1974), we believe that our explicit calculations add to the biological
understanding of the mathematical structure of eco-evolutionary models.

As a final point we note that the argument that we provide in Sect. 5, although this
was not spelled out there, is exemplary of a more general principle. When we delve a
little more deeply into the stochastic models for individual behavior, as was necessary
in order to calculate σ 2, it generally becomes clear how embarrassingly oversimplified
such models tend to be. In our case it turned out that it was implicitly assumed that
microscopically the production of young is coupled farmore loosely to the energy flow
to reproduction than seemingly is assumed at the macroscopic level. Real organisms
first have to accumulate the necessary energy that then is transformed into the birth
of a young, instead of randomly producing young on the basis of the instantaneous
availability of resources. Therefore in reality the production of young usually is far
more regular thanPoisson (so thatσ 2 is close toσ 2

λ ), and at a given timedepends also on
past energy availabilities. Hence the idea that the average rate of offspring production
at age a is just a function b of u(a) e(m(a)) is at best only a rough approximation. One
possible justification is that most of the time u e(m) varies only slowly compared to
the rate at which young are produced, and that if reproduction does occur spread out in
time, no two individuals will be in the same phase of their reproduction cycle, so that at
any one time the effective offspring production of the individuals that have a size close
to the scalar m may well be on average close to b(ue(m)). However, the modelling
community is still a long way from proving any rigorous approximation theorems
of this ilk. (See Heijmans and Metz (1989) for another possible justification, which,
however, is less often applicable in a general life history context.) Of course we also
made other simplifying assumptions, like neglecting basalmetabolism.However, these
simplifications were only put in to ease the exposition, raise no deep mathematical
issue, and hence can presumably be relaxed without great difficulty.
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Appendix 1: Mendelian organisms

Most life historymodels implicitly assume clonal reproduction.Yet, by far themajority
of organisms that are supposedly targeted by these modeling efforts are Mendelian
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diploids (c.f. Stearns 1976, 1977). To help overcoming this awkward discrepancy we
summarise here some results for the Mendelian case (c.f. Metz and de Kovel 2013).

The first difference between the clonal andMendelian cases is that the homozygote
phenotype present after a substitution differs from the heterozygote phenotype that
invaded. Since for small mutational steps the genotype to phenotype map is approx-
imately additive, this leads to the appearance of an additional factor two (on the
assumption that there are no parental effects) in the right hand side of the canonical
equation.

A more fundamental difference is that as a rule the gametes involved in sexual
reproduction come in two types, macro- and micro-gametes. To keep the discussion
simple we concentrate on the case where the sexes are separate, for otherwise we have
to consider triple allocation targets, to growth, macro-gametes, and micro-gametes. In
the case of separate sexes we simply have u = (uf , um), with uf the allocation rule
of the females, and um the one of the males. These allocation rules in general will
be evolutionarily coupled through mutational co-variances, but, except for a common
time scaling with T−1

r (u), the selection gradients can be treated separately, as if we
were dealing with two coevolving species, with each of the sexes setting part of the
environment, which now also includes fertilization opportunities, for the other sex.
This independence derives from the additive relation R0 = 1

2 (Rf + Rm) , with Rf
the average lifetime number of kids of a female and Rm the average lifetime number
of kids of a male (e.g. Metz and Leimar 2011; Gyllenberg et al. 2011). Similarly,
Tr = 1

2 (Tr,f + Tr,m), where the additional indices f and m mean that the so indexed
quantity, in this case the average age of the parent at the birth of its kids, is calculated
conditional on the sampled individual being a female or a male. Hence, for S ∈ {f,m},

GS(u) = ∂ F

∂ uS,mut
(u; Eattr(u)) = 1

Tr,f + Tr,m

dRS

duS,mut
(u; Eattr(u)) . (30)

The action of the derivative can again be expressed as an integral

dRS(u; Eattr(u))

duS,mut
x =

∞∫

0

gS(α; u) x(α) dα, (31)

with the functions gS calculated in the same manner as for the clonal model, with the
hidden argument Eattr in the functions bS accounting for any differences in availability
of fertilization opportunities at different ures. Finally, Ts = qf Ts,f + qm Ts,m, with
qf and qm the relative frequencies with which the sexes are born into the resident
population, and σ 2 = 1

4 (qf σ 2
f + qmσ 2

m + q−1
f + q−1

m − 2) (the latter formula also
takes into account the random sampling of alleles during the offspring production by
the heterozygotes).

The upshot is that the males and females in any ESS-es satisfy separate Pontryagin
maximum principles, with the coupling between the sexes appearing in the equations
only through the influences the resident female and male strategies exert on Eattr. Yet,
the fact that the fertilization opportunities come as a component of Eattr inextricably
entwines life history evolution with sex ratio evolution.
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Appendix 2: How to deal with local constraints?

This appendix emulates the treatment in Dieckmann et al. (2006) with the difference
that we go one step further in working out the result, so that we end up with a simple
formula that provides the right match for the Pontryagin maximum principle.

For a start we note that in principle the mutational covariance function is not con-
stant over evolutionary time, but depends on the evolutionary history of the population.
In particular, the distribution ofmutational steps has to change near a constraint bound-
ary so as to preclude overstepping it. There are various ways in which this change may
happen. Most of these will make the distribution of the steps asymmetric, with close
to the boundary steps towards the interior of the space of feasible strategies becoming
more common relative to steps towards the boundary. The CE as given by Dieckmann
et al. (2006) and Parvinen et al. (2013) is based on the assumption that the mutation
distribution is symmetric, in line with most papers on the CE; (Formulas for the non-
symmetric case may be found in Dieckmann and Law (1996), Champagnat (2003),
and Champagnat and Méléard (2011).) In our formula we have kept the form of the
CE unchanged in the interior of the constraint set and only set the right hand side equal
to zero where that movement would lead to the passing of a constraint boundary. The
rationale for this ploy is the following. The CE is derived as a limit in which one lets a
factor that scales the mutational steps go to zero. This means that at any distance from
the constraint boundary eventually the effect of the constraint will no longer be felt,
and if the mutation distribution would otherwise be symmetric, this symmetry would
eventually be recovered for all resident strategies that are not located on the boundary.
At boundary strategies, in the CE limit the movement component in the outward direc-
tion has to drop to zero, since there the mutation distribution stays forever asymmetric,
with its probability mass all located on the feasible side. In the limit the distribution
of this mass contracts towards the boundary. On segments of the boundary where the
nearby movement is towards that boundary the movement on the boundary becomes
restricted to it by the covariance function abruptly becoming singular. On the natural
assumption that the constraint does not affect movement parallel to the boundary, this
corresponds to just setting the right hand side to zero at the indicated values of a.
(In finite dimensional trait spaces the analogous condition is that on the boundary the
movement component orthogonal to the boundary becomes zero whenever close by
the movement is towards the boundary, while the movement component parallel to the
boundary is a continuous extension of the movement component in that direction in
the interior of the constraint set.)

Appendix 3: The canonical equation for periodic ODE population models

The right hand side of the CE equals

[Rate at which mutants are produced] × average of [ the effect of a mutation times a

linear approximation for the probability that mutant invades]. (32)
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On the assumption of small mutational steps and a symmetric mutation distribution
the latter average gives 1

2 times the mutational covariance operator applied to the
selection gradient, where the 1

2 comes from the fact that the linear approximation only
applies in the half space where the invasion fitness is positive and is replaced by 0
where it is negative. The factor σ−2 in (4) comes from the lowest order term of the
asymptotic expansion for the probability Q that amutant with a slightly positive fitness
(0<F�1) invades. When births occur singly the individual-based models underlying
ODE population models can for the initial phases of mutant invasion be approximated
by a linear birth and death process. For constant environments the corresponding
generation process is of Galton–Watson type with a geometric offspring distribution
with mean R0 = b

d with b and d the per capita birth and death rates of the mutant,

respectively, while F = b − d = R0−1
Ts

. Hence the invasion probability equals Q =
1− R−1

0 = R0 − 1+O((R0 − 1)2). More in general, Q = 2 σ−2
e ln R0 +O(ln2 R0),

withσ 2
e ameasure for the average variability of the offspring production of the residents

(for which R0 = 1), which in the case of a single birth state reduces to the variance
of the offspring distribution σ 2 (c.f. Metz and de Kovel 2013; Durinx et al. 2008).
(For a geometric distribution with mean 1: σ 2 = 2.) The rate at which mutants are
produced equals the population birth rate times the per birth probability of a mutation.
The factor n in (4) appears by re-expressing the population birth rate B of the resident
as n

Ts
, based on the general consistency relation n = B Ts. Below we consider the

extension of these considerations to periodic environments; the further extension to
general ergodic environments is treated in Ripa and Dieckmann (2013).

In the case of periodic environments we have to average both the number of births
as well as the probability to invade over a cycle, where the first average is a time
average and the latter average is over the distribution of births over the cycle.

To calculate the invasion probability in dependence of the phase θ of appearance
of a mutant during the environmental cycle, q(θ), we use the general formula for the
invasion probability for linear birth and death processes with time variable parameters
derived in Kendall (1948):

q(θ) = 1

1 +
∞∫
θ

e−r(α;θ) d(α) dα
with r(t; θ) =

t∫

θ

(b(τ ) − d(τ )) dτ. (33)

With time rescaled so that the period equals T = 1, we then get

Q =
1∫

0

q(θ)w(θ) dθ, (34)

with

w(θ) = b0(θ)er0(θ;0)
∫ 1
0 b0(τ ) er0(θ;0)dτ

(35)
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the probability distribution of the phase of the environmental cycle at which a mutant
may be expected to appear, with b0 and d0 the periodic per capita birth and death rates
of the residents and r0 defined as in (33).

The stationarity of the resident population implies that r0(t + 1; t) = 0, i.e.,∫ t+1
t b0(τ ) dτ = ∫ t+1

t d0(τ ) dτ (no per capita population growth over a full environ-

mental cycle) as well as
∫ t+1
t b0(τ ) er0(τ ;t)dτ = ∫ t+1

t d0(τ ) er0(τ ;t) dτ (the total births
over a cycle matches the death toll over the cycle). More in general F = r(t + 1; t) =
r(1; 0) and

R0 = b

d
, (36)

with

b
def=

1∫

0

b(τ ) dτ =
t+1∫

t

b(τ ) dτ and d
def=

1∫

0

d(τ )dτ =
t+1∫

t

d(τ ) dτ (37)

(Bacaer andGuernaoui 2006), where in the periodic case R0 is defined as the dominant
eigenvalue of the operator that gives the average number of newborns born at different
phases of the cycle formothers born at different phases. To calculate the derivative of Q
we introduce a scalar variable x bywhich we parametrise a curve in the space of strate-
gies passing transversally through the resident value at x = 0, and write all the coeffi-
cient functions as functions of x , written as an index in the case of b, d, and r . As later
onwe also need the invasion probability and invasionfitness as a function of anymutant
strategy, we will denote the maps from x to these two quantities as Q̃ and F̃ . With

M(x)
def=

∞∫

0

e−rx(α;0) dx(α) dα (38)

we can write

q(θ; x) = 1

1 + ∫ 1
θ
e−rx(α;θ) dx(α) dα + e−rx(1;θ) M(x)

. (39)

From limx→0 q(θ; x) = 0 it follows that lim
x→0

M(x) = ∞. Hence

∂ q

∂ x
(θ; 0) = −er0(1;θ) lim

x→0

M ′(x)
M2(x)

(40)

and

Q̃′(0) = −
∫ 1
0 b0(θ) dθ∫ 1

0 b0(θ) er0(θ;0) dθ
lim
x→0

M ′(x)
M2(x)

. (41)
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To calculate the term after the limit sign we observe that

M(x)
def=

1∫

0

e−rx(θ;0)dx(θ) dθ + e−rx(1;0)M(x). (42)

Hence

M(x) =
∫ 1
0 e

−rx(θ;0) dx(θ) dθ

1 − e−rx(1;0) , (43)

limx→0
M ′(x)
M2(x)

= −F̃ ′(0)
1∫
0
e−r0(θ;0) d0(θ) dθ

(44)

and

Q̃′(0) =
∫ 1
0 b0(θ) dθ∫ 1

0 b0(θ) er0(θ;0) dθ
∫ 1
0 e

−r0(θ;0)d0(θ) dθ
F̃ ′(0). (45)

Hence away from local constraints the CE becomes

ds

dt
= 1

2
μ

∫ 1

0
b0(α)ñ(α) dα

∫ 1
0 b0(α) dα∫ 1

0 b0(α) er0(α;0) dα
∫ 1
0 e

−r0(α;0) d0(α) dα

×
∫ 1

0
c(θ, α) f (α; s) dα

= 1

2
μ

∫ 1
0 d0(α) dα∫ 1

0 ñ
−1(α)d0(α)dα

∫ 1

0
c(θ, α) f (α; s) dα (46)

where s nowdenotes the strategy,which in the seasonal floweringmodel ofDieckmann
et al. (2006) consists of a flowering intensity as a function of θ , and

f (θ; s) = d (b(θ) − d(θ))

d smut(θ)
(s; Eattr(s)) . (47)

Hence the n in Parvinen et al. (2013) has to be interpreted as

∫ 1
0 d0(α) dα∫ 1

0 ñ
−1(α) d0(α) dα

. (48)

To see how (46) compareswith (4)wefirst observe that for periodicallyfluctuating pop-
ulations there is no immediate counterpart for the equality n = B Ts, so we substitute
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the latter in (4), while observing that the counterpart of B in (46) is
∫ 1
0 b0(α)ñ(α) dα.

After substituting f (α; s) = g(α;s)
Tr(s)

in (46) we then end up with the pairing

2 Tr
σ 2
e

=
∫ 1
0 b0(α) dα∫ 1

0 b0(α) er0(α;0) dα
∫ 1
0 e

−r0(α;0) d0(α) dα
. (49)

To calculate Tr we use F = b − d and R0 = b/d together with (1) to find

Tr = d
−1
0 = b

−1
0 . (50)

Therefore,

σ 2
e = 2

∫ 1
0 b0(α) er0(α;0) dα∫ 1

0 b0(α) dα
·
∫ 1
0 e

−r0(α;0)d0(α) dα∫ 1
0 d0(α) dα

= 2
∫ 1
0 e

r0(α;0) d0(α) dα
∫ 1
0 e

−r0(α;0) d0(α) dα(∫ 1
0 d0(α) dα

)2 . (51)

Appendix 4: Relating the results of Sects. 4 and 6

In this appendixwe show that formulas (12)–(13) for calculating thefitness returns (c.q.
the selection gradient) and formulas (27)–(26) for the derivative of the Hamiltonian
with respect to u are equivalent. To enhance the similarity divide gH by P and set

ỹ1(a)
def= P−1(a) y1(a), to get ỹ2(a) = y2(a) (for each a ∈ [0,∞)), obtaining

rH (a)
def= gH (a)

P(a)
= b′ (u(a) e(m(a))) e(m(a) − ỹ1(a) e(m(a)) − ỹ2(a)d ′(u(a))

with

˙̃y1 = −(1 − u)e′(m)ỹ1 − P̂ b′(u e(m)) u e′(m), lim
A→∞ ỹ1(A) = 0,

˙̃y2 = d(u)ỹ2 − b(u e(m)), lim
A→∞ ỹ2(A) = 0, (52)

which is to be compared with

r(a) = b′ (u(a)e(m(a))) e(m(a))

− e (m(a))

∞∫

a

P̂(α) b′ (u(α)e(m(α))) u(α)e′(m(α))Δ̂m(α) dα

− d ′(u(a))

∞∫

0

P̂(α)b (u(α) e(m(α))) (53)
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with

ŷ1
def=

∞∫

a

P̂(α) b′ (u(α)e(m(α))) u e′(m(α))Δ̂m(α) dα, (54)

ŷ2
def=

∞∫

a

P̂(α) b (u(α) e(m(α))) dα, (55)

where we now dropped the second argument of P̂ and Δ̂m on the understanding that
P̂(a) = Δ̂m(a) = 1. The structure of the above expressions is

• for fitness returns:

ŷ(a) =
∞∫

a

φ(α)z(α) dα, ẋ = −ψ z, z(a) = 1 (56)

• for Pontryagin:

˙̃y = ψ ỹ − φ, lim
A→∞ ỹ(A) = 0. (57)

Expanding the integrals gives

ŷ(a) =
∞∫

a

φ(α)exp

⎛
⎝−

α∫

a

ψ(τ) dτ

⎞
⎠ dα, (58)

ỹ(a) = −
a∫

0

φ(α)exp

⎛
⎝

a∫

α

ψ(τ)dτ

⎞
⎠ dα + ỹ(0) exp

⎛
⎝

a∫

0

ψ(τ) dτ

⎞
⎠ (59)

with

ỹ(0) = exp

⎛
⎝−

∞∫

0

ψ(τ)dτ

⎞
⎠

∞∫

0

φ(α)exp

⎛
⎝

∞∫

α

ψ(τ)dτ

⎞
⎠ d α

=
∞∫

0

φ(α) exp

⎛
⎝

α∫

0

ψ(τ) dτ

⎞
⎠ d α. (60)
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Hence,

ỹ(a) = −
a∫

0

φ(α)exp

⎛
⎝

a∫

α

ψ(τ) dτ

⎞
⎠ dα +

∞∫

0

φ(α) exp

⎛
⎝

a∫

α

ψ(τ) dτ

⎞
⎠ dα

=
∞∫

a

φ(α) exp

⎛
⎝−

α∫

a

ψ(τ) dτ

⎞
⎠ dα. (61)

Therefore, indeed ỹ1 = ŷ1 and ỹ2 = ŷ2.

Appendix 5: Basic concepts of dynamic optimal control theory

One of the goals in this paper was to elucidate in an accessible manner the connection
between the fitness returns of evolutionary ecology and Pontryagin’s maximum prin-
ciple. This appendix considers the more general problem of linking the more intuitive,
better known, and more general optimality principle of Bellman with Pontryagin’s
maximum principle. To this end we derive the latter from the former. While both
principles are commonly formulated for optimal strategies, we have reengineered the
argument so that in the initial steps we consider just any fixed strategy in order to put
in the limelight the direct conceptual link between fitness returns and the local variant
of Pontryagin’s maximum principle.

Appendix 5.1: The optimal control problem

Consider a dynamic system described by a state equation

ẋ(t) = f (x(t), u(t)) , x(0) = x0, (62)

where x(t) ∈ R
n is a state variable,u(t) ∈ R

m is a control variable, f : Rn×R
m → R

n

is assumed to be continuously differentiable.
The control aim is to maximise the objective function:

J =
T∫

0

Π (x(t), u(t)) dt + S (x(T )) , (63)

where Π and S are assumed to be continuously differentiable.
The path x(t), t ∈ [0, T ], is called a state trajectory and u(t), t ∈ [0, T ], is called

a control (decision, action).
Usually, the control variable u(t) is assumed to be piecewise continuous and con-

strained as follows:

u(t) ∈ Ω(t) ⊂ R
m, t ∈ [0, T ]. (64)
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a

b

ec

Jab

Jbce

Jbe

Fig. 2 Illustration of Bellman’s optimality principle

If u(t) satisfies Condition (64) for each t ∈ [0, T ], we call u an admissible control.
The optimal control problem is to find an admissible control u∗ which maximises

the objective function (63) subject to Constraint (62). Such a control u∗ is called an
optimal control, the corresponding state trajectory is denoted by x∗ and is called the
optimal trajectory under u∗, J (u∗) or J ∗ then denotes the optimal value of J .

Appendix 5.2: Bellman’s optimality principle

Bellman’s optimality principle which has to be satisfied for an optimal control u∗
(Bellman 1957) reads: “an optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisionsmust constitute an optimal policy
with regard to the state resulting from the first decision.”

Observing Fig. 2, we can state Bellman’s optimality principle as a proposition:

Proposition If a b e is the optimal path from a to e, then b e is the optimal path from
b to e.

Proof Suppose it is not. Then there is another path (note that existence is assumed
here) b c e which is optimal from b to e, i.e. Jbce > Jbe. But then Jabe = Jab + Jbe <

Jab + Jbce = Jabce. This contradicts the hypothesis that a b e is the optimal path from
a to e. ��

Appendix 5.3: The value function for any fixed u

We can formulate Bellman’s optimality principle using the so-called value function
V : Rn ×R → R for a given (but not necessarily optimal) control u ∈ Ω . This value
function is defined as

V (xt , t; u)
def=

T∫

t

Π (x(s), u(s)) ds + S (x(T )) , (65)

where for s ≥ t

dx

ds
= f (x, u) , x(t) = xt .
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In the original work of Bellman (1957) the value functionwas defined for an optimal
strategy u, as themain focus of hisworkwas finding this optimal strategy.We, however,
formulate the value function for any u and introduce theBellman’s optimality principle
with u being optimal at the further step of this derivation.

In Fig. 3 we illustrate the value function in the (x, t)-space for a given u.
Note that incremental changes in J from t to t + Δt are given by the integral

of Π(x, u) from t to t + Δt . Considering that the change in the objective function
consists of the incremental changes in J from t to t + Δt plus the value function
V (x + Δx , t + Δt ; u) at time t + Δt (for fixed u) we can write

V (xt , t; u) =
t+Δt∫

t

Π (x(τ ), u(τ )) dτ + V (x(t + Δt ), t + Δt ; u). (66)

SinceΠ is continuous in t , the integral in (66) can be approximated byΠ(xt , u(t))Δt ,
so that we can rewrite (66) as

V (xt , t; u) = Π(xt , u(t))Δt + V (x(t + Δt ), t + Δt ; u) + o(Δt ). (67)

If V is continuously differentiable, we can use the Taylor expansion of V with respect
to Δt to obtain

xt

xt +Δx

tt +Δt

V (xt ,t;u)

V (xt +Δx,t+Δt ;u) = V (x(t+Δt),t+Δt ;u)

path for a fixed u

Fig. 3 A path for a specific choice of u in the time-state space
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V (x(t + Δt ), t + Δt ; u) = V (xt , t; u) +
(

∂ V (xt , t; u)

∂x
ẋ + ∂ V (xt , t; u)

∂t

)
Δt

+ o(Δt ). (68)

Substituting x from (62) we obtain

V (xt , t; u) = Π(xt , u(t))Δt + V (xt , t; u) + ∂ V (xt , t; u)

∂ x
f (xt , u(t))Δt

+ ∂ V (xt , t; u)

∂ t
Δt + o(Δt ). (69)

By canceling V (xt , t; u) on both sides and then dividing by Δt we get

0 = Π(xt , u(t)) + ∂ V (xt , t; u)

∂ x
f (xt , u(t)) + ∂ V (xt , t; u)

∂ t
+ o(Δt )

Δt
. (70)

By letting Δt ↓ 0, we obtain

0 = Π(xt , u(t)) + ∂ V (xt , t; u)

∂ x
f (xt , u(t)) + ∂ V (xt , t; u)

∂ t
(71)

with the boundary condition V (x(T ), T ; u) = S (x(T )). Here ∂ V (xt ,t;u)
∂ x can be inter-

preted as the marginal contribution of the state variable x to the objective function
for a fixed u. We denote it by y(t) ∈ R

n and call it the costate vector (also known as
adjoint or auxiliary vector in optimisation and control theory and as a shadow price in
economics), thus

y(t)
def= ∂ V (xt , t; u)

∂ x
, (72)

and introduce the so-called Hamiltonian4

H(x(t), u(t), y(t))
def= Π(x(t), u(t)) + (y(t))T f (x(t), u(t)). (73)

Note that the previous definition for our example identifies y with the marginal
fitness return per unit of change in the state variables at age a (here time t). Below we
shall focus on optimal controls and trajectories, and in this way derive the equations
for y customarily encountered in the literature on Pontryagins maximum principle.

4 Here we use the notation H(x(t), u(t), y(t)) instead of the notation H(x, u, y, t) standard in the optimal
control theory in order to stress that the Hamiltonian at time t depends on x , u, and y at the same time t . The
former notation is more in sink with the usual mathematical attitude that one should rigorously distinguish
between a function and its values for particular values of its argument.
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Appendix 5.4: From Bellman’s optimality principle to Pontryagin’s maximum
principle

If u is optimal, i.e., if u = u∗, the following condition has to hold:

0 = max
u(t)∈Ω(t)

{
H

(
xt , u(t),

∂ V (xt , t; u)

∂ x

)
+ ∂ V (xt , t; u)

∂ t

}
. (74)

Equation (74) is called the Hamilton–Jacobi–Bellman (HJB) equation (Bellman 1957)
and gives necessary and sufficient conditions that an optimal u has to satisfy, if the
value function is differentiable. FromEq. (74) we can get the Hamiltonianmaximizing
condition, or maximum principle, denoting the costate corresponding to u∗ as y∗ as

H(x∗(t), u∗(t), y∗(t)) + ∂ V (x∗(t), t; u∗)
∂ t

≥ H(x∗(t), ψ, y∗(t)) + ∂ V (x∗(t), t; u∗)
∂ t

,

(75)

for all ψ ∈ Ω(t), which leads to inequality

H(x∗(t), u∗(t), y∗(t)) ≥ H(x∗(t), ψ, y∗(t)). (76)

Appendix 5.5: Derivation of the costate (adjoint) equation

We in this narrowed context return to the after effect of infinitesimal changes in the
state variables. Let

x(t) = x∗(t) + Δx (t) (77)

where Δx (t), ‖Δx (t)‖ ↓ 0. As x∗ is the optimal state trajectory, necessarily

H

(
x∗(t), u∗(t), ∂ V (x∗(t), t; u∗)

∂ x

)
+ ∂ V (x∗(t), t; u∗)

∂ t

≥ H

(
x(t), u∗(t), ∂ V (x(t), t; u∗)

∂ x

)
+ ∂ V (x(t), t; u∗)

∂ t
. (78)

The left hand side of Inequality (78) equals zero, since u∗ is the optimal control. In
general, the right hand side is less or equal to zero and would be zero for x = x∗.
Since x(t) is unconstrained, the partial derivative of the right hand side of Inequality
(78) with respect to x has to be equal to zero for x = x∗, i.e.,

⎡
⎣∂H

(
xt , u∗(t), ∂V (xt ,t;u∗)

∂x , t
)

∂x
+ ∂2V (xt , t)

∂t ∂x

⎤
⎦
x=x∗

= 0. (79)

123



1150 J. A. J. Metz et al.

(Note the implicit assumption that V is twice continuously differentiable.) By defini-
tion of the Hamiltonian, at u = u∗ and x = x∗,

∂Π

∂x
+ ∂V

∂x

∂ f

∂x
+ f T

∂2V

∂x2
+ ∂2V

∂t∂x
= ∂Π

∂x
+ ∂V

∂x

∂ f

∂x
+

(
∂2V

∂x2
f

)T

+ ∂2V

∂t∂x
= 0.

(80)

By definition (72) of y(t)

d
(

∂V
∂x

)
dt

=
⎛
⎝d

(
∂V
∂x1

)

dt
, . . .

d
(

∂V
∂xn

)

dt

⎞
⎠

=
(

∂2 V

∂ x2
ẋ

)T

+ ∂2 V

∂ x∂t
=

(
∂2 V

∂ x2
f

)T

+ ∂2 V

∂ x∂t
. (81)

From Formulas (80) and (81) we have

d
(

∂ V
∂x

)
dt

= −∂Π

∂x
− ∂V

∂x

∂ f

∂ x
. (82)

Substituting the costate from Formula (72), we obtain

ẏ = −∂ Π

∂ x
− y

∂ f

∂ x
.

Substituting the Hamiltonian (73) into this expression, we obtain

ẏ = −∂ H

∂ x
. (83)

Terminal boundary (or transversality) conditions are defined as

y(T ) = ∂ S(x(T ))

∂ x
. (84)

Equations (83) and (84) determine the adjoint variables From Eq. (73) we can rewrite
the state equation as

ẋ = f = ∂ H

∂ y
. (85)

Combining Formulas (83), (84), (85), and (62) we get

{
ẋ = ∂ H

∂ y , x(0) = x0,

ẏ = − ∂ H
∂ x , y(T ) = ∂S(x(T ))

∂x .
(86)

Equation (86) is called a canonical system of equations or canonical adjoints.
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Appendix 5.6: Pontryagin’s maximum principle

The necessary conditions for u∗ to be an optimal control are:

⎧⎨
⎩
ẋ∗ = f (x∗, u∗, t), x∗(0) = x0,

ẏ = − ∂ H(x∗,u∗,y)
∂ x , y(T ) = ∂ S(x∗(T ))

∂ x ,

H (x∗(t), u∗(t), y(t)) ≥ H (x∗(t), u, y(t)) ,

(87)

for all u ∈ Ω(t), t ∈ [0, T ], where the adjoint (costate) variables y(t) now correspond
to the sensitivities of the value function for the optimal u to a state change at t .
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