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While genetic variants are known to be associated with overall gene abundance in stimulated immune cells, less is known

about their effects on alternative isoform usage. By analyzing RNA-seq profiles of monocyte-derived dendritic cells

from 243 individuals, we uncovered thousands of unannotated isoforms synthesized in response to influenza infection

and type 1 interferon stimulation. We identified more than a thousand quantitative trait loci (QTLs) associated with alter-

nate isoform usage (isoQTLs), many of which are independent of expression QTLs (eQTLs) for the same gene. Compared

with eQTLs, isoQTLs are enriched for splice sites and untranslated regions, but depleted of sequences upstream of anno-

tated transcription start sites. Both eQTLs and isoQTLs explain a significant proportion of the disease heritability attributed

to common genetic variants. At the ERAP2 locus, we shed light on the function of the gene and how two frequent, highly

differentiated haplotypes with intermediate frequencies could be maintained by balancing selection. At baseline and follow-

ing type 1 interferon stimulation, the major haplotype is associated with low ERAP2 expression caused by nonsense-mediated

decay, while the minor haplotype, known to increase Crohn’s disease risk, is associated with high ERAP2 expression. In re-

sponse to influenza infection, we found two uncharacterized isoforms expressed from the major haplotype, likely the result

of multiple perfectly linked variants affecting the transcription and splicing at the locus. Thus, genetic variants at a single

locus could modulate independent gene regulatory processes in innate immune responses and, in the case of ERAP2, may

confer a historical fitness advantage in response to virus.

[Supplemental material is available for this article.]

An important aspect of eukaryotic gene regulation is the usage of
alternative gene isoforms. This is achieved through several mech-

anisms at the transcript level, including alternative promoters for
transcription initiation, alternative splicing of pre-messenger
RNA, alternative polyadenylation, and selective degradation of iso-
forms. These processes regulate the relative abundances of multi-
ple coding and noncoding RNAs from the same underlying DNA
sequence, often resulting in altered function of the gene products
in response to developmental or environmental changes (Black
2003; Maquat 2004; Matlin et al. 2005; Wang et al. 2008).

A case in point is the critical role of alternative isoform usage
across many immune processes, such as the balance between IgM
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and IgD immunoglobulin isoforms in B cells (Enders et al. 2014),
naïve and memory T-cell proportions controlled by PTPRC
isoforms (Berard and Tough 2002), and innate immune responses
to pathogens regulated by different isoforms of MYD88 (Martinez
and Lynch 2013). Genetic variants that affect isoform usage have
been associatedwith immune disorders (Xiong et al. 2015), includ-
ing single-nucleotide polymorphisms (SNPs) that alter the relative
splicing of two IRF5 isoforms (Graham et al. 2007) associated with
systemic lupus erythematosus (SLE).

Previous studies have identified shared and divergent tran-
scriptional programs in the antibacterial and antiviral responses
of innate immune cells (Amit et al. 2009; Lee et al. 2014), with
genetic variants imparting stimulation-specific effects on the to-
tal transcript abundances of thousands of genes (Barreiro et al.
2012; Fairfax and Knight 2014; Lee et al. 2014; Quach et al.
2016). While maps of genetic determinants of alternative isoform
usage are beginning to emerge, most notably in lymphoblastoid
cell lines (Lappalainen et al. 2013; Li et al. 2016), across post-mor-
tem human tissues (The GTEx Consortium 2015; Rivas et al.
2015), and in macrophages stimulated with bacteria (Nedelec
et al. 2016), differential isoform usage in the human antiviral re-
sponse, its natural variability, and its genetic basis have not been
studied.

Here, we integrate bulk RNA-sequencingwith dense genotyp-
ing to systematically investigate the genetic control of isoform us-
age in monocyte-derived dendritic cells (MoDCs) at rest, and in
response to influenza infection or type 1 interferon stimulation.
Because the type 1 interferon pathway is known to be engaged
by a broad array of microbial products, our study design is unique
in allowing the separation of the universal and influenza-specific
interferon-induced responses. Since the human transcriptome
has never been annotated under these conditions, we first used
de novo assembly to catalog and expectation maximization to
quantify all synthesized isoforms in resting and stimulated
MoDCs. Then, by harnessing the natural transcriptomic and ge-
netic variation in the ImmVar cohort (Lee et al. 2014; Raj et al.
2014a; Ye et al. 2014), wemapped quantitative trait loci (QTLs) as-
sociated with alternate isoform usage (isoQTLs). Systematic char-
acterization of isoQTLs, especially in comparison to expression
quantitative trait loci (eQTLs), provides mechanistic insights into
the genetic control of different aspects of gene regulation and en-
ables the functional interpretation of loci associated with im-
mune-related diseases and under natural selection.

Results

Influenza infection and type I interferon stimulation induce

widespread alternate isoform usage

We used paired-end RNA-seq to profile the transcriptomes of pri-
mary MoDCs from healthy donors at rest (N=99), and following
stimulation with either recombinant interferon beta (IFNB1), a
type 1 interferon that stimulates anti-viral effectors (N=227), or
influenza ΔNS1 (a strain engineered to maximize the type 1 inter-
feron-induced response to infection by the deletion of a key viru-
lence factor;N=250) (Shapira et al. 2009). A total of 552 pass-filter
samples (out of 576), 84 from all three conditions, 127 from both
stimulation conditions, and 46 from only one condition, were an-
alyzed (Supplemental Table S1). To define the corpus of tran-
scribed isoforms in human MoDCs at rest and in response to
stimulation, we assembled the transcriptome de novo in each
sample (individual-condition pair) from RNA-seq alignments, re-

tained only expressed isoforms (more than five transcripts permil-
lion [TPM] in any sample), and then combined isoforms across
all samples to enable direct comparisons between conditions.
We noted that unannotated isoforms that did not match current
GENCODE, UCSC, or RefSeq annotations (Harrow et al. 2006;
O’Leary et al. 2016; Casper et al. 2018) were enriched in genes
expressed at less than 25 TPMs across all three conditions
(Supplemental Fig. S1), and thus removed these genes and their
corresponding transcripts from downstream analyses.

Our final assembled transcriptome contained 15,754 tran-
scripts corresponding to 8194 genes (Supplemental Table S2),
64.5% of which had transcriptional structures that exactly
matched an annotated transcript; 5204 transcripts (33.0%) con-
tained a novel splice site, and 389 transcripts (2.5%) did not harbor
novel splice sites but contained novel splice junctions. These novel
splice events were well supported by the presence of spliced
reads (more than 10 mapped reads) spanning exon junctions of
our assembled transcriptome. Of the 25,099 novel splice events,
11,093 (44%) were within 5′ UTRs and 7251 (28.9%) were within
3′ UTRs, echoing a previous deep sequencing analysis that report-
ed that the majority of novel isoforms are due to alternative splic-
ing of UTRs (Deveson et al. 2018). An additional 2663 transcripts
(16.9%) were annotated with a novel transcription start site
(TSS). To assess the accuracy of these new TSSs, we aligned CAGE
sequencing reads from resting MoDCs (Noguchi et al. 2017) to
the set of unique TSSs (TSS +500 bp downstream) from assembled
transcripts in the baseline condition. Comparedwith all TSSs, 69%
(vs. 84%) of the newTSSswere supported by the presence of at least
one mapped CAGE read, and 40% (vs. 61%) were supported by
more than five mapped reads. By visual inspection, we found the
most common misannotations to be isoform reconstructions
that beganwithin the gene body, downstream from the annotated
TSS. While some of these fragments may truly exist, we were un-
able to verify themwith short read sequencing and thus conserva-
tively estimated the false annotation rate to be ∼20% of new TSSs
(difference between new and all TSSs) or 3.3% of our entire
transcriptome.

We next compared changes in isoform usage—estimated as
the ratio of isoform abundance over the total gene abundance—
in response to each stimulus. Relative to baseline, the usages
of approximately twice as many isoforms (5326 vs. 2509) were al-
tered in flu-infected compared with IFNB1-stimulated cells (beta
regression, FDR<0.05) (Supplemental Table S3; Supplemental
Fig. S1A). This was corroborated by directly comparing flu-infected
and IFNB1-stimulated cells where the usages of 5072 isoformswere
altered (beta regression, FDR<0.05) (Supplemental Table S3;
Supplemental Fig. S2). In response to either stimulus, more than
a third of the isoforms with differential usage were previously un-
annotated, highlighting the inadequacy of current transcriptome
annotations in describing the full repertoire of gene isoforms in
thehumanantiviral response.Of the differentially expressed genes
(DESeq; FDR<0.05, geneabs(log2[fold change]) > 1) (Supplemental
Table S4) with more than one isoform, 54% (2233/4120) in flu-in-
fected cells and 29% (1122/3898) in IFNB1-stimulated cells had at
least one isoform that differed in usage (Fig. 1A).

Isoforms that differed in usage partitioned into four promi-
nent clusters (Fig. 1B, k-means clustering of the most significant
isoforms, one per gene; Supplemental Table S5). Isoforms with in-
creased usage in response to both stimuli (Cluster II) were highly
enriched for innate system processes (GO:0002376, q<6.41×
10−6), defense response to virus (GO:0051607, q<9.56×10−6), and
type 1 interferon signaling pathway (GO:0060337, q<1.25×10−3).

Isoform usage in the human anti-viral response

Genome Research 1813
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1


Isoforms with increased usage in response to flu but not IFNB1
(Cluster III) were enriched for regulators of gene expression
(GO:0010468, q<6.23×10−3), including genes involved in the reg-
ulation of MAP kinase cascade (GO:0043408, q<1.13×10−2) and
inflammatory response (GO:0006954, q<1.88×10−2). Isoforms
with decreased usage in response to flu (Cluster I) were enriched
foroxidoreductase activity (GO:0016616, q<2.47×10−2); isoforms
with decreased usage in response to both conditions (Cluster IV)
were not significantly enriched for known Gene Ontology entries.
TLR4, the toll-like receptor classically associated with sensing bac-
terial ligands but also shown to sense viral products (Doyle et al.
2002), was among the genes that had flu-specific isoformusage de-
spite little change in total gene abundance (Fig. 1C; Supplemental
Fig. S3). In flu-infected cells, the usages of longer isoforms with an
upstream alternative start site (TLR4/Iso1 and TLR4/Iso2) were de-
creased, while the usages of TLR4/Iso3, TLR4/Iso4, and TLR4/Iso7
were increased. TLR4/Iso4 encodes the annotated 839-amino-
acid product, while isoforms TLR4/Iso3 and TLR4/Iso7 encode
shorter, 799-amino-acid products eachwith a truncated extracellu-

lar domain missing a predicted signal peptide. We also found de-
creased usage of short CASP8 isoforms (CASP8/Iso4, CASP8/Iso5,
CASP8/Iso6) (Fig. 1D; Supplemental Fig. S3) only in flu-infected
cells.CASP8 is best known to induce apoptosis via the Fas-associat-
edproteinwithdeathdomain (FADD) in response to extrinsic cyto-
kine signals. CASP8/Iso4 has a unique N-terminal extension of 59
amino acids, which has been reported to allow for selective recruit-
ment to the endoplasmic reticulum (Breckenridge et al. 2002).
These results demonstrate that changes in isoform usage indepen-
dent of overall gene abundance are pervasive and affect prominent
innate immune sensors and regulators in viral versus interferon
response.

Genetic variants associated with isoform usage are enriched

for distinct gene regulatory elements

While it is known that common genetic variants modulate gene
expression in both resting and stimulated MoDCs (Lee et al.
2014), we assessed if they could also affect isoform usage under

A

B

C D

Figure 1. Transcriptome changes in response to stimulation. (A) Scatter plot of log2 fold change of gene abundance (x-axis) versus log2 fold change of
isoform usage percentage (y-axis) in flu-infected (left) and IFNB1-simulated (right) cells compared with baseline. Each dot represents one isoform. Isoforms
that significantly differed in their usage (beta regression, FDR <0.05) are highlighted in red. (B) Clustering of isoform usage ratios in baseline, flu-infected,
and IFNB1-stimulated cells. Heatmap colors are row scaled (red indicates row maximum, blue indicates row minimum; left). Violin plots (right) summarize
the usages of all isoforms within a cluster separated by condition. Only isoforms (one per gene) that most significantly changed (beta regression, FDR<
0.05) in usage are shown. (C,D) De novo constructed isoforms (top), gene abundance (second row), and isoform abundance (third row) and usage per-
centage (bottom) for TLR4 (C) and CASP8 (D).
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these conditions. We associated over 10 million imputed variants
with two transcriptional traits, isoform usage ratio and log of total
gene abundance, to identify isoQTLs and eQTLs, respectively.
After adjusting for unwanted variation that likely tracked with
technical and biological confounders (Supplemental Figs. S4, S5),
we identified 2763 isoforms corresponding to 1425 genes (linear
regression, permutation FDR<0.05) (Supplemental Table S6)
with local isoQTLs (±500 kb of TSS) and 6694 genes (linear regres-
sion, permutation FDR<0.05) (Supplemental Table S7) with local
eQTLs in at least one condition. A substantial proportion of lead-
ing isoQTL SNPs (63% baseline, 40% flu, 41% IFNB1) were not
significant eQTLs, suggesting that the genetic control of isoform

usage and overall gene abundance are largely independent
(Methods; Supplemental Figs. S6, S7).

Genetic variants could modulate isoform usage through sev-
eral mechanisms, including perturbing the usage of alternate pro-
moters, splice sites, or regulatory elements in the UTRs. We
compared the genomic properties of isoQTLs and eQTLs to identi-
fy themechanisms bywhich each class of variants acts.Whennor-
malized by exon and intron lengths, leading SNPs for local
isoQTLs (one per isoform) were enriched across the entire gene
body (Fig. 2A), in distinct contrast to leading SNPs for local
eQTLs (one per gene), which were enriched near TSSs and tran-
scription end sites (TESs). Further, compared with a set of eQTLs

A

B

Figure 2. Properties of local eQTLs and isoQTLs. (A) Frequency (y-axis) of the location of leading SNPs for local eQTLs and isoQTLs (permutation FDR<
0.05) with respect tometa gene structure (x-axis). Genes are normalized to five exonic regions (E1–E4 indicate exons 1 through 4; E∗ indicates exon 5 to the
last exon) and four intronic regions (introns 1, 2, 3, and from intron 4 to the last intron). Upstream and downstream sequences are divided into 100-kb win-
dows. (B) Log2 fold enrichment (x-axis) of leading SNPs for local eQTLs and isoQTLs (permutation FDR<0.05) for genomic annotations. eQTL enrichments
are calculated using a background set of SNPs matched for distance to TSS and allele frequency. IsoQTL enrichments are calculated with respect to a back-
ground set of eQTLs matched for distance to TSS and allele frequency. Multiple testing significance is indicated. (∗) P<0.05; (∗∗) P<0.01; (∗∗∗) P<0.001.

Isoform usage in the human anti-viral response

Genome Research 1815
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.240390.118/-/DC1


matched for allele frequency and distance to TSS, leading SNPs for
local isoQTLs were most enriched for splice sites (baseline: 3.7×,
flu: 3.0×, IFNB1: 4.0×), synonymous (baseline: 1.9×, IFNB1: 2.1×)
andmissense variants (baseline: 1.9×, flu: 1.8×), and 5′ UTRs (base-
line: 1.3×, IFNB1: 1.2×) (Fig. 2B). Compared with eQTLs, isoQTLs
were not enriched for binding sites of key transcription factors in-
volved in myeloid cell response (Supplemental Fig. S8). These re-
sults suggest that genetic variants associated with isoform usage
likely do so via cis regulatory sequences that modulate alternative
splicing and transcript stability.

Genetic control of alternative isoform usage in responses to virus

infection and IFNB1 stimulation

To assess how the genetic control of isoform usage differs in re-
sponse to stimuli, we analyzed 84 donors whose cells were assayed
in all three conditions to enable equally powered comparisons. At
these sample sizes, we detected more eQTLs in cells stimulated
with IFNB1 than in cells at rest or infected with flu (baseline:
1715, flu: 1755, IFNB1: 2108; permutation FDR<0.05) (Supple-
mental Table S6) but similar numbers of isoQTLs across conditions
(baseline: 717, flu: 644, IFNB1: 692; permutation FDR<0.05) (Sup-
plemental Table S7). For the 1164 isoformswith isoQTLs in at least
one condition, we compared the effect sizes (Riso

2) of associations
across conditions (Fig. 3A). The correlation of Riso

2s was lowest be-
tween flu-infected and resting (baseline) cells (Pearson’s rflu.baseline =
0.61 compared with rIFNB1.baseline = 0.76 and rIFNB1.flu = 0.74). The
corresponding genes of isoforms with higher Riso

2 in stimulated
cells were up-regulated in response to stimuli, suggesting that
the genetic control of isoform usage is sensitive to activation of
gene regulatory programs that control overall gene abundance
(Fig. 3A,B).

To directly assess how stimulation modifies the effects of ge-
netic variants on isoform usage, we mapped SNPs associated with
thedifference in isoformusagebetween conditions, herein referred
to as local response-isoQTLs (risoQTLs). We identified, compared
to resting cells, 53 (flu) and 30 (IFNB1) isoforms, corresponding
to 31 and 14 genes, with at least one local risoQTLs (permutation
FDR<0.05) (Supplemental Table S8). Among the seven genes that
shared local risoQTLs in both stimulated conditions were IFI44L
and WARS (Fig. 3C). IFI44L is a type 1 interferon-stimulated gene
known to moderately inhibit human hepatitis virus replication
in vitro (Schoggins et al. 2011) andwhose splicing has been shown
to be influenced by rs1333973 (Lalonde et al. 2011). Rs1333973
is the most significant risoQTL associated with the usages of two
isoforms differentiated by exon 2 in flu-infected and IFNB1-stimu-
lated cells (flu vs. baseline: IFI44L/Iso1: +8.9%, P<1.37×10−9;
IFI44L/Iso2: −13.9%, P<1.53×10−9; IFNB1 vs. baseline: IFI44L/
Iso1: +9.6%, P<1.21×10−10; IFI44L/Iso2: −15.7%, P<2.14×10−10)
(Supplemental Fig. S9). WARS is a tryptophanyl-tRNA synthetase
primarily involved in protein synthesis. While WARS isoforms are
known to encode for catalytic null enzymes (Lo et al. 2014) and
have anti-angiogenic activity inducible by interferon gamma
(Wakasugi et al. 2002), there have been no previous reports of the
genetic control of these isoforms. The most significant risoQTL
rs7144866was associated with the usages of two isoforms differen-
tiated by exon 2: While rs7144866A increases the usage of WARS/
Iso1 in cells at rest, it increases the usage ofWARS/Iso2 in flu-infect-
ed and IFNB1-stimulated cells resulting in the risoQTL (flu vs. base-
line: −19.1%, 2.50×10−29; IFNB1 vs. baseline: −17.7%, 7.03×
10−26) (Supplemental Fig. S10). There were 40 isoforms, corre-
sponding to 30 genes, that have at least one risoQTL in flu-infected

cells compared with interferon-stimulated cells (permutation FDR
<0.05) (Supplemental Table S8).Among thesewasZBP1, a sensorof
influenza infection that triggers cell death and inflammation and
contributes to virus-induced lethality (Kuriakose et al. 2016). We
found rs6025653t increases the usage of ZBP1/Iso1 by 9.67% (P<
4.16×10−16) (Fig. 3C; Supplemental Fig. S11) in flu-infected
compared with interferon-stimulated cells. ZBP1/Iso1 is differenti-
ated fromall otherZBP1 isoforms by the retention of exon 9. These
results suggest that while influenza-infected and interferon-stimu-
lated cells expectedly share some genetic control of isoform usage
(as interferons are induced by viral infection), influenza infection
also confers specific genetic control of isoform usage of previously
unknown genes, likely reflecting antiviral mechanisms inde-
pendent of downstream effector (type 1 interferon) signaling.

Association of eQTLs and isoQTLs with immune-related diseases

Previous analyses of the overlap between expression QTLs and ge-
nome-wide association studies (GWAS) have aided the localization
and functional interpretation of causal variants at GWAS loci.
Because disease-causing variants that affect isoform usage could
havemore profound effects on gene regulation by altering protein
structure, we jointly analyzed disease-associated variants and
local isoQTLs in addition to local eQTLs using two approaches.
First, compared with SNPs from the latest GWAS catalog (Mac-
Arthur et al. 2017), local eQTLs in stimulated cells were enriched in
multiple diseases, including inflammatory bowel disease (flu: P<
5.46×10−7, IFNB1: P<5.21×10−5), rheumatoid arthritis (flu: P<
2.49×10−5, IFNB1: P< 0.03), and Parkinson’s disease (flu: P<4.06
×10−7, IFNB1: P<7.44×10−5) (Supplemental Fig. S12), while local
isoQTLs were enriched in late onset Alzheimer’s disease (flu: P<
1.15×10−6, IFNB1: P<1.75×10−4), vitiligo (flu: P< 4.94× 10−5,
IFNB1: P<0.42), and SLE (flu: P<0.1, IFNB1: P<3.62×10−3) (Sup-
plemental Fig. S12). Notably, the overlap of isoQTLs with Alz-
heimer’s loci included genes with known variants that affect
splicing: CD33 (Hernandez-Caselles et al. 2006; Raj et al. 2014b)
and CD46 (Russell et al. 1992). Corroborating this, we performed
partitioned heritability analysis using linkage disequilibrium (LD)
score regression (Finucane et al. 2015). For 28 traits with available
summary statistics, both local eQTLs and local isoQTLs explained
a statistically significant percentage of the SNP heritability of auto-
immune diseases (e.g., ulcerative colitis, SLE) and some neurode-
generative diseases (e.g., Alzheimer’s) and did not explain much
of the SNP heritability of diseases with no known relationship to
the innate immune system (e.g., type 2 diabetes) (Fig. 4A; Sup-
plemental Table S9). These results suggest a role for both variants
that affects isoform usage and gene expression in mediating auto-
immune and neurodegenerative disease risk.

The IRF7 locus harbors an isoQTL within an extended haplo-
type previously known to be associated with SLE (rs58688157 lead
SNP, P<2.97×10−11) (Fig. 4B; Morris et al. 2016). A linked SNP
(rs1061502; LD R2 = 0.93, D′ =0.97 to rs58688157) was the most
significant association to overall IRF7 expression in IFNB1-stimu-
lated (P<2.87×10−49) and flu-infected cells (P<2.21×10−25) (Fig.
4C; Supplemental Fig. S13). IsoQTL analysis further revealed that
rs1061502T also increased the usage of IRF7/Iso4 (flu: beta =
5.3%, P<9.42×10−52; IFNB1: beta = 5.8%, P<4.81×10−46) (Fig.
4C, panel 3, purple; Supplemental Fig. S14) while it decreased the
usage of IRF7/Iso3 (flu: beta =−3.4%, 1.15×10−15; IFNB1: beta =
−7.0%, 2.04×10−29) (Fig. 4C, panel 3, green; Supplemental Fig.
S14). Further, although overall IRF7 abundances were similar be-
tween the two stimulated conditions, IRF7/Iso4 (purple) was the
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Figure 3. Comparison of local isoQTLs between conditions. (A) Correlation of effect sizes (R2) for significant local isoQTLs (permutation FDR<0.05) be-
tween pairs of conditions. Transcripts are colored by differential expression (red indicates up-regulated in condition 2, y-axis; blue indicates up-regulated in
condition 1, x-axis) for each pair of conditions. (B) Distributions of effect sizes (R2) for significant local isoQTLs (permutation FDR<0.05) for each pair of
conditions segregating genes based on expression in each condition. (C) De novo constructed transcript structure (top) and box-whisker plots (bottom
three panels) between transcript quantitative traits (y-axis: log2(normalized gene abundance), log2(normalized isoform abundance), or isoform usage per-
centage) and genotype (x-axis) for three genes (IFI44L, WARS, and ZBP1) with risoQTLs.
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Figure 4. GWAS enrichment of local eQTLs and isoQTLs. (A) Partitioned heritability analysis: proportion of SNP heritability explained (x-axis) for 28 traits
(y-axis) by eQTLs (left) and isoQTLs (right). (DS) Depressive symptoms; (SWB) subject well-being; (IBD) inflammatory bowel disease; (SLE) systemic lupus
erythematosus; (BMI) bodymass index; (HDL) high density lipoprotein; (LDL) low density lipoprotein. (B) LocusZoomplots of the IRF7 region for SLE GWAS
associations (top) and IRF7/Iso4 isoQTLs for baseline, flu-infected, or IFNB1-stimulated cells (bottom three panels). (y-axis)−log10(P-value) of association; (x-
axis) genomic location. Points are colored based on LD to rs1061502. (C) Transcript structure (top) and box-whisker plots (bottom three panels) between
IRF7 transcript quantitative traits (y-axis: log2(normalized gene abundance), log2(normalized isoform abundance), or isoform usage percentage) and
rs1061502 genotype (x-axis). (D) Heatmap of genes distally associated (permutation FDR<0.05) with risoQTL rs1061502. Heatmap colors are row-scaled
TPM values (yellow indicates row maximum; purple indicates row minimum).

Ye et al.

1818 Genome Research
www.genome.org



dominant isoform in flu-infected cells but not in IFNB1-stimulated
cells (10.7× fold, P<10−306) (Fig. 4C, bottom panel; Supplemental
Fig. S14). Rs1061502 was also a distal eQTL (permutation FDR<
0.2) for a cluster of genes, including NMI, IFNA2, IFIT5, and C5,
only in flu-infected but not in IFNB1-stimulated cells (Fig. 4D).
These results replicate and expand our previous findings that
rs12805435 (LD R2 = 0.95, D′ =0.98 to rs1061502) is associated
in cis with IRF7 expression in IFNB1-stimulated and flu-infected
cells and in trans with a cluster of IRF7-regulated genes only in
flu-infected cells (Lee et al. 2014). The flu-specific trans associations
couldbedue to the additive effects of flu-specific inductionof IRF7/
Iso4 independent of IFNB1 signaling and induction of overall IRF7
expression by rs1061502T. IRF7/Iso4 encodes a 516-amino-acid
protein product and differs from other abundant isoforms
in IFNB1-stimulated cells (IRF7/Iso1 and IRF7/Iso3) in the 5′ UTR
and the coding sequence in the DNA-binding domain. Given the
known link between type 1 interferons and SLE, our results
suggest that SNPs affecting a specific IRF7 isoform could impact
viral responses and autoimmune inflammation through similar
mechanisms.

An ERAP2 risoQTL controls differential transcript usage during

influenza infection

The ERAP2 locus is characterized by two frequent andhighly differ-
entiated (40 SNPs in perfect LD) haplotypes observed in every ma-
jor human population (B: 53% and A: 47%) (Supplemental Fig.
S15). The minor Haplotype A encodes a 965-amino-acid protein
and is associated with Crohn’s disease (Jostins et al. 2012) but not
ulcerative colitis (Fig. 5A). The major allele (G) of rs2248374, a
splice-site variant tagging Haplotype B, creates an alternate 3′

donor splice site inducing the alternative splicing of an extended
exon 10 with two premature termination codons (Andres et al.
2010). As a result, transcripts from Haplotype B are degraded by
nonsense-mediated decay, resulting in one of the most significant
eQTLsand isoQTLs inmost tissues andcell types (Lappalainenet al.
2013; Lee et al. 2014; Ye et al. 2014; The GTEx Consortium 2015).
The ERAP2 locus has been maintained by long-term balancing se-
lection (between 1.4 million [Andres et al. 2010] and 5.1 million
yr [Cagliani et al. 2010]), raising the important question: In what
environmental conditions does balancing selection act to main-
tain the seemingly loss-of-function (LOF) Haplotype B and the dis-
ease-causing Haplotype A in humans?

Given the known role of ERAP2 in antigen presentation
(Saveanu et al. 2005), we examined the genetic control of ERAP2
transcripts in the human antiviral response. In resting and
IFNB1-stimulated cells, we confirmed the known genetic associa-
tion of rs2248374G allele with lower ERAP2 expression (Fig. 5B).
In flu-infected but not IFNB1-stimulated cells, two previously
uncharacterized short isoforms (ERAP2/Iso3, ERAP2/Iso4) (Fig.
5B; Supplemental Fig. S16) were transcribed from Haplotype B, re-
sulting in the partial rescue of ERAP2 expression. The short iso-
forms differed from the constitutive full-length isoform (ERAP2/
Iso1 transcribed from Haplotype A) by the initiation of transcrip-
tion at exon 9 and the alternative splicing of an extended exon
10, and they differed from each other by alternative splicing at
a secondary splice site at exon 15. The initiation of transcription
at exon 9 results in an alternate in-frame translation start site at
exon 11, thus rendering the premature termination codon in
exon 10 inactive. The influenza-dependent genetic control of
ERAP2 isoform usage is supported by two additional lines of evi-
dence. First, there was significant correlation between overall flu

transcript abundance, a proxy for degree of infection, and ERAP2/
Iso3andERAP2/Iso4 transcript abundances andusages inheterozy-
gotes and Haplotype B homozygotes (Fig. 5C; Supplemental Fig.
S17). Second, the transcription of an extended exon 10, a hallmark
of flu-specific short isoforms, was observed in monocyte-derived
macrophages infected by H3N2 over a time course in an indepen-
dent RNA-seq data set (fluomics, GEO GSE97672) (Supplemental
Fig. S18).

The predicted protein products of either ERAP2 short iso-
forms would be missing the N-terminal (N) and aminopeptase
(AP) domains. From ERAP2/Iso3, only one protein product is
expected to be translated, which maintains a partial hinge (H)
domain and the full alpha helical C-terminal (C) domain.
Although ERAP2/Iso4 is predicted to harbor a premature termina-
tion codon that could lead to NMD, the presence of the transcript
suggests the alternate translation of an isoform starting at exon 16
thatmaintains a partial alphahelical C-terminal domain. This calls
into questionwhether the short ERAP2 isoformswould function as
an RNA or protein product. Western blotting with a full-length
ERAP2 antibody detects at least one short protein isoform (∼50
kDa) in flu-infected cells from Haplotype B homozygotes and het-
erozygotes, suggesting the translation of the short influenza-spe-
cific ERAP2 isoforms (Fig. 5D; Supplemental Fig. S19).

We present amodel of ERAP2 regulation and function consis-
tent with our findings and previous results (Fig. 5E). The genetic
signals at the ERAP2 locus suggest at least three perfectly linked
variants on Haplotype B affecting ERAP2 transcription and splic-
ing in response to viral infection. Rs2548538, an intronic variant
that overlaps chromatin marks from lymphoblastoid cell lines
(The ENCODE Project Consortium 2012), is a candidate SNP that
causes alternate transcript initiation at exon 9. Rs2248374G, the
known splice site mutation, creates an alternate preferred splice
site, resulting in alternative splicing of an extended exon 10.
Rs2549797G, a splice-site mutation that creates a competing alter-
nate splice site, results in∼40%of the transcripts with an extended
exon 15. Previous work has shown that full-length ERAP2 is a pro-
totypical aminopeptidase that homodimerizes and heterodimer-
izes with ERAP1 (Saveanu et al. 2005) to perform the final
peptide trimming step prior to MHC class I loading in the ER.
The translation of the flu-specific ERAP2 isoforms that lack the
aminopeptidase domain suggests that it could act as a dominant
negative to either ERAP2 or ERAP1 to disrupt normal antigen pro-
cessing, creating a more immunogenic MHC peptide repertoire
that could confer a fitness advantage in response to virus.

Discussion

Although maps of genetic variants associated with overall gene
abundances have been generated inmany tissue types, the genetic
control of alternate isoform usage has not been extensively
studied. By using de novo transcript reconstruction, we found a
large number of previously uncharacterized transcripts in human
MoDCs, especially in response to influenza and interferon stimu-
lation, indicating that the current reference human transcriptome
is far from complete. However, de novo reconstruction using short
reads has fundamental limitations especially for longer genes with
multiple splice junctions (Steijger et al. 2013). A hybrid approach
that uses long-read sequencing (Byrne et al. 2017; Tardaguila
et al. 2018) to scaffold and short-read sequencing to assemble
and quantify transcripts should result in higher-quality reference
transcriptomes.
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We found that genetic variants (isoQTLs) associated with al-
ternate isoform usage are widespread, >40% of which are not asso-
ciated with the overall abundance of the corresponding gene,
indicative of independent genetic control of gene regulation at

these loci. The enrichments of isoQTLs for known splice sites
and autoimmune and neurodegenerative disease loci suggest a
highly clinically relevant set of candidate variants that induce
changes in protein sequence. To further assess the landscape of
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Figure 5. Genetics of ERAP2 regulation. (A) LocusZoom plot of Crohn’s disease and ulcerative colitis associations at the ERAP2 locus. (y-axis) −log10(P-
value) of association; (x-axis) genomic location. (B) Structures of transcripts derived from each haplotype (top) and box-whisker plots (bottom three panels)
between ERAP2 transcript quantitative traits (y-axis: log2(normalized gene abundance), log2(normalized isoform abundance), or isoform usage percent-
age)) and genotype (x-axis). (C) Correlation between ERAP2/Iso1 (orange), ERAP2/Iso3 (light blue), and ERAP2/Iso4 (dark blue) abundance (y-axis) and
abundance of flu segment 4 (x-axis) segregated by rs2248374 genotype (squares indicate aa; triangles, aG; circles, GG). (D) Western blot of MoDCs before
and after flu-infection from five Haplotype B homozygotes and two heterozygotes. A full-length ERAP2 protein isoform is expected at 120 kDa. At least one
flu-specific ERAP2 protein isoform is expected at 49 kDa. (E) A schematic of the hypothesized regulation and function of two ERAP2 haplotypes. (N) N ter-
minal domain; (AP) amino peptidase domain; (H) hinge domain; (C) C terminal domain; (PTC) premature termination codon.
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genetic control of isoform usage across immune cell types and
stimuli, bulk sequencing in sorted cell populations or cost-effective
single-cell sequencing (Kang et al. 2018) could be performed.

To conclusively establish the consequences of isoQTLs on
protein function would require profiling of protein isoforms in
large population cohorts, which remains a challenging task.
Indeed, other studies have shown that much of the genetic effects
on overall transcript abundance has little effect on overall protein
abundance, likely due to buffering by post-transcriptional process-
es (Li et al. 2016). One independent approach to assess isoform
functionwould be to compare transcript structure and abundances
across species. Although several studies have begun to undertake
this task across mammals for a number of tissues (Barbosa-
Morais et al. 2012; Merkin et al. 2012), studies in immune cell
types in response to specific stimuli are still lacking.

IsoQTLs, like eQTLs, can affect gene expression at distal loci
in the genome, suggesting important downstream effects on gene
regulation. The most striking example is at the IRF7 locus, where a
splice-site SNP affects IRF7 splicing in response to influenza and
interferon but only affects the expression of downstream genes
in response to flu. This suggests that both genetic effects on iso-
form usage and stimulation-dependent regulation of IRF7 expres-
sion are necessary for the observed trans effects. Although C-
terminal splice forms of IRF7 have been shown to differentially
transactivate type 1 interferons and chemokines (Lin et al.
2000), IRF7/Iso4 is not known to have specific antiviral properties
in vivo even though its ectopic expression is known to activate
IFNAs in fibroblasts (Au et al. 1998). The association of the variant
with SLE indicates a possible role for viral exposure to prime the
immune system of individuals carrying the risk allele toward
autoimmunity.

Genetic variants at a single locus could affect multiple facets
of gene regulation in response to stimulation to establish variabil-
ity in transcript structure and abundance. This was clearly demon-
strated at the ERAP2 locus, where multiple variants result in
differential expression and splicing of short isoforms in response
to influenza but not interferon. The lack of expression in response
to IFNB1 suggests the transcription of novel ERAP2 isoforms is like-
ly initiated by viral sensing pathways upstreamof type 1 interferon
signaling. Furthermore, balancing selection at ERAP2 suggests that
transcripts derived from both haplotypes could confer fitness ad-
vantages, likely in different environments. We provide evidence
of the expression of short ERAP2 isoforms encoded by Haplotype
B in response to influenza, suggesting viral infection as a possible
selective agent. One can speculate that the long ERAP2 isoform en-
coded by Haplotype A could be selected under different environ-
mental conditions that favor an overactive autoinflammatory
response or a primed T-cell response. Altogether, the genetic anal-
ysis of isoforms under physiologically relevant conditions canhelp
reveal new gene regulatory mechanisms by which alleles associat-
edwith disease and under natural selection function in response to
environment.

Methods

Study subjects and sample preparation

Donors were recruited from the Boston community and gave writ-
ten informed consent for the studies. Individuals were excluded if
they had a history of inflammatory disease, autoimmune disease,
chronic metabolic disorders, or chronic infectious disorders.
Donors were between 18 and 56 yr of age (average 29.9). As previ-

ously described (Lee et al. 2014), 35–50 mL of peripheral blood
from fasting subjects was collected between 7:30 and 8:30 am.
The blood was drawn into sodium heparin tubes, and peripheral
blood mononuclear cells (PBMCs) were isolated by Ficoll-Paque
(GE Healthcare Life Sciences) centrifugation. PBMCs were frozen
in liquid N2 in 90% FBS (Sigma-Aldrich) and 10% DMSO (Sigma-
Aldrich). Monocytes were isolated from PBMCs by negative selec-
tion using the Dynabeads untouched human monocytes kit (Life
Technologies) modified to increase throughput and optimize
recovery and purity of CD14+CD16lo monocytes: The FcR block-
ing reagent was replaced with Miltenyi FcR blocking reagent
(Miltenyi); permilliliter of antibodymix, an additional 333 µg bio-
tinylated anti-CD16 (Biolegend, catalog no. 302004), 167 µg bioti-
nylated anti-CD3 (Biolegend, catalog no. 344820), and 167 µg
biotinylated anti-CD19 (Biolegend, catalog no. 302204) antibod-
ies were added; the antibody labeling was modified to be per-
formed in 96-well plates; and Miltenyi MS columns or multi-96
columns (Miltenyi) were used to separate magnetically labeled
cells from unlabeled cells in an OctoMACS separator or Multi-
MACS M96 separator (Miltenyi), respectively. The number of
PBMCs and monocytes was estimated using a CellTiter-Glo lumi-
nescent cell viability assay (Promega). A subset of the isolated
monocytes was stained with PE-labeled anti-CD14 (M5E2; BD Bio-
sciences) and FITC-labeled anti-CD16 (3G8; Biolegend) and was
subjected to flow cytometry analysis using an Accuri C6 flow cy-
tometer (BD Biosciences). A median of 94% CD14+ cells and
99% CD16lo cells was obtained.

Differentiation and stimulation of primary human MoDCs

Monocytes were cultured for 7 d in RPMI (Life Technologies) sup-
plementedwith 10% FBS, 100 ng/mLGM-CSF (R&D Systems), and
40 ng/mL IL-4 (R&D Systems) to differentiate the monocytes into
MoDCs; 4 ×104MoDCswere seeded in eachwell of a 96-well plate.
Cells were left unstimulated or were stimulated either with Influ-
enza A (PR8 ΔNS1, prepared as previously described) (Shapira
et al. 2009) for 10 h orwith 100U/mL recombinant IFNB1 (PBL As-
say Science) for 6.5 h. Cells were then lysed in RLT buffer (Qiagen)
supplemented with 1% B1-mercaptoethanol (Sigma-Aldrich).

RNA isolation and sequencing

RNA from all samples was extracted using the RNeasy 96 kit
(Qiagen, catalog no. 74182), according to the manufacturer’s pro-
tocols. Five hundred seventy-six total samples were sequenced (99
baseline, 250 influenza infected, and 227 IFNB1 stimulated). Five
hundred fifty-two pass-filter samples (94 baseline, 243 influenza,
and 215 interferon) were sequenced to an average depth of 38mil-
lion 76-bp paired-end reads using the Illumina TruSeq kit. Samples
were filtered if the genotypes estimated from the RNA-sequencing
did not match the genotypes obtained from genotyping (19 sam-
ples) or if self-reported ethnicity did not match the ethnicity esti-
mated from genotypes (five samples) (Supplemental Table S1).
Readswere aligned to hg19 genomewith TopHat v1.4.1 (‐‐mate-in-
ner-dist 300 ‐‐mate-std-dev 500) (Trapnell et al. 2009) with 86%
mapping to transcriptome and 97%mapping to the genome (Sup-
plemental Table S1). Realigning our data to hg38 (GRCh38) would
not significantly affect our conclusions: hg38 (GRCh38) primarily
improves fromhg19 (GRCh37) in centromeric and other repetitive
regions in the human genome that were not included in our anal-
ysis due to ambiguity from mapping short RNA-seq reads. It is es-
timated that hg38 increases the number of mappable mRNAs by
3% (Schneider et al. 2017) and thus minimally impacts our RNA-
seq–based study. Further, as all our samples were mapped to
hg19, any sequence errors that introduced artifacts into read
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mapping would have affected all the samples equally and would
not have yielded significant differential expression or splicing
results.

Transcriptome reconstruction

After aligning reads to the genome, transcriptomeswere assembled
for each sample individually using StringTie (Pertea et al. 2015)
and default parameters. Abundances of annotated transcripts
were quantified using Kallisto (Bray et al. 2016). For genes ex-
pressed at more than five TPM in any sample, isoforms expressed
at less than five TPM across all samples were removed. In order
to reduce the number of transfrags, transcriptomes across the
same condition (e.g., baseline, flu, IFNB1) were first merged using
cuffmerge (‐‐overhang-tolerance 0) (Trapnell et al. 2012). Merged
transcriptomes across all three conditions were then combined,
and redundant isoforms were removed using cuffcompare
(Trapnell et al. 2012).

Transcriptome comparison

For each reconstructed isoform, the position of each splice site, as
well as the 5′ and 3′ position of each splice junction, was compared
with annotated isoforms from GENCODE (v27) (Harrow et al.
2006), UCSC (hg19) (Casper et al. 2018), and RefSeq (hg19)
(O’Leary et al. 2016), and comparison statistics for themost similar
annotated isoform were reported. To quantify the coverage of
spliced reads across splice junctions, each TopHat alignment was
inputted into LeafCutter (Li et al. 2018), which uses the CIGAR
strings in alignmentBAMfiles to count thenumberof high-quality
aligning reads at each splice junction. To detect novel TSSs, we
checked the first 100 bp of our reconstructed isoforms for overlap
with TSSs of annotated isoforms. Novel TSSs detected in our
data set were further compared with CAGE reads from MoDCs
from the FANTOM5 database (FF:11227-116C3, F:11308-117C3,
FF:11384-118B7) (Noguchi et al. 2017) in the following way:
First, a specialized transcriptome consisting of only the first 500
bp of each de novo assembled transcript (stranded, and after splic-
ing) was created. Then, CAGE reads were aligned to this specialized
transcriptome using Bowtie v0.12.7 with default parameters
(Langmead 2010). Finally, the presence of each TSS was quantified
by counting the number of mapped reads.

Differential expression analysis

Isoform level differential expression testing was carried out with
sleuth (Pimentel et al. 2017) using 100 bootstraps per sample.
Gene-level quantification was estimated by summing isoform
counts from Kallisto, and differential expression testing was car-
ried out with DESeq2 (Anders and Huber 2010).

Differential isoform usage analysis

Differential isoform usage testing was carried out in R using the
beta regression package betareg (Cribari-Neto and Zeileis 2010),
and P-values were calculated using a likelihood ratio test and ad-
justed with a false-discovery rate adjustment.

Gene Ontology enrichment analysis

Gene Ontology (GO) enrichment analysis was carried out using
GOrilla (Eden et al. 2009) and tested against a background of
only the set of genes that were expressed inMoDCs and that we re-
covered during the transcriptome reconstruction (see above).

DNA extraction and genotyping

As previously described (Lee et al. 2014), genomic DNA was ex-
tracted from 5 mL whole blood (DNeasy blood & tissue kit;
Qiagen) and quantified byNanoDrop. Each subject was genotyped
using Illumina infinium human OmniExpress exome BeadChip,
which includes genome-wide genotype data as well as genotypes
for rare variants from 12,000 exomes as well as common coding
variants from the whole genome. In total, 951,117 SNPs were gen-
otyped, of which 704,808 SNPs are common variants (minor allele
frequency [MAF] > 0.01) and 246,229 are part of the exomes. The
genotype success rate was ≥97%. We applied rigorous subject
and SNP quality control (QC) that includes (1) gender misidentifi-
cation, (2) subject relatedness, (3) Hardy-Weinberg equilibrium
testing, (4) use concordance to infer SNP quality, (5) genotype
call rate, (6) heterozygosity outlier, and (7) subject mismatches.
In the European population, we excluded 1987 SNPs with a call
rate <95%, 459 SNPs with Hardy-Weinberg equilibrium P-value
<10−6, 234 SNPs with a MisHap P-value <10−9, and 63,781 SNPs
with MAF<1% from a total of 66,461 SNPs excluded. In the
African-American population, we excluded 2161 SNPs with a call
rate <95%, 298 SNPs with Hardy-Weinberg equilibrium P-value
<10−6, 50 SNPs with a MisHap P-value <10−9, and 17,927 SNPs
with MAF <1% from a total of 20,436 SNPs excluded. In the East
Asian population, we excluded 1831 SNPs with a call rate <95%,
213 SNPs with Hardy-Weinberg equilibrium P-value <10−6, 47
SNPs with a MisHap P-value <10−9, and 84,973 SNPs with MAF
<1% from a total of 87,064 SNPs excluded. After QC, approximate-
ly 18,000–88,000 SNPs in each population were filtered out from
our analysis. Underlying genetic stratification in the population
was assessed by multidimensional scaling using data from The
International HapMap Project (The International HapMap
Consortium 2003) (CEU, YRI and CHB samples) combined with
IBS cluster analysis using EIGENSTRAT 3.0 software (Price et al.
2006). The QC of the genotyping data was performed using
PLINK (Purcell et al. 2007).

Genotype imputation

To accurately evaluate the evidence of association signal at variants
that are not directly genotyped, we used BEAGLE (Browning and
Browning 2016) software (v3.3.2) to impute the post-QC geno-
typed markers using reference haplotype panels from The 1000
Genomes Project (The 1000 Genomes Project Consortium Phase
I Integrated Release Version 3) (Siva 2008), which contain a total
of 37.9million SNPs in 1092 individuals with ancestry from
West Africa, East Asia, and Europe. For subjects of European and
East Asian ancestry, we used haplotypes from Utah residents
(CEPH) with Northern and Western European ancestry (CEU)
and combined panels from Han Chinese in Beijing (CHB) and
Japanese in Tokyo (JPT), respectively. For imputing African
American subjects, we used a combined haplotype reference panel
consisting of CEU and Yoruba in Ibadan, Nigeria (YRI). For the ad-
mixed African American population, using two reference panels
substantially improves imputation performance. After genotype
imputation, we filtered out poorly imputed (BEAGLE r2 < 0.1)
and low MAF SNPs (MAF<0.01), which resulted in 7.7 million,
6.6 million, and 12.7 million common variants in European,
East Asian, and African American, respectively. This set of geno-
typed and imputedmarkers was used for all the subsequent associ-
ation analysis.

Local eQTL and isoQTL mapping

QTL mapping was performed using the Matrix eQTL (Shabalin
2012) package using empirically determined number of principal
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components (PCs) as covariates for each analysis. The isoform us-
age ratio or log of normalized total gene abundance was regressed
against all genetics variants with a MAF >5% in a 1-Mb (±500 kb)
window, and the most significant association is kept. Zero to 44
PCs (local eQTLs) and zero to 12 PCs (local isoQTLs) in increments
of twowere tested, and the number of PCswas chosen tomaximize
the number of local e/isoQTLs detected (Supplemental Figs. S2,
S3). Because of the smaller number of individuals in the baseline
condition, the number of PCs adjusted was fewer (Supplemental
Fig. S2). Because the isoform usage percentage implicitly adjusts
for confounders that affect overall gene abundance and isoform
abundance levels (i.e., other eQTLs), the number of adjusted PCs
was also fewer (Supplemental Fig. S3). Experiment-wide empirical
P-values were calculated by comparing the nominal P-values with
null P-values determined by permuting each isoform/gene 1000
times (Churchill and Doerge 1994). The permutation P-values
were not pooled to calculate the empirical P-values (i.e., the mini-
mumpossible P-value is 0.001). False-discovery rates were calculat-
ed using the qvalue package (https://github.com/StoreyLab/
qvalue) as previously described (Storey and Tibshirani 2003).

Independence of eQTLs and isoQTLs

We examined the overlap between eQTLs and isoQTLs to better
understand the underlying mechanisms by which differential
isoformusage is achieved. There could be two genetic architectures
that result in an isoQTL. Suppose we have two transcriptsA1 and A2

for gene A. Consider the first architecture, SNP G1, affects the tran-
scription of A1 but not A2: A1 � NB(m1 = m0 +G1 × b, r = m1/3)
and A2 � NB(m2 = m0, r = m2/3). Compared with using log(tran-
scriptA1 abundance) as a trait, detecting an eQTLby fitting linear re-
gression using log(total abundance) and detecting an isoQTLusing
isoformusage ratiowould bothhave reduced power (Supplemental
Figure S6). Consider the second architecture, SNP G2, affects the
splicing of A1 versus A2: A1 � NB(m1 = m0 +G2 × b, r = m1/3) and
A2 � NB(m1 = m0 − G2 × b, r = m1/3). Compared with using log
(transcript A1 abundance) as a trait, detecting an eQTL by fitting
linear regression using log(total abundance) would have no power,
and detecting an isoQTL using isoform usage ratio would have
increased power (Supplemental Figure S7). We obtained similar re-
sults by performing negative binomial regression. The parameters
used for the simulation were N=100, MAF=0.5, μ0 = 500. The size
parameter for the negative binomial was chosen based on pub-
lished recommendations (Frazee et al. 2015).

QTL annotation

QTLs were annotated using Variant Effect Predictor and Ensembl
release 79 (McLaren et al. 2016). Exonic and intronic locations
of QTLs were determined using UCSC’s canonical transcripts
(table knownCanonical) as a reference (Karolchik et al. 2004).
Enrichments were calculated against background set of SNPs that
were matched in allele frequency (binned by 4%) and distance to
nearest TSS (binned by 10 kb).

Overlap with GWAS associations

The GREGOR suite (Schmidt et al. 2015) was used for calculating
the enrichment of eQTLs and isoQTLs containing a GWAS loci
across baseline, flu, and IFNB1 stimulations. GWAS associations
for disease with FDR<0.1 were reported.

Partitioned heritability analysis

Weused ldsc with default parameters, which implements LD score
regression (Finucane et al. 2015) to calculate the proportion of SNP

heritability explained by eQTL/isoQTLs. We obtained summary
statistics from 28 human traits/diseases from https://data.
broadinstitute.org/alkesgroup/sumstats_formatted/.

Estimating flu transcript abundance

Flu transcript abundance was estimated by using RSEM (Li and
Dewey 2011) to map RNA-seq data to a custom reference of the in-
fluenza PR8 genome (Supplemental Material).

ERAP2 western blot

Protein extracts were fractionated by SDS-PAGE (4%–12% Bis-Tris
gel, Thermo Fisher Scientific, NP0335BOX) and transferred to
PVDF membrane (Bio-Rad, catalog no. 162-0177). After blocking
with 2% BSA in TBST (Tris buffered saline containing 0.1%
Tween 20) for 1 h, membranes were incubated with primary anti-
body (either ERAP2, R&D Systems, catalog no. AF3830, 1:3000) or
actin beta (Abcam, catalog no. ab6276, 1:15,000) overnight at 4°C.
Membranes were then washed and incubated with a 1:5000 dilu-
tion of HRP conjugated secondary antibody (either donkey anti-
goat from Santa Cruz Biotech, catalog no. sc2020, or with goat
anti-mouse from Jackson Immune Research, catalog no. 115-035-
146) for 1 h.Membraneswerewashed and developedwith ECL sys-
tem (VWR, catalog no. 89168-782) according to the manufactur-
er’s protocol.

Data access

RNA-seq rawdata from this studyhave been submitted to theNCBI
database ofGenotypes andPhenotypes (dbGaP; https://www.ncbi.
nlm.nih.gov/gap) under accession number phs000815.v1.p1.
RNA-seq processed data from this study have been submitted to
the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE92904.
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