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A B S T R A C T

Background: Emerging perspectives on tumor metabolism reveal its heterogeneity, a characteristic 
yet to be fully explored in gliomas. To advance therapies targeting metabolic processes, it is 
crucial to uncover metabolic differences and identify distinct metabolic subtypes. Therefore, we 
aimed to develop a classification system for gliomas based on the enrichment levels of four key 
metabolic pathways: glutaminolysis, glycolysis, the pentose phosphate pathway, and fatty acid 
oxidation.
Methods: Energy-related features of glioma were characterized through integrative analyses of 
multiple datasets, including bulk, single-cell, and spatial transcriptome profiling. The glioma 
energy metabolic subtypes were constructed using the R package ConsensusClusterPlus. 
Kaplan–Meier analysis was conducted to compare clinical outcomes between different metabolic 
groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses 
were employed to elucidate the biological functions of genes of interest. Cell-cell communication 
analysis was performed at single-cell resolution using the R package CellChat and at spatial 
resolution using the standard stLearn pipeline.
Results: Glioma samples were stratified into two prognostic subtypes. Group 1, enriched in the 
glutaminolysis pathway, had better clinical outcomes. In contrast, Group 2 exhibited high ac
tivities in glycolysis, the pentose phosphate pathway, and fatty acid oxidation, correlating with 
decreased survival time. Group 1 samples were predominantly located in the peripheral region 
and had a high composition of neuron cells. Group 2, however, had increased infiltration of 
tumor-promoting immune cells, such as M2 macrophages, and was characterized by traits of 
invasion, hypoxia, and immunity. Lastly, cell-cell communications were compared across 
different tumor regions, and the CX3CL1/CX3CR1 ligand-receptor pair was validated using spatial 
transcriptomic data.
Conclusions: Our work revealed the metabolic heterogeneity in glioma by developing a new 
classification system with significant prognostic and therapeutic value. Single-cell transcriptional 
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profiles offer novel insights into tumor metabolic reprogramming, which could enhance therapies 
tailored to cell- or patient-specific metabolic patterns.

Abbreviations:

CGGA Chinese Glioma Genome Atlas
CI Confidence interval
CL Classical
DEG Differentially expressed gene
EMT Epithelial-mesenchymal transition
FAO Fatty acid oxidation
GBM Glioblastoma
GEO Gene Expression Omnibus
GO Gene Ontology
HR Hazard ratio
IGAP Ivy Glioblastoma Atlas Project
KEGG Kyoto Encyclopedia of Genes and Genomes
L-R Ligand-receptor
ME Mesenchymal
MSigDB Molecular Signatures Database
NE Neural
O2 Oxygen
OPC Oligodendrocyte precursor cell
PN Proneural
PPP Pentose phosphate pathway
scRNA-seq Single-Cell RNA sequencing
ssGSEA Single sample gene set enrichment analysis
ST Spatial transcriptomic
TAM Tumor-Associated macrophage
TCGA The Cancer Genome Atlas
TME Tumor microenvironment
tSNE T-Distributed stochastic neighbor embedding

1. Introduction

Glioma is the most common primary brain tumor in adults. It arises from glial cells, specifically astrocytes, and is characterized by 
rapid, infiltrative growth that makes complete surgical removal challenging [1]. The standard treatment is maximal surgical resection, 
followed by radiation, with concurrent adjuvant chemotherapy. Glioblastoma (GBM, WHO 4) is the most aggressive type of glioma, 
and prognosis remains poor despite aggressive treatment, with a median survival of 12–15 months [2]. Recent high-throughput ge
nomics, transcriptomics, proteomics and epigenetic data have offered a comprehensive view of the molecular mechanisms underlying 
glioma oncogenesis and progression, and have been used to classify tumors so that targeted therapy could be developed for personal 
subtype [3]. Many attempts have tried to characterize glioma phenotypes through somatic mutation pattern [4], RNA expression 
profile [5] and protein level [6], to define predictive or prognostic subgroups which could serve as pharmacological targets. Fan and 
others constructed a classifier system based on metabolic gene expression profiles, which highlighted metabolic heterogeneity in low 
grade glioma [7]. Glioma shows high heterogeneity, including metabolism, and there is rare research exploring glioma metabolic 
heterogeneity at pathway level [7].

Metabolic reprogramming is a hallmark of cancer, which plays a vital role in tumor malignancy progression. Metabolic changes 
have been noticed several years before clinical presentation in glioma, suggesting that metabolic reprogramming can be the early event 
in gliomagenesis [8]. Exploration of metabolic alterations among different grades of glioma may indicate potential opportunities for 
tumor prevention, diagnosis and therapy [9]. Some key metabolites, such as glutamate metabolism, choline metabolism and cysteine 
metabolism, are related to glioma grading [10]. While there are increasing researches studying metabolites associated with glioma 
progression, the results for metabolic changes are still equivocal. One possible explanation for this is that methodologies and protocols 
employed in different studies are different [11]. And different grades of glioma tissues are not easily available resulting in a small 
cohort which may also contribute to this [11]. Furthermore, most studies usually concentrate on a particular metabolic perturbation 
and explore it in isolation [12]. It is urgent to disclose the metabolic pattern and recognize metabolic subtypes in glioma, which will 
promote the development of therapy targeting metabolism.

The importance of glucose, amino acids, and fatty acids in tumor progression has been investigated for a long time. High aerobic 
glycolysis (Warburg effect) and a high rate of glutamine consumption for energetic and anaplerotic purposes (glutaminolysis) are 
essential features of cancer metabolic reprogramming [13,14]. Pentose phosphate pathway (PPP) is known to be upregulated in 
cancers and plays a critical role in cancer cell division by supplying cells with not only ribose-5-phosphate but also NADPH for ribose 
biogenesis, reductive biosynthesis, and detoxification of intracellular reactive oxygen species [15,16]. Fatty acid oxidation (FAO) is the 
mitochondrial aerobic process of breaking down fatty acids into acetyl-CoA units and increasing evidence reveal the role of lipid 
metabolism in tumorigenesis and tumor progression [17]. Because none of the above-mentioned substrates fulfills all the needs of 
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tumor growth, it may be vital for tumor cells to coordinate metabolic pathways that process different ingredients to achieve the largest 
output from the same raw nutrients. Furthermore, metabolism reprogramming is considered one of the hallmarks of cancer as it is 
different from normal cells and mainly consists of glycolysis, glutaminolysis, PPP and FAO [18]. Herein, we defined a new energy 
metabolic classifier based on unsupervised clustering of these 4 key metabolism pathways, namely glutaminolysis, glycolysis, PPP and 
FAO, enrichment level. The stability and reproducibility of our subtype system were estimated in three independent glioma cohorts. 
Each of the two metabolic classifiers was associated with distinct clinical prognosis, immune infiltration, cell type composition and 
spatial distribution. In addition, we compared cell-cell interactions between different tumor regions using a glioma single-cell RNA 
sequencing (scRNA-seq) dataset. And one ligand-receptor (L-R) pair was further verified by glioma spatial transcriptomics (ST) data. 
These findings unraveled metabolic heterogeneity in glioma at bulk, single-cell and spatial levels, which may drive the development of 
metabolism-targeted treatments.

2. Materials and methods

2.1. Bulk RNA sequencing datasets

Transcriptional profiles with corresponding clinical information for human gliomas were obtained from the Chinese Glioma 
Genome Atlas (CGGA) [19], The Cancer Genome Atlas (TCGA) [20] and the Rembrandt brain cancer dataset [21] respectively. A total 
of 693 glioma samples from the CGGA, 702 glioma samples from TCGA and 475 glioma samples from the Rembrandt were used in our 
study. RNA expression data of 122 glioblastoma (GBM) samples with anatomic features from the Ivy Glioblastoma Atlas Project (IGAP) 
were also utilized in this study [22]. Because these datasets are from different commercial platforms (Affymetrix, Agilent, Illumina), 
we adopt a strategy to integrate all glioma samples as follows to remove batch effect: the expression matrices were firstly scaled; then 
the batch effect of the scaled matrices was corrected by the function ComBat in the package sva (3.46.0); finally, the PCA analysis result 
confirmed the batch effect was removed well. The pathological classification on glioma is the fourth WHO’s classification of tumors of 
the central nervous system in this research [23]. Galina Zakharova and others have reclassified TCGA diffuse glioma according to the 
2021 WHO Central Nervous System Tumor Classification [24], and we utilized their reclassification results to compare the difference 
of glioma metabolism subtype between the 2021 and 2016 WHO classification of tumors of the central nervous system.

2.2. Construction of the energy metabolic subtypes

To delineate glioma metabolism, we collected and tailored the metabolic gene sets into 4 core pathways: glutaminolysis, glycolysis, 
PPP and FAO, by browsing the Molecular Signatures Database (MSigDB) [25] and searching for papers [26–30]. Then, we performed 
single sample gene set enrichment analysis (ssGSEA) by using the R package GSVA (v.1.44) to evaluate the enrichment level of each 
metabolic pathway in each glioma sample through transcriptomics [31]. The former metabolic enrichment levels were selected for 
consensus clustering by using the R package ConsensusClusterPlus (v.1.60) to reveal robust subtypes. The optimal K = 2 was accessed 
through the consensus heatmap and cumulative distribution function [32]. A consensus classifier was performed using 1000 iterations 
and a resampling of 80 %. To better identify the variations between metabolic subtype 1 and 2, a heatmap was also applied.

2.3. Survival analysis

Kaplan–Meier analysis was done to compare the clinical outcome between different metabolic subtypes, which were tested for 
significance using the Mantel-Cox log-rank test. Hazard ratio (HR) and confidence interval (CI) were also computed to verify the 
survival difference in glioma metabolic subtypes. A p-value <0.05 was recognized as statistically significant [33].

2.4. Screening for differentially expressed genes (DEGs)

Gene differential analysis was performed between metabolic subtype 1 and 2 using R package limma (v.3.52) [34]. DEGs were 
considered to be statistically significant when |logFC| > 1 and p.adj <0.05 [35]. We kept a list of intersected DEGs among the CGGA, 
TCGA and the Rembrandt glioma samples for subsequent enrichment analysis.

2.5. Enrichment analysis

Gene Ontology (GO) [36] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [37] analyses were applied to discover the 
biological function of the former DEGs. Furthermore, biological pathway differences between metabolic subtype 1 and 2 were carried 
out by R package GSVA, and method = ‘ssgsea’ was set.

2.6. Estimating immune infiltration

The infiltration level of stromal cells and immune cells in glioma samples was estimated by the method ESTIMATE [38]. CIBER
SORTx portal using a set of 22 human immune cell reference profiles was adopted to infer immune cell compositions within individual 
glioma samples [39]. The relative composition ratio of immune cells was compared between different subtypes, checked by t-test, and 
was used for heatmap. We also explored the IGAP dataset by CIBERSORTx, and its result was further clustered by the function vegdist 
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Fig. 1. Identification of distinct metabolic subtypes in glioma. A k-means clustering of glioma metabolism relying on 4 metabolic pathways 
evaluated by a ssGSEA method of the CGGA cohort. B Heatmap showing consensus clustering with the robust classification (k = 2) in the CGGA 
cohort. And the similar results were discovered in TCGA cohort (C, D) and the Rembrandt glioma cohort (E, F). G Kaplan-Meier curves of prognosis 
between metabolic subtypes in the CGGA, TCGA and the Rembrandt glioma cohorts. Log-rank test p values and HRs were shown. H Overlay of the 
energy metabolic classifier with glioma pathological grades in three independent cohorts. I Overlay of the energy metabolic classifier with IDH 
mutation status in the CGGA and TCGA cohort. 
PPP, pentose phosphate pathway; FAO, fatty acid oxidation.
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in the R package vegan (v.2.6.8) with default parameters. The tumor microenvironment (TME) plays a vital role in cancer response to 
therapy and clinical prognosis. Thus, we further explored the glioma TME characteristics by comparing the enrichment level of 28 gene 
sets involved in 12 cancer features, which are detailed in the work by Bagaev and others [40].

2.7. Single cell RNA sequencing (scRNA-seq) data processing

The human GBM scRNA-seq data were obtained from the Gene Expression Omnibus (GEO) under accession number GSE84465
[41]. The expression matrices were analyzed by R package Seurat (v.4.3.0) [42], and cell type annotated by Darmanis and others were 
also adopted in this work [41]. We removed the cells from downstream analysis where >10 % transcripts aligned to the mitochondrial 
genome, >50 % mapped to ribosomal gene, or which had either <400 or >10,000 RNA counts. In addition, the gene was filtered out 
when it expressed in <3 cells among the 4 GBM patients. The remained 23,230 genes in 3589 cells passed quality control and were used 
in downstream analysis. The enrichment level of a specific gene set at the single cell level was evaluated by utilizing the function 
AddModuleScore in Seurat.

Glioma metabolic activity was also evaluated at single-cell resolution. Firstly, the enrichment level of the former 4 metabolic 
pathways was done to explore the metabolic heterogeneity among different cell types. Subsequently, we took a computational pipeline 
as previously described [43] to characterize the glioma metabolic landscape. As malignant cells are heterogeneous, we compared the 
top 10 pathways contributing to the metabolic heterogeneities among malignant cells from different glioma samples. Metabolic 
pathways with the highest contribution to the metabolic heterogeneities among glioma stromal cells were also explored.

Cell-cell communication analysis of tumor core and periphery was performed by R package CellChat (v.1.6.1) by integrating 
scRNA-seq data with CellChatDB, an L-R interaction database [44]. We first focused on the overall signaling changes on cell population 
levels and then drilled down to the dysregulated signaling pathways and L-R pairs. The output intercellular communication networks 
for each L-R pair, where the calculated communication probability was assigned as edge weight to quantify L-R interaction strength. 
Intercellular communication at the signaling pathway level was evaluated by summarizing the communication probabilities of all 
related L-R pairs.

2.8. Spatial transcriptomics (ST) data analysis

The human GBM ST data (UKF_243, UKF_266 and UKF_313) were downloaded from https://doi.org/10.5061/dryad.h70rxwdmj
[45]. As a quality control step, the Python package SCANPY (v.1.9.1) was utilized [46]. Spots with fewer than 100 UMIs, fewer than 50 
genes or more than 50 % mitochondrial reads were filtered out. Then, we mapped the fine-annotated GBM cell types from the former 
scRNA-seq data in UKF_243, UKF_266 ST and UKF_313 slides through the standard Cell2location analysis pipeline [47]. The cell 
abundance output matrices were used in further analysis, and we chose the top value as the final annotated cell type. To decipher 
metabolic differences among spots, the R package SPATA2 (v.0.1.0) was utilized to evaluate the enrichment level of the former 4 core 
metabolic pathways. Finally, cell-cell interaction at spot resolution was accomplished by using the standard stLearn pipeline [48]. This 
analysis calls significant spots of L-R interactions from a database of candidate L-R (connectomeDB2020). The L-R of interest 
expressing/co-expressing simultaneously with the dominant spot cell type was visualized. The inner spot was colored by the dominant 
spot cell type, and the outer spot showed the expression of ligand, receptor and co-expression.

3. Results

3.1. Glioma presents two metabolic statuses according to energy metabolic classifier

To explore metabolic differences in glioma, we focused on four central metabolic pathways: glutaminolysis, glycolysis, the pentose 
phosphate pathway (PPP), and fatty acid oxidation (FAO). We evaluated the ssGSEA scores to assess the activities of these pathways in 
each glioma sample. Glioma samples from the CGGA database were classified into two distinct metabolic phenotypes (Fig. 1A), which 
was further supported by optimal and robust clustering (Fig. 1B). This classification identified two glioma energy metabolic patterns: 
(1) glutaminolysis-dependent and (2) enriched in glycolysis, PPP, and FAO (Fig. 1A). Additionally, analysis of the TCGA and Rem
brandt glioma cohorts externally validated the reproducibility and robustness of our metabolic classification (Fig. 1C–F). Survival 
analysis indicated that glioma samples in group 2 were associated with poorer clinical outcomes, while those in group 1 had better 
prognoses. The univariate Cox proportional hazards model confirmed that group 2 predicted unfavorable prognosis in glioma patients 
(hazard ratios (HR) 1.995 in the CGGA, 3.265 in TCGA, and 2.591 in the Rembrandt glioma database) (Fig. 1G).

Previous studies have explored biologically discrete subsets associated with progression and prognosis [20,49]. To determine 
whether expression profiles based on metabolic classification could underlie differences between previously established phenotypes, 
we evaluated these glioma molecular subtypes for each glioma sample. Firstly, we compared the pathological grade distribution 
between group 1 and 2. It disclosed that group 2 contained a higher frequency of WHO IV tumors, whereas group 1 predominantly 
included WHO II samples (Fig. 1H). This was consistent with former survival analysis results as WHO IV glioma was one of the most 
malignant brain tumors. In addition, group 2 had more Classical (CL), Mesenchymal (ME) and Proneural (PN) subtypes, while group 1 
mainly involved Neural (NE) subtype. As the expression pattern of glioma NE phenotype was recognized as the most similar to normal 
brain samples than CL, ME and PN subtype [20], group 1 was more similar to normal brain tissues than group 2. Then, we uncovered 
the difference between the metabolic classifiers and pan-glioma transcriptome subtypes established by Ceccarelli and others [49]. 
Group 2 had LGr1, LGr3 and LGr4 subtypes, but LGr2 was unique to group 1. As LGr2 glioma samples showed longer survival time 
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[50], it matched that glioma metabolic phenotype 1 had better clinical outcome. IDH mutations occur most frequently in low grade 
glioma, and the reliance on glutaminolysis can be altered by IDH mutation status in glioma, since IDH1/2 mutated enzymes use 
α-ketoglutarate as a substrate to produce the oncometabolite 2-hydroxyglutarate, therefore a higher commitment of glutamine-derived 
glutamate is needed to produce α-ketoglutarate [51]. Thus, glutaminolysis is activated in gliomas with IDH mutations. And our results 
also revealed that group 1 with enhanced glutaminolysis level had more IDH mutations than group 2 (Fig. 1I). These results confirmed 
our metabolic classification of glioma was distinct from former established phenotypes and it had prognostic significance.

3.2. Metabolic classifier-specific biological functions of glioma

Then we finished DEG and enrichment analysis to further understand biological functions of different glioma metabolic pheno
types. The intersected DEGs among TCGA, the CGGA and the Rembrandt glioma cohort were 142 in metabolic group 1 and 89 in 
group2 (Fig. 2A–D, and detailed in, which were used in subsequent enrichment analysis. We found group 1 was related to synapse 
function, such as glutamate secretion, glutamatergic synapse et alia (Fig. 2B and C). This was identical to that metabolic group 1 was 
dependent on glutaminolysis (Fig. 1A–C, E). However, group 2 was associated with migration, immunity and hypoxia, such as 

Fig. 2. Distinct functional features of the metabolic classifier. A Venn diagram showing 142 shared DEGs of metabolic subtype 1 among three 
independent cohorts. GO (B) and KEGG (C) analysis results of metabolic subtype 1 DEGs. D Venn diagram showing 89 shared DEGs of metabolic 
subtype 2 among three independent cohorts. GO (E) and KEGG (F) analysis results of metabolic subtype 2 DEGs. G Heatmap depicting normalized 
enrichment scores of HALLMARK pathways between metabolic subtypes. 
DEG, differentially expressed gene; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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extracellular matrix organization, extracellular structure organization, neutrophil activation involved in immune response, neutrophil- 
mediated immunity, HIF− 1 signaling pathway et alia (Fig. 2E and F). Furthermore, the enrichment level of HALLMARK gene sets was 
compared between metabolic classifiers. While group 1 was enriched in the Hedgehog signaling pathway, group 2 was characterized 
by angiogenesis, apoptosis, proliferation, epithelial-mesenchymal transition (EMT), hypoxia, glycolysis and immunity (Fig. 2G).

3.3. Metabolic classifier defines specific immune characteristics of glioma

Because TME is a crucial mediator of cancer progression and therapeutic response, and metabolic classifier 2 was related to im
munity, we explored the infiltrated immune cells and enrichment level of 29 TME signatures in glioma. The results indicated that 
metabolic group 1 had lower stromal and immune scores, but group 2 showed higher scores (Fig. 3A). In addition, the standard 
CIBERSORTx pipeline was utilized to further evaluate the relationship between glioma metabolism classifier and infiltration of 22 
immune cells in the glioma microenvironment. Among the CGGA, TCGA and the Rembrandt glioma cohort, group 1 showed more 
activated mast cells and activated NK cells infiltration, but group 2 was featured with more infiltrating M2 type tumor-associated 
macrophages (TAMs) (Fig. 2B ~ D). Because M2 TAM elicits a pro-tumorigenic property [33], glioma metabolic group 2 was 
related to tumor immunosuppression. Then, the TME features of our glioma metabolic classifier were studied. Group 1 demonstrated 
anti-tumor microenvironment, such as high enrichment level of Th1 signature (Fig. 3E). Conversely, group 2 was featured with im
mune suppression and tumor promotive immune infiltrate, for example myeloid cells traffic, TAM, macrophage and DC traffic, Th2 
signature, and protumor cytokines (Fig. 3E). Furthermore, group 2 was also enriched in EMT, tumor proliferation rate, angiogenesis 
and matrix remodeling (Fig. 3E), which can promote tumor progression [52]. These results indicated group 2 had an immunosup
pressive microenvironment.

Fig. 3. Distinct immune features of the metabolic classifier. A Heatmap depicting normalized stromal and immune scores in three independent 
cohorts. B Infiltration of M2 macrophages was compared between metabolic subtypes. C Infiltration of activated mast cells was compared between 
metabolic subtypes. D Infiltration of activated NK cells was compared between metabolic subtypes. E Heatmap depicting normalized scores of 28 
gene sets describing 12 cancer features. 
*, p < 0.05; ***, p < 0.001; ****, p < 0.0001; NK cells, natural killer cells; MHC, major histocompatibility complex; Th1, type 1 T helper; Treg, 
regulatory T cell; Th2, type 2 T helper; DC, dendritic cell; EMT, epithelial–mesenchymal transition.
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Fig. 4. Glioma metabolic heterogeneity at single-cell resolution. A tSNE of glioma cells from GEO: GSE84465. B tSNE of metabolic group 1 DEG 
enrichment score in glioma cells. C tSNE of metabolic group 2 DEG enrichment score in glioma cells. D Heatmap depicting normalized enrichment 
scores of 4 key metabolic pathways among glioma cells. E Metabolic pathway activities in cell types in the glioma dataset. F Metabolic pathways 
with highest contribution to the heterogeneity among malignant cells from different glioma samples in the glioma dataset (left column). Metabolic 
pathways with highest contribution to the heterogeneity among different cell types of non-malignant cells from the glioma dataset (right column). 
tSNE, t-distributed stochastic neighbor embedding; OPC, oligodendrocyte precursor cell; DEG, differentially expressed gene; PPP, pentose phosphate 
pathway; FAO, fatty acid oxidation.
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3.4. Metabolic features of malignant and stromal cells in glioma microenvironment

We then searched for whether the metabolic difference between the former two classifiers could be distinguished at single-cell 
resolution, which assisted in understanding the landscape of metabolic heterogeneity and TME. The GSE84465 database included 
tumor core and periphery region samples collected from 4 GBM patients. Twelve cell types were annotated and shown in tSNE 
(Fig. 4A). Moreover, metabolic classifier scores of each cell were estimated. It uncovered neurons, oligodendrocyte precursor cells 
(OPCs), astrocytes and oligodendrocytes had relatively higher metabolic group 1 DEG scores, among which neurons presented the 
highest scores (Fig. 4B). Interestingly, these four cell types were all the indigenously non-malignant brain cells, and it was identical to 
our former finding that metabolic classifier 1 was associated with synapse function (Fig. 2B and C). On the contrary, glioma neoplastic 
cells, tumor-associated vascular cells and tumor-associated myeloid cells appeared relatively higher metabolic group 2 DEG scores 
(Fig. 4C), which coincided that metabolic group 2 was related to migration, immunity, hypoxia and angiogenesis (Fig. 2E and F). Then, 
we estimated enrichment scores of the 4 key metabolic pathways in different cell types. The result confirmed that neurons relied on 
glutaminolysis (Fig. 4D).

Furthermore, glioma metabolic landscape was depicted by taking a standard pipeline (Fig. 4E). It revealed that neurons relied on 
Glycerophospholipid metabolism and Arginine biosynthesis pathways; vascular cells 2 showed higher enrichment level at Drug 
metabolism− other enzymes and Pantothenate and CoA biosynthesis pathways; astrocytes relied on Biosynthesis of unsaturated fatty 
acids, Fatty acid degradation, Alanine, aspartate and glutamate metabolism, Nitrogen metabolism, Arginine biosynthesis, Citrate cycle 
(TCA cycle) et alia; OPCs were enriched in Biosynthesis of unsaturated fatty acids, Fatty acid degradation, Alanine, aspartate and 
glutamate metabolism, Fatty acid elongation, One carbon pool by folate, Citrate cycle (TCA cycle), Pentose phosphate pathway et alia; 
oligodendrocytes relied on Biosynthesis of unsaturated fatty acids, Oxidative phosphorylation, Citrate cycle (TCA cycle), Pentose 
phosphate pathway, Pyruvate metabolism and Ether lipid metabolism pathways et al. ; neoplastic cells 1 was enriched in Fatty acid 
degradation, Alanine, aspartate and glutamate metabolism, Glycolysis/Gluconeogenesis, Pyrimidine metabolism, Oxidative phos
phorylation, Glutathione metabolism, Citrate cycle (TCA cycle), Glyoxylate and dicarboxylate metabolism and Pyruvate metabolism et 

Fig. 5. Distinct region feature of the metabolic classifier. A Heatmap depicting normalized enrichment scores of 4 key metabolic pathways among 
glioma samples with anatomic information. B Clustering of glioma samples from the IGAP dataset based on cell type compositions annotated by 
CIBERSORTx. C tSNE of glioma cells with anatomic information from GEO: GSE84465. 
PPP, pentose phosphate pathway; FAO, fatty acid oxidation; OPC, oligodendrocyte precursor cell.
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alia; neoplastic cells 3 relied on Riboflavin metabolism and Glycosaminoglycan biosynthesis− chondroitin sulfate/dermatan sulfate 
pathways; Myeloid cells 1 was similar to Myeloid cells 2, and both of them showed high enrichment scores at Amino sugar and 
nucleotide sugar metabolism, Glycosaminoglycan degradation, Glycosphingolipid biosynthesis− globo and isoglobo series and Other 
glycan degradation pathways. However, neoplastic cells 2, vascular cells 1 and vascular cells 3 had lower metabolism levels than other 
cell types. Then, metabolic pathways enriched in genes with the highest contribution to the metabolic heterogeneities among ma
lignant cells from different samples and among different cell types from all samples in glioma were also shown (Fig. 4F).

Fig. 6. Difference of cell-cell communication between tumor core and periphery region. A Possible interactions among glioma cell types in tumor 
core (left column) and periphery region (right column). B Total number (left column) and strength (right column) of possible cell-cell interactions. C 
Significant signaling pathways were ranked based on their differences of overall information flow, calculated by summarizing all interaction 
probabilities. These colored red and green were more enriched in the tumor core and periphery region, respectively. D Word cloud showing 
upregulated signaling pathways in tumor core (left column) and periphery region (right column). Word size indicated the extent of enrichment. E 
Comparison of expression levels of CX3CL1 and CX3CR1 in glioma cells in tumor core and periphery region. 
OPC, oligodendrocyte precursor cell.
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3.5. Glioma spatial heterogeneity at metabolic level

Spatial heterogeneity of glioma is the barrier for clinical treatment, and multiple TCGA transcriptional subtypes can coexist in close 
tumor regions [53]. Thus, we explored spatially metabolic heterogeneity in glioma. The key metabolic pathway enrichment levels 
were compared in different GBM tumor regions, and samples were clustered according to their cell composition. Necrotic foci with 
surrounded "pseudopalisading" cells is unique to malignant gliomas, and studies have demonstrated that pseudopalisades are severely 
hypoxic, overexpress HIF1, and secrete proangiogenic factors such as VEGF and IL8 [54]. Mechanisms underlying necrosis and hypoxia 
remain obscure, but necrosis is often accompanied by hypoxia [55]. While cancer glycolysis is reported as producing energy in an 
oxygen-independent manner, Robin and others reported that hypoxia increase the activities of all glycolytic enzymes and enhances 
glycolysis [56]. And our result demonstrated that the peri-necrotic zone and pseudo-palisading cells around necrosis had high 
enrichment levels in glycolysis (Fig. 5A). However, infiltrating tumor region and leading edge regions relied on the glutaminolysis 

Fig. 7. Validation of CX3CL1/CX3CR1 pair by spatial transcriptomics data. A Cell2location-based cell type assignment in UKF_243 sample. B 
Enrichment score of glutaminolysis pathway among different cell-type spots in UKF_243 sample. C Binary CX3CL1/CX3CR1 pair co-expression plot 
for significant spots in UKF_243 sample. D Binary CX3CL1/CX3CR1 pair co-expression with spot annotations in UKF_243 sample. E Cell2location- 
based cell type assignment in UKF_266 sample. F Enrichment score of glutaminolysis pathway among different cell-type spots in UKF_266 sample. G 
Binary CX3CL1/CX3CR1 pair co-expression plot for significant spots in UKF_266 sample. H Binary CX3CL1/CX3CR1 pair co-expression with spot 
annotations in UKF_266 sample. 
OPC, oligodendrocyte precursor cell.
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pathway, and the leading edge region showed the highest glutaminolysis pathway enrichment score than other tumor regions 
(Fig. 5A). The glioma consisted of neoplastic cell, vascular cell, myeloid cell, neuron, oligodendrocyte, OPC and astrocyte (Fig. 4A), we 
further assessed cell type composition of GBM samples from the IGAP cohort. It uncovered an infiltrating tumor region and the leading 
edge region had more neurons, and the leading edge region showed the highest composition ratio of neurons (Fig. 5B). These revealed 
that neurons relied on glutaminolysis. In addition, cell composition in different glioma regions based on scRNA-seq data revealed that 
neuron was unique to periphery region (Fig. 5C). To sum up, neurons distributed in the glioma periphery region and were dependent 
on glutaminolysis, which also explained why glioma samples with high glutaminolysis pathway enrichment level exhibited better 
clinical outcome (Fig. 1G).

3.6. Altered signaling interaction between tumor core and periphery region in glioma

The former results revealed spatial metabolic heterogeneity in glioma which affected patient prognosis (Figs. 1G and 5). We 
subsequently researched cell-cell interaction between tumor core and periphery region to study mechanisms underlying glioma 
prognosis differences affected by spatially metabolic heterogeneity. Interactions between cell types in the glioma core and periphery 
region were portrayed (Fig. 6A). The tumor core had more possible cell-cell interactions and stronger interaction strength than the 
periphery region (2607 vs. 1120, 0.682 vs. 0.588) (Fig. 6B). All communication probabilities in a given inferred network were 
summarized to calculate differences of overall interaction flows, and to rank significant signaling pathways. These colored red and 
green cell-cell interaction pathways were more enriched in tumor core and periphery region, respectively (Fig. 6C). Certain pathways, 
such as FN1, ANGPT, PECAM1, ncWNT, GDF, LIFR, IL16, IL6, ESAM, CHEMERIN, VCAM, SEMA3, LAMININ, COLLAGEN, JAM and 
THBS, prominently increased their information flow in tumor core region and promoted tumor progression leading to bleak prognosis. 
However, specific pathways, such as CD45, SOMATOSTATIN, VIP, RELN, CX3C, CALCR, NRXN, NCAM and SEMA5, predominantly 
functioned in the tumor periphery region and inhibited tumor prognosis, which resulted in better clinical outcomes. The CX3C 
pathway negatively controls glioma progression, for example CX3CR1/CX3CL1 axis inhibits cell invasion, and loss of CX3CR1 pro
motes gliomagenesis [57,58]. After obtaining an understanding of the general flow governing cell-cell interactions in the glioma core 
and periphery region, we studied molecular signaling mechanisms in detail to identify candidate pathways potentially underlying the 
altered cellular compositions and communications in different glioma regions. While LAMA4, LAMA2, COL6A3, COL1A1, LAMB1 and 
MDK were significantly up-regulated in the glioma core region, PSAP, ANGPTL4 and LAMB2 were increased in the glioma periphery 
region (Fig. 6D).

Then, we validated the CX3C pathway in single cell and spatial level using scRNA-seq and ST data. Firstly, CX3CL1 was uniquely 
expressed in peripheral neurons, and CX3CR1 expression was higher in glioma peripheral myeloid cells than these cells in the core 
region (Fig. 6E). Astrocytes, myeloid cells 1, myeloid cells 2, neoplastic cells 1, neoplastic cells 2, neoplastic cells 3, neurons and 
vascular cells 3 were annotated in sample UKF_243_RT (Fig. 7A). Neurons had the highest glutaminolysis pathway enrichment level 
(Fig. 7B), which was consistent with our former results (Fig. 4B–D). Furthermore, a significant CX3CL1/CX3CR1 pair was distributed in 
the area with more neurons, namely the periphery region (Fig. 7C and D). And these significant spots were annotated as myeloid cells 
1, myeloid cells 2 and neurons, which was in harmony with the CX3CL1/CX3CR1 pair and was only expressed in myeloid cells and 
neurons (Fig. 6E). This finding was verified in the other glioma sample UKF_266_T (Fig. 7E ~ H). However, no spot was mapped as a 
neuron, and the CX3CL1/CX3CR1 pair was negative in glioma sample UKF_313_RT. These findings confirmed that the CX3C inter
action signal between neurons and myeloid cells was in the glioma periphery region.

4. Discussion

Considering high heterogeneity in glioma, previous studies stratify glioma by unsupervised clustering of tumors based on genomic 
and transcriptomic profiles, which bring valuable discoveries of many group-specific differences [3,20,49,59,60]. Recently, metab
olomic profiling has become an informative method to clarify tumor heterogeneity. Fan and colleagues used prognosis-related 
metabolic genes to stratify diffuse low-grade glioma into three distinct tumor subtypes [7]. To our knowledge, our work was the 
first to construct a novel metabolic classifier for several glioma cohorts based on 4 core metabolic pathways, namely glutaminolysis, 
glycolysis, PPP and FAO. While subtype 1 glioma preferred to utilize glutaminolysis for survival, subtype 2 was characterized by an 
increasing dependence on glycolysis, PPP and FAO. By assessing the variations between these subtypes, specific changes in clinical 
outcome, biological function and immunity were revealed, which indicated metabolic heterogeneity should be considered when 
developing personalized treatment. In addition, glioma metabolic heterogeneity was explored at single cell and spatial resolution, and 
it uncovered that TME profoundly contributed to metabolic heterogeneity, and that neurons mainly distributed in tumor periphery 
region and relied on glutaminolysis for life. These results indicated metabolic subtype 1 with a better prognosis was the sample with a 
high proportion of neurons and distributed near the tumor margin. Underlying clinical survival differences between glioma metabolic 
subtypes were further disclosed through cell-cell interactions. Our work would extend molecular subtyping of glioma, strengthen 
understanding of metabolic heterogeneity in glioma and provide novel comprehension for developing personalized treatment.

Glioma is a metabolically dynamic entity that rewires and adapts its metabolic properties [61]. Glucose and glutamine are two 
essential nutrients for cell growth, and the metabolic heterogeneity of GBM in terms of glucose and glutamine utilization is reported by 
Oizel and others [62]. By analyzing glucose, glutamine, alanine, and aspartate consumption and production, and determining mito
chondrial oxidation and extracellular acidification as measures of the glycolytic rate of eight primary GBM cultures, they reveal two 
GBM subtypes, termed “glutaminolysis-high” and “glutaminolysis-low” group. The glutaminolysis-high type GBM is featured as a high 
glutamine consumption rate and the ability to convert glutamine (and other nutrients as well) to NADH. While the glutaminolysis-high 
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subtype lacks CD133 expression, stem cell marker, glutaminolysis-low GBM cultures exhibit a strong dependency on glycolysis and 
express CD133. Similar observations were made by Tardito and others [63]. Furthermore, Marin-Valencia and others profiled me
tabolites of tumors formed by patient-derived genetically GBM cells implanted into mice without prior cell culture, and found these 
implanted tumors consumed more glucose but exhibited minimal glutaminolysis for survival [64]. These glycolysis-high cells 
expressed a significant amount of c-Myc, pyruvate carboxylase, and glutamine synthetase, but only traces of glutaminase. Our 
metabolic classifier was consistent with the above-mentioned studies, and it was significantly related to glioma patient clinical 
outcome and had prognostic value (Fig. 1). Metabolic subtype 1, an upregulated subtype of glutaminolysis, was associated with longer 
overall survival, whereas subtype 2 with a high level of glycolysis, PPP and FAO had a worse outcome in glioma (Fig. 1Ã G). Both 
enhanced glutaminolysis and glycolysis pathways drive the rapid growth of GBM [65]. While glutaminolysis is strengthened to provide 
biosynthetic precursors for cancer cells, glycolysis is enhanced to meet the increasing energy demand of cancer cells. Thus, inhibiting 
glutaminolysis and glycolysis pathways is an emerging drug discovery approach to combat cancers. Glutaminolysis in cancer can be 
activated by c-Myc for tumorigenesis and also by p53 for tumor suppression [13], which may explain to some extent why metabolic 
subtype 1 is less aggressive than subtype 2.

No ingredients or metabolism pathways can meet all the needs for cell survival, thus it is important for tumor cells to coordinate 
metabolic pathways to adapt to different TMEs, including hypoxic environments. While glycolysis and glutaminolysis are the major 
mechanisms of ATP production in tumors, PPP and FAO are essential to provide building blocks for cell growth. The well-known link 
among these 4 metabolism pathways is the Citrate cycle (TCA cycle) [30]. And functional links between glycolysis and glutaminolysis 
were described by Smith, Wang and others [66,67]: it is mediated through i) some intermediate metabolites, for example pyruvate; ii) 
serine synthesis pathway as glutamate provides an amine group to 3-phosphopyruvate, a product converted from glycolysis inter
mediate 3-phosphoglycerate, to form 3-phosphoserine, the precursor of serine; iii) synthesis of nucleotide hexosamine, a substrate for 
protein glycosylation, which requires input from both glucose and glutamine. However, how these pathways influence each other is 
still controversial and needs further studies to clarify.

Then, we looked into DEGs between metabolic group 1 and 2 to explore the different biological functions of them. Shared DEGs of 
metabolic subtypes among three independent glioma cohorts were used in enrichment analysis. Metabolic subtype 2 was related to 
migration, immunity and hypoxic tumoral microenvironment, but subtype 1 was associated with synapse and glutamate metabolism 
(Fig. 2). Tumor hypoxia is a condition characterized by insufficient oxygen (O2) supply. Because the O2 level can span from 45 to 50 
mmHg in end-capillary blood to 0.02 mmHg partial pressure in cytochromes, the O2 level was lower in the tumor core than the pe
riphery region [68]. Neurons can be induced death when they are co-cultured with glioma cells owing to glioma cell-derived xCT, 
which promotes cortical hyperexcitability, brain edema and neuronal cell death [69]. Therefore, metabolic subtype 1 was in the 
periphery region, whereas subtype 2 was in the tumor core. This was further verified by glioma scRNA-seq data and bulk RNA-seq data 
with anatomic information (Fig. 5).

Growing studies advocate that metabolic heterogeneity affects immune cell function and might lead to immunotherapy failure in 
cancer. For example, excessive consumption of nutrients (e.g., glucose) by cancer cells will suppress T cell activation and effector 
function [70]. Immune infiltration analyses were performed, which revealed distinct immune states among metabolic classifiers. 
Consistently, metabolic group 2 with higher levels of glycolysis, PPP and FAO had more M2 TAMs infiltration, and was associated with 
higher enrichment of tumor promotive immune infiltrates, such as TAMs, macrophage and DC traffic, Th2 signature and protumor 
cytokines (Fig. 3B–E). Conversely, metabolic group 1 had more glutaminolysis enrichment, which displayed anti-tumor microenvi
ronment, for example, more infiltrations of activated mast cells and activated NK cells, and higher enrichment level of Th1 signature 
(Fig. 3C ~ E). These results proved a close connection between tumor metabolism reprogramming and immune microenvironment.

Given the complexity of TME and lack of knowledge about cell-cell communication induced metabolic characteristics as well as 
mitochondria biological features, we studied cell-cell interaction in different tumor regions with distinct metabolic phenotypes. 
Certain pathways, for example FN1, ANGPT, PECAM1, ncWNT, GDF, LIFR, IL16, IL6, ESAM, CHEMERIN, VCAM, SEMA3, LAMININ, 
COLLAGEN, JAM and THBS, prominently increased their information flow in tumor core region and promoted tumor progression 
leading to bleak prognosis. Viswanadhapalli and others declared that LIFR takes part in glioma initiation and recurrence [71]. And 
cerebrospinal fluid cytokine, IL16, levels are associated with macrophage infiltration into glioma tissues [72]. FN1, ANGPT and IL6 
pathways activate cell proliferation and tumor growth in glioma [73–75]. Wu and colleagues proclaimed CHEMERIN enhances 
mesenchymal features of glioblastoma [76]. PECAM1 and SEMA3 are considered vital regulators involved in angiogenesis [77,78]. As 
reported, ncWNT, LAMININ, COLLAGEN, JAM, THBS, VCAM and ESAM pathways mediate migration and invasion in glioma and other 
cancers [79–84]. Zahra and others validated that GDF affects cancer growth and progression, drug resistance, and metastasis [85]. 
However, specific pathways, for example CD45, SOMATOSTATIN, VIP, RELN, CX3C, CALCR, NRXN, NCAM and SEMA5, predominantly 
functioned in tumor periphery region and inhibited tumor prognosis, which resulted in better clinical outcome. TAM expressing high 
levels of CD45 are suppressive as well as pro-inflammatory characteristics in glioma [86]. SOMATOSTATIN inhibits production of 
vascular endothelial growth factor in human glioma cells and suppresses glioma angiogenesis [87]. Cochaud and colleagues stated 
neuropeptides of the VIP family inhibit glioblastoma cell invasion [88]. As compared to non-neoplastic tissue, both RELN and its main 
downstream effector DAB1 are silenced in glioblastoma and their RNA expressions are inversely correlated with pathological grade; 
RELN RNA expression is positively related to glioma patient survival and stimulation of RELN signaling can reduce proliferation and 
glioblastoma growth [89]. GBM patients with mutated CALCR or reduced transcript level predict poor prognosis [90]. In thyroid 
cancer cells, the NRXN pathway possesses a tumor suppressor potential through suppressing tumor growth [91]. NCAM and SEMA5 
can inhibit human glioma cell motility [92,93]. The CX3C pathway was further verified in glioma using ST data (Fig. 7).

This study highlights the potential for targeting distinct metabolic pathway in the glioma core and periphery region. Although 
current evidence is limited, future research should explore this approach to develop more effective therapeutic strategies for glioma 
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treatment.

5. Conclusions

In summary, this work provided a new perspective for elucidating metabolic heterogeneity of glioma. Our robustly new metabolic 
classifier proved that reprogrammed metabolism was associated with patient prognosis and distinct tumor region in glioma. The 
advent of single-cell RNA sequence and spatial transcriptomic had opened the door to explore glioma metabolic heterogeneity. 
Emerging technologies, including metabolomic-based single-cell or spatial profiling, would further improve the understanding of 
tumor cell state and TME features.
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