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Abstract: The retroviral protease of human immunodeficiency virus (HIV) is an excellent target for
antiviral inhibitors for treating HIV/AIDS. Despite the efficacy of therapy, current efforts to control
the disease are undermined by the growing threat posed by drug resistance. This review covers
the historical background of studies on the structure and function of HIV protease, the subsequent
development of antiviral inhibitors, and recent studies on drug-resistant protease variants. We
highlight the important contributions of Dr. Stephen Oroszlan to fundamental knowledge about
the function of the HIV protease and other retroviral proteases. These studies, along with those
of his colleagues, laid the foundations for the design of clinical inhibitors of HIV protease. The
drug-resistant protease variants also provide an excellent model for investigating the molecular
mechanisms and evolution of resistance.

Keywords: HIV/AIDS; retroviral proteases; drug resistance; protease structures; antiretrovi-
ral inhibitors

1. Introduction

The HIV/AIDS pandemic was first recognized in the early 1980s as being due to
infection by a novel retrovirus, termed human immunodeficiency virus type 1 (HIV-1).
In the past four decades, about 33 million people have died from the disease. By current
estimates, about 38 million people are infected with HIV [1]. Due to intense efforts by
many experts in retrovirology, medicinal chemistry, enzymology, computational modeling,
and structural biology, a number of antiretroviral drugs have been developed to target
several different stages in the viral lifecycle, cell fusion and entry, and the activity of the
three viral enzymes: protease (PR), reverse transcriptase (RT), and integrase (IN) [2]. These
antiviral agents are highly effective in combination therapy. The current recommendations
of the World Health Organization are described in [3]. In the absence of an effective
vaccine for HIV, RT and IN inhibitors are used for pre-exposure prophylaxis. However,
the long-term success of both antiviral therapy and prophylaxis is compromised by the
prevalence of drug-resistant strains of the virus [4]. Rates of new HIV infections with
transmitted drug resistance have increased in North America and Sub-Saharan Africa in
recent years [5].

This review focuses on HIV-1 PR, which is a valuable target for antiretroviral drugs.
The basic structure and function of this enzyme were determined in the late 1980s and
early 1990s. PR is encoded in the viral genome and produced as part of the Gag-Pol
precursor polyprotein. During the maturation stage of the viral lifecycle, PR is respon-
sible for processing Gag and Gag-Pol precursors into mature viral proteins [6,7]. Due
to its essential role in viral replication, HIV PR was quickly recognized as a potential
target for the development of antiretroviral drugs [8,9]. PR was recognized as a member
of the aspartic protease family due to the presence of the conserved catalytic residues
Asp-Thr/Ser-Gly [10]. The mature PR is catalytically active as a dimer of two 99-residue
subunits, and each subunit contains one copy of the catalytic triplet. PR recognizes
specific amino acid sequences at the different cleavage sites in the Gag and Gag-Pol

Viruses 2021, 13, 839. https://doi.org/10.3390/v13050839 https://www.mdpi.com/journal/viruses

https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0003-4876-7393
https://doi.org/10.3390/v13050839
https://doi.org/10.3390/v13050839
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/v13050839
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v13050839?type=check_update&version=1


Viruses 2021, 13, 839 2 of 12

polyproteins and hydrolyzes the peptide bond to release the individual structural pro-
teins and enzymes. The cleavage sites must be hydrolyzed in the correct sequential order
to produce infectious virus [11–13]. From 1995 to 2006, nine antiviral inhibitors of PR
were approved for HIV/AIDS therapy. Their long-term effectiveness for therapy is lim-
ited by undesirable side effects, inaccessible reservoirs of the virus, and the emergence of
drug resistance. These problems have been addressed in recent studies of drug-resistant
variants of PR and structure-guided designs of novel inhibitors for resistant virus.

2. Historical Background: Structure and Specificity of HIV Protease

During the late 1980s and 1990s, studies of the structure and substrate specificity
of HIV PR provided an important foundation for the development of antiviral protease
inhibitors for the treatment of HIV/AIDS. Basic information on the structure and function of
HIV PR is summarized in Figure 1. Dr. Steven Oroszlan and his colleagues in retrovirology
pioneered many of these early studies [8]. Dr. Oroszlan’s group reported the genetic
location and sequence of HIV-1 PR and its cleavage sites (Figure 1A,B) [14,15], the chemical
synthesis of the PR gene for expression in E. coli [16], purification of the expressed PR [17],
and a spectroscopic assay for its proteolytic activity [18]. He also collaborated in initial
efforts to develop selective inhibitors of HIV-1 protease [19–21]. Moreover, he inspired
several of the junior researchers in his group to pursue related research after they moved
to other institutions.
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(cyan sticks) has closed conformation flaps. 

The crystal structure of HIV-1 PR was determined in 1989 by three different groups 
[22–24]. Later in the same year, the first crystal structure was reported for PR in complex 
with a substrate analog inhibitor [25]. In subsequent years, numerous structures became 
available for HIV PR bound to various inhibitors [26]. The PR dimer exists in a dynamic 
equilibrium between two distinct conformations as shown in Figure 1C,D [27]. When sub-
strates or inhibitors bind, PR forms a closed conformation where the ligand lies in a cavity 

Figure 1. (A) The HIV-1 Gag-Pol polyprotein precursor is processed by PR during maturation
to release individual structural proteins MA, CA, and NC, and enzymes PR, RT, and IN. (B) PR
hydrolyzes the peptide bond, indicated by an arrow in the listed cleavage site sequences of Gag-Pol.
(C) The dimer of mature PR (grey ribbons) exists in an open conformation in the absence of substrate
or inhibitor. The conserved catalytic triplet of residues Asp-Thr-Gly is shown in red, the conserved
triplet of Gly-Arg-Asn in the alpha helix is in green, and the Gly-rich ends of the flexible flaps are in
purple. (D) The PR dimer (blue ribbons) bound to the peptide analog of the sp1/NC cleavage site
(cyan sticks) has closed conformation flaps.

The crystal structure of HIV-1 PR was determined in 1989 by three different
groups [22–24]. Later in the same year, the first crystal structure was reported for
PR in complex with a substrate analog inhibitor [25]. In subsequent years, numerous
structures became available for HIV PR bound to various inhibitors [26]. The PR
dimer exists in a dynamic equilibrium between two distinct conformations as shown in
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Figure 1C,D [27]. When substrates or inhibitors bind, PR forms a closed conformation
where the ligand lies in a cavity and interacts with the catalytic residues and the two
flexible flaps. In the absence of substrate or inhibitor, the flaps move away from the
catalytic site and assume an open conformation. The conformational dynamics of the
flaps are important for the recognition of cleavage sites in the natural polyprotein
substrates and their ordered cleavage [13]. Structural studies of HIV PR have identified
key amino acids in the substrate-binding site and their interactions with substrate
analogs. These structures were critical for the design of antiretroviral inhibitors.

These early investigations into the sequence, structure, and substrate specificity of
HIV-1 PR and how it compares with other retroviral proteases gave fundamental insights
into the relationships among different PRs and their substrates. Overall, the amino acid
sequences of different retroviral PRs share about 20–30% identity [28]. Conserved regions
include the catalytic triplet (Asp-Thr/Ser-Gly), the C-terminal triplet at the start of the
alpha helix (Gly-Arg-Asn/Asp), and the glycine-rich flaps.

Dr. Oroszlan and others analyzed the specificity of HIV-1 PR for various peptide
substrates and compared PRs from HIV-1 and -2 [29–33]. The amino acid sequences
of HIV-1 and -2 PRs share about 40% identity. The two PRs show similar, although
not identical, specificities for peptide substrates. In particular, some clinical inhibitors,
such as amprenavir, which were designed to target HIV-1 PR, are less effective on HIV-
2 PR [34]. HIV PR and related retroviral PRs preferentially cleave the peptide bond
between hydrophobic amino acids at P1 and P1’ in the standard nomenclature for protease
substrates [35], including the unusual hydrolysis of the peptide bond between the aromatic
side chains of Phe or Tyr at P1 and Pro at P1’.

In parallel, other studies compared HIV-1 PR to the PRs of various mammalian
retroviruses. The studied PRs were from equine infectious anemia virus [36,37], murine
leukemia virus [38–41], bovine leukemia virus [42], and mouse mammary tumor virus [43].
The early findings are summarized in [44]. Later investigations from Dr. Oroszlan and his
collaborators addressed the structure and substrate specificity of PR from a different human
retrovirus, human T-cell leukemia virus [45,46]. A separate series of studies focused on
mutational analysis of the Rous sarcoma virus (RSV) PR in relation HIV-1 PR [47–52]. This
analysis extended to drug-resistant mutations of HIV-1 PR and their relation to substrate
specificity [53,54]. Similar studies have continued in recent years [55,56]. Insights from
these specificity studies informed the design of improved antiviral agents and also correctly
predicted which residues might mutate into drug resistance.

The crystal structures reveal how HIV-1 PR binds the peptide analogs of substrate
cleavage sites as illustrated in Figure 2. The dimer of HIV PR binds about six residues of
peptide analogs of its substrate, where a non-hydrolysable group replaces the peptide bond
between P1 and P1’. Each side chain of the peptide (P3–P3’) binds in a pocket or subsite
(S3–S3’) formed by PR residues. The residues of the subsites comprise both conserved
amino acids among related PRs and amino acids that vary in different PRs (Figure 2a).
The variable residues in the substrate binding site are also mutated in drug-resistant HIV
as described later. Mutations of these non-conserved residues are associated with major
drug resistance in the clinic [57]. The structures of different PRs show a conserved series of
hydrogen bond interactions between the main chain amide and carbonyl oxygen atoms of
PR and the main chain atoms of substrate analogs (Figure 2b) [27]. The clinical inhibitors
of HIV PR were designed to retain many of these hydrogen bonds, as described in the
next section.
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ous system [62,63]. Inhibitors that can attack viral reservoirs in the brain have promise for 
the treatment of neurocognitive disorders associated with HIV/AIDS [64].  

Figure 2. (a) Substrate peptide in the binding cavity of HIV-1 PR. P3 to P3’ amino acids are shown for a peptide analog of the
sp1/NC cleavage site, T-I-Nle-Nle-Q-R, where Nle is norleucine, an analog of methionine, and non-hydrolyzable CH2-NH
replaces the peptide bond between P1 and P1’. Each side chain of the peptide binds in pockets or subsites S3–S3’ (curved
lines) in the PR dimer. PR residues contributing to the subsites are indicated. Residues that vary in different retroviral
PRs are shown in red; (b) hydrogen bond interactions between PR (grey bonds) and the sp1/NC substrate analog (cyan
bonds) are shown in an orientation approximately perpendicular to (a). Water molecules in the binding site are shown
as red spheres. Hydrogen bond interactions are indicated as dotted lines. Red dotted lines show conserved interactions
between main chain C=O and NH groups of PR and main chain groups of substrate analog. Black dotted lines indicate
non-conserved hydrogen bonds.

3. Antiviral Protease Inhibitors for HIV/AIDS

The structures of HIV PR became the basis for ground-breaking efforts to develop
antiviral drugs for HIV/AIDS [26]. The protease inhibitor, saquinavir, was first described in
1990 [58] and approved by the FDA for clinical use in 1995. This inhibitor and subsequent
drugs were designed based on the structures of HIV PR with substrate analog inhibitors.
Key constraints include the conserved set of hydrogen bond interactions observed between
the main chain amides and the carbonyl oxygens of peptide analogs and the main chain
groups in the PR binding site (Figure 2b). Currently, nine antiviral protease inhibitors
are approved. All are peptidomimetics, except for tipranavir. The second generation
of inhibitors was designed to target drug-resistant strains of the virus. The newest in-
hibitor, darunavir, was approved for clinical use in 2006 and shows the highest binding
affinity of 5–10 pM for HIV protease. Darunavir, lopinavir, and atazanavir are currently
recommended in second-line regimens for people failing first-line therapy with IN and RT
inhibitors [3] and are available combined with RT inhibitors emtricitabine and tenofovir
in a fixed dose regimen [59]. Selected antiretroviral PR inhibitors are shown in Figure 3.
The design goal for darunavir was to incorporate chemical groups capable of mimicking
the conserved hydrogen bonds in the structures of PRs with peptide inhibitors [60]. The
rationale is that hydrogen bond interactions between the main chain atoms of PR and
peptide analogs cannot easily be eliminated by mutations. This strategy has resulted in
the development of several potent antiviral inhibitors derived from darunavir [61]. Recent
designs, such as GRL142, incorporate fluorine to improve penetration of the central nervous
system [62,63]. Inhibitors that can attack viral reservoirs in the brain have promise for the
treatment of neurocognitive disorders associated with HIV/AIDS [64].
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tations also occur in its Gag and Gag-Pol substrates [69]. Major mutations associated with 
resistance are often deleterious for viral replication [70]; however, viral fitness can be re-
stored by additional, compensatory mutations [71,72]. The molecular mechanisms ob-
served for PRs bearing single major mutations were reviewed in [73]. Major DRMs can 
directly influence the binding of inhibitors by altering amino acids in the inhibitor-binding 
site of PR, or they can have indirect effects by altering residues at the subunit–subunit 
interface in the dimer or altering the conformational dynamics of PR. The role of distal 
mutations is often obscure. In practice, mutations accumulate in the viral genome, and 
antiviral therapy drives the evolution of mutants with increasingly higher levels of re-
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Figure 3. (a) Chemical structures of clinical inhibitor saquinavir (approved in 1995), clinical inhibitor darunavir (approved
in 2006), and investigational inhibitor GRL142, colored to show differences from darunavir; (b) hydrogen bond interactions
between PR (grey bonds) and inhibitors darunavir (top in green bonds) and GRL142 (bottom in magenta bonds). A key
water molecule is shown as a red sphere. Hydrogen bonds are shown as dotted lines. Red dotted lines indicate interactions
similar to those observed for peptide analogs (see Figure 2b). Green dotted lines indicate halide interactions. Black dotted
lines indicate non-conserved hydrogen bonds.

4. HIV Drug Resistance

HIV occurs in two types, HIV-1 and HIV-2. HIV-1 genomes comprise three main
groups, M, N, and O, along with many subtypes and variants. This genomic diversity
exacerbates the problems for treatment and accelerates drug resistance [65]. Drug-resistant
strains of HIV evolve rapidly due to the high rate of replication, error-prone RT, and
viral recombination [66,67]. Genotype analysis of newly infected patients and those failing
antiviral regimens is an important component of clinical treatment [4]. Mutations associated
with drug resistance are compiled in [57] and the Stanford HIVdb [5,68]. Figure 4 illustrates
the drug-resistant mutations (DRMs) and their location in the PR structure. Individual
mutations that are strongly associated with resistance to one or more clinical inhibitors
are designated as major DRMs. High level resistance, however, generally requires an
accumulation of multiple mutations, including additional ‘minor’ or accessory mutations,
as well as the major DRMs.
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Resistance to PR inhibitors arises primarily by mutations in PR, although other mu-
tations also occur in its Gag and Gag-Pol substrates [69]. Major mutations associated
with resistance are often deleterious for viral replication [70]; however, viral fitness can
be restored by additional, compensatory mutations [71,72]. The molecular mechanisms
observed for PRs bearing single major mutations were reviewed in [73]. Major DRMs can
directly influence the binding of inhibitors by altering amino acids in the inhibitor-binding
site of PR, or they can have indirect effects by altering residues at the subunit–subunit
interface in the dimer or altering the conformational dynamics of PR. The role of distal
mutations is often obscure. In practice, mutations accumulate in the viral genome, and an-
tiviral therapy drives the evolution of mutants with increasingly higher levels of resistance
that thrive in the presence of antiviral drugs.

The genotype and phenotype data available in HIVdb [5,68] have proved valuable
for computational analysis of resistance. We have used machine learning with a unified
encoding of sequence and structure to predict resistance and to select mutants representing
high levels of resistance for detailed biochemical and biophysical studies [74–76]. Mutants
PRS17 and PRS5B were chosen by this procedure and confirmed to show poor binding
of clinical inhibitors [77–79]. Our recent graph theoretical analysis of genotype data
mapped PR mutants onto different branches of a minimum spanning tree, based on their
distances from the combined structure–sequence metric. The minimum spanning tree
was hypothesized to be a proxy for the evolution of drug resistance [80]. Mapping drug
resistance along the branches of the tree showed that the evolution of drug resistance first
occurs as a ‘just resistant’ mutation followed by further evolution toward being highly
resistant. Shah et al. [80] hypothesized that there is a selective pressure for higher levels
of resistance to minimize the probability of a revertant mutation. We exploited these
genotype–phenotype data to generate and evaluate hypotheses about drug resistance and
PR variants.

Highly resistant mutants observed in patients failing therapy exhibit affinity for
inhibitors several orders of magnitude worse. Selected examples are given in Table 1
with their mutations and inhibition values for darunavir. These mutants contain 17–22
amino acid substitutions relative to a reference sequence for subtype B. Clinical mutant
PR20 was initially reported in 2007 to show poor inhibition by darunavir [81]. PRdrv4
was identified in a pediatric patient and is characterized by its structure and affinity
for darunavir [82]. Mutants PRS17 and PRS5B were selected by computational analysis
of genotype-resistance data as described above and represent examples with high-level
resistance to 6 and 5 clinical inhibitors, respectively.
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Table 1. Highly resistant mutants of HIV-1 protease.

Protease Kd DRV (nM) Relative Kd

Amino Acid
Substitutions

Major Resistance
Mutations

Wild-Type 0.005 1.0

a PR20 41 8200

L10F, I13V, I15V,
D30N, V32I, L33F,
E35D, M36I, S37N,

I47V, I54L, Q58E, I62V,
L63P, A71V, I84V,

N88D, L89T, L90M

b PRdrv4 35 7000

L10F, I13V, K14R,
V32I, L33F, K45T,

M46I, I47V, I54L, I62V,
L63P, A71T, I72T,
G73T, V77I, P79S,

I84V, L90M

c PRS17 50 10,000

L10I, K20R, E35D,
M36I, S37D, M46L,
G48V, I54V, D60E,
I62V, L63P, A71V,
I72V, V77I, V82S,

L90M, I93L

d PRS5B 4.0 800

L10I, V11I, E21D,
A22V, L24M, E35N,
M36I, S37D, R41K,
M46L, I54V, Q61H,

I62V, I63P, I64V, I66V,
A71V, I72T, G73T,

N83D, I84V

Data are taken from the following references: a [83], b [82], c [77], d [79].

We investigated the structures and enzymatic properties of PR20, PRS17, and PRS5B in
order to elucidate the molecular basis for their drug resistance [78,79,84]. These two highly
resistant mutants show different distributions of mutations; only half of their mutations
are in common (Figure 5a). PR20 includes mutations of four amino acids in the inhibitor-
binding site. In particular, mutations I47V and I84V introduce smaller amino acids and
create a larger binding cavity, which is proposed as a major contribution to the observed
poor affinity for inhibitors. The other 17 mutations show coordinated effects that remodel
the interior of the protein and indirectly influence inhibitor binding. In contrast, PRS17
has only two mutations in the inhibitor-binding cavity, G48V and V82S; however, distal
mutations exert significant effects on the conformational dynamics. Moreover, PRS17
shows improved binding to substrate analogs compared to the wild-type enzyme, which is
likely to contribute to drug resistance [85].

Differences in the conformational dynamics of the flaps are common in highly drug-
resistant variants. NMR studies demonstrated that both PR20 and PRS17 exhibit differences
in the flap dynamics relative to the wild-type PR. The flaps of drug-resistant mutants tend
to occupy the open conformation in the absence of bound substrates or inhibitors, whereas
the conformational equilibrium of wild-type enzyme tends toward the closed conformation
even in the absence of ligands [13,78,84]. A greater variety of open conformations has been
captured in crystal structures of highly resistant mutants compared to the wild-type PR,
as illustrated in Figure 5b. PR20 exhibited an extremely open conformation of the flaps
and also an unusual conformation with one flap tucked into the active site. PRS17 shows
a distinctive curl at the tip of the flaps. Due to the highly dynamic nature of the flaps in
resistant mutants, new inhibitors have been designed to introduce additional interactions
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with the flaps. Some inhibitors also incorporate fluorine, which improves penetration
of the central nervous system. We are currently evaluating the effectiveness of the new
antiviral inhibitors for PR20 and other highly resistant mutants [86,87]. One example,
GRL142, is shown in Figure 3. This inhibitor exhibits 20-fold better affinity than darunavir
for extremely resistant mutant PR20 [87] and is promising for further clinical development.
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5. Conclusions

Our current research into the mechanisms of drug resistance and the development of
improved antiviral inhibitors for HIV PR is firmly based on many of the original findings
of Steven Oroszlan and his colleagues. Early studies of the substrate specificity of HIV
PR combined with knowledge of the crystal structure of PR with peptide analogs were
vital to the design of potent antiretroviral inhibitors. Moreover, the differences seen in the
amino acid sequences of different retroviral PRs bear strong similarities with mutations in
drug-resistant HIV PR. This similarity demonstrates the importance of comparative studies
of related proteins to understanding the evolution of resistance.
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