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Abstract: We consider how to protect Unmanned Aerial Vehicles (UAVs) from Global Positioning
System (GPS) spoofing attacks to provide safe navigation. The Global Navigation Satellite System
(GNSS) is widely used for locating drones and is by far the most popular navigation solution. This
is because of the simplicity and relatively low cost of this technology, as well as the accuracy of the
transmitted coordinates. Nevertheless, there are many security threats to GPS navigation. These are
primarily related to the nature of the GPS signal, as an intruder can jam and spoof the GPS signal. We
discuss methods of protection against this type of attack and have developed an experimental stand
and conducted scenarios of attacks on a drone’s GPS system. Data from the UAV’s flight log were
collected and analyzed in order to see the attack’s impact on sensor readings. From this we identify a
new method for detecting UAV anomalies by analyzing changes in internal parameters of the UAV.
This self-diagnosis method allows a UAV to independently assess the presence of changes in its own
subsystems indicative of cyber attacks.

Keywords: UAV; GPS; cyber threats; anomalies; spoofing; entropy; cyber attacks

1. Introduction

A drone or Unmanned Aerial Vehicle (UAV) is a cyber-physical system combining
physical processes, computation, and networking. If an attack on the Global Positioning
System (GPS) is executed well, it can lead to serious consequences for a single UAV or a
UAV group [1]. In addition to the natural errors and inaccuracies in sensor readings, GPS
vulnerabilities also affect the flight controller. These vulnerabilities include the possibility
of signal jamming or a signal distortion that disrupts the availability of the GPS signal.
GPS vulnerabilities go beyond the natural properties of the transmitted signal. In GPS
spoofing attacks, satellites transmitting a GPS signal are tampered with to manipulate
the UAV’s navigation system by transmission of fake coordinates [2,3]. Although the GPS
signal’s waveform can be implemented in a secure design, thanks to authentication and
encryption mechanisms [4], for military applications, civilian GPS variants, which do not
have protection mechanisms, are frequently used. Consequently, civilian GPS is highly
vulnerable to spoofing attacks [3].

A GPS spoofing attack entails consequences associated with the fall (crash) of the UAV
or its interception and redirection along a different flight path. In both cases, these problems
are related to cyber security. A targeted attack that takes control of a UAV or destroys
it can harm everyone in the UAV’s flight area or damage other vehicles [5]. One of the
main security concerns of UAVs is GPS spoofing attacks [6]. The civil GPS specification is
publicly available [7], which makes the signal highly predictable and increases the potential
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risk of tampering. Therefore, GPS spoofing has become an important research topic since
an attacker could hijack a UAV, use it to eavesdrop, or attack people or objects remotely.

Currently, many different methods of detecting GPS spoofing attacks are known [8–12].
Some of these methods allow the UAV’s GPS receiver to detect spoofing attacks [8]. These
techniques include the ability of the GPS receiver to analyze the received signal strength
and to compare it to the normal signal strength over time. UAVs can monitor GPS satellite
identification codes or continually check the time intervals to ensure their constancy. These
methods can be efficient in detecting attackers with weak capabilities. However, such
methods may be ineffective against complex attacks, in which an attacker can falsify the
coordinates of the victim with great accuracy [9]. O’Hanlon et al. proposed a method
for detecting GPS spoofing attacks based on the use of two GPS receivers to check their
cross-correlation [10]. This method has been tested for multiple attack scenarios and the
authors have proven that it successfully detects attacks, although the method is unable to
distinguish spoofing signals from genuine GPS signals and cannot detect spoofing when
the signals are weak [13]. Other methods to prevent GPS spoofing, such as autonomous
monitoring of receiver integrity, signal-to-noise ratio measurements, and Doppler shift
detection, have been discussed [6,14]. For instance, Shepard et al. proposed a method
allowing the UAV to detect the source of GPS spoofing using a ground station that continu-
ously analyzes the content and time of arrival of information about the estimated location
of the UAV [2]. It has been shown that their method is efficient and detects spoofing attacks
in less than 2 s and determines a counterfeit’s source location after monitoring for 15 up to
150 m. Solove uses the automatic GPS signal gain control in a GPS receiver to detect and
alert potential spoofing attacks within the method [15].

The ability to use multiple receivers to detect GPS spoofing attacks has been presented
in several previous works [16–18]. Jansen et al. [17] used several independent GPS receivers
to detect GPS spoofing attacks. Their proposed method depends on the distance between
the receivers and then measuring the distance between the specified locations of the
receivers. With the same GPS signals, the measured distances are the same as the previously
recorded distances. However, in a GPS spoofing attack, the distances obtained will be
very close to zero, since all receivers transmit information where the same location is
indicated. Montgomery et al. demonstrated the possibility of using a receiver with two
antennas for detecting GPS spoofing attacks [16]. Their proposed method is based on
fixing the difference in carrier frequencies between different antennas tied to the same
generator. In their configuration, the attacker must use an additional transmit antenna for
each additional receiver antenna, which complicates the attacker’s task. Heng et al. [18]
use multiple receivers to confirm the authenticity of GPS signals based on correlation with
the military GPS signal without the need to decode it. This uses cross-validation receivers
to authenticate the GPS signals. It has been shown that the proposed technique is efficient
even when cross validation receivers are tampered with. This method has been tested on
fixed and moving GPS receivers and shown to be effective in detecting spoofing attacks.

Panice et al. [19] presented an approach to detecting a GPS spoofing attack for a
UAV, based on state analysis using a Support Vector Machine (SVM), which is used as an
anomaly detection tool. They present solutions for detecting anomalies and a simulation
environment for GPS attacks to assess the functionality and performance of the method.
Their approach does not require additional equipment, and so it can be implemented on a
small UAV. On the other hand, if the intruder has absolute knowledge of the positioning
and trajectory of the UAV, he can go unnoticed by the system, causing significant false
operations. Nonetheless, since usually the intruder does not know the actual trajectory of
the UAV, the risk of a false alarm is small. Thus, the system can detect any spoofing attack.

Eldosouky et al. [20] suggested a protective mechanism based on the concept of co-
localization [21]. Their mechanism is a methodology that allows a UAV to determine its
real position in a two-dimensional coordinate system using the location of three other
UAVs. It is assumed that each UAV has a device for measuring the relative distances to
other neighboring UAVs. The co-localization of the UAV selects any three adjacent UAV to
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update their location, assuming that the selected UAVs do not lie on a straight line. The
UAV can then pinpoint its 2D position accurately. With a covert GPS spoofing attack, the
UAV cannot trust its GPS location or the location of other UAVs. However, the choice
of a nearby UAV for the co-localization mechanism is fraught with risk since the UAV
itself may be compromised. To overcome this limitation, the authors propose a protection
mechanism based on the assumption that an attacker using GPS spoofing can attack only
one UAV [20]. In their proposed mechanism, the UAV will use the location of four adjacent
UAVs, instead of three, to determine its real location by identifying the UAV under attack
and excluding it from calculations. This mechanism has the same cooperative localization
requirements (i.e., the UAVs are non-collinear), UAVs can query the location of other UAVs
through communication between them, and each UAV must be able to measure distances
to neighboring UAVs. Thus, it should be noted that their method has many restrictions on
its applicability.

Qiao et al. presented a method of counteracting GPS attacks based on the use of a
technical vision system, which additionally allows calculation of the UAV’s speed and
some other indicators and correlates them with the data received from the GPS [22]. Thus,
the main methods of protecting UAVs from attacks related to GPS signal spoofing are based
on the analysis of the state change in comparison with the reference of one sensor or on the
correlation of data obtained from several GPS sensors. In some methods, in addition to
GPS, other sensory mechanisms such as an accelerometer magnetometer and others are
used to improve the quality of flight [23]. In this case, the correlation can take place both
between devices of one UAV and between devices of a group of UAVs [24].

Semanjski et al. presented a method for determining the authenticity of a GPS signal
based on the correlation between true and incoming signals using C-Support Vector Ma-
chine (C-SVM) classification [25]. Application of their method is suggested at the signal
receiver level to avoid changes that may occur during signal processing. To train their
classifier the authors used both data obtained under laboratory conditions and in real cases
of attacks. They believe that the supervised machine learning-based approach (C-SVM) has
great prospects since they managed to achieve positive results. The model they presented
has achieved high detection rates compared to previously existing ones. In addition, by
including a real meaconing event, the complexity of the model was improved. Thus,
supplementing training datasets with real-world scenarios appears to be a valuable con-
tribution to safety-critical models such as the detection of attempts to manipulate Global
Navigation Satellite System (GNSS) signals. However, a disadvantage of this approach
is the significant time and effort required for preparation and elaboration of the data set
for training.

Kwon and Shim proposed a method for direct detection of GPS spoofing attacks using
a positioning system based on an accelerometer [26]. They conducted a performance analy-
sis using probability density functions. The difference between the measurements obtained
by the accelerometer and a GPS receiver is used to detect an attack. The value of the error is
used to obtain decision variables indicating the presence of an attack. The performance of
two decision variables was compared by calculating the spoofing detection probability and
the detectable minimum spoofing acceleration, considering the predetermined false alarm
probability and the predetermined detection probability. The decision variables represent
the change in the horizontal and vertical acceleration, both of which must be used together.
Then the authors add another variable for the solution of the northern acceleration. The
GPS spoofing detection method suggested in their paper is thus influenced by the accelera-
tion error. Flying or driving conditions can affect GPS spoofing detection performance. For
instance, if a ground vehicle encounters obstacles in the road, such as potholes, bumps, etc.,
its accelerometers can show large changes and degrade the ability to detect GPS spoofing.

Guo et al. presented a method for detecting and countering spoofing [27]. They used
an algorithm based on Maximum Likelihood (ML) to solve the problem of multipath re-
duction to anti-spoofing. The authors presented tracking channels using multi-correlators
and proposed a set of actions to detect and remove fake signals, to ensure that the receiver
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blocks the signals during a spoofing attack. Due to the complexity and variety of inter-
ference implemented by an attacker, using one anti-spoofing method may not prevent
all types of spoofing. For example, an anti-spoofing method based on a multi-correlator
structure can help block the signal. However, if spoofing started during data collection, this
method will not be able to distinguish the genuine and fake recipient signals. Experimental
results show that their proposed anti-spoofing method allows estimating the time delay,
amplitude, and phase of the carrier of a fake signal with a small delay, and then eliminating
it by adding the opposite fake signal. In addition, this method can perform a self-test,
so that it can directly distinguish the phase of the genuine signal when the fake signal
has a long delay. Finally, their proposed method can ensure that the receiver keeps the
authenticated signal blocked when the correlation peak of the fake signal overlaps or moves
away from the correlation peak of the authenticated signal and can further ensure that the
receiver is positioned correctly in the presence of spoofing.

However, many authors say these previous methods are prone to false positives.
Instead we present a method for detecting anomalies and attacks on UAVs based on the
analysis of data collected and analyzed from the UAV’s own sensors only. The analysis
compares normalized readings of the sensors at different points in time and identifies the
degree of difference between them.

This offers a new method for detecting anomalies and attacks on UAVs based on
the analysis of changes in the UAV’s state. The main difference of our method from the
methods discussed above is that, to detect an attack, we do not need reference values or
need to correlate the collected data with additional GPS receivers or other external systems.
Our “self-diagnosis” method is based on the UAV’s ability to detect critical changes in
its own behavior over time. The analysis is based on the collection and processing of
data received from various parts of the UAV’s sensor system. Any sensors that produce
numerical readings can be used. At the same time, as experimentally confirmed, our
method makes it possible to detect accurately the presence of anomalous behavior and
identify an attack.

The main purpose of this article is to present our method for detecting UAV sensor
anomalies under the influence of a GPS attack. Therefore, the following tasks should
be solved:

• To develop and implement a stand for carrying out an attack on a UAV;
• To carry out flight tests with a UAV in normal mode and during an attack;
• To collect the results in the form of UAV logs;
• To analyze the logs and identify the parameters that are susceptible to attack;
• To get raw data for testing the method;
• To develop a method for detecting anomalies for a UAV and to prove its effectiveness.

2. Materials and Methods

As a result of theoretical and experimental analysis, we identified a set of the most
informative parameters that may indicate a cyber attack. These parameters are: CPU
workload, UAV flight altitude (ha), satellite fix status (Gn), GPS uncertainty (Gu), and GPS
noise (Gnoi) when detecting a GPS spoofing attack. To analyze changes in these parameters,
it is necessary to choose an appropriate type of probability distribution. The choice is based
on the fact that these parameters are discrete. Let us consider the most common distribution
laws and assess whether they are suitable for the given parameters presented above or not.
If the number of occurrences of a random event per unit of time is available, when the fact
of the occurrence of this event in each experiment does not depend on how many times and
at what points in time it happened in the past, and does not affect the future, and tests are
carried out under stationary conditions, then Poisson’s law is usually used to describe such
a quantity. Poisson’s law is also called the law of rare events. Thus we used the Poisson
distribution law because, when analyzing the parameters in this study, it is necessary to
assess the occurrence of unexpected peak values, which are rare events during the total
number of operations of the UAV [28]. The Poisson model P() is typically used to describe
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a rare events scheme [29]. Under some assumptions on the nature of random events (the
changes observed are random, independent, and discrete events), their number occurring
over a specified time interval or a space area often obeys the Poisson distribution:

P(Kn) =
λKn

Kn!
e−λ, (1)

P(Gn) =
λGn

Gn!
e−λ, (2)

P(ha) =
λha

ha!
e−λ, (3)

P(Gu) =
λGu

Gu!
e−λ, (4)

P(Gnoi) =
λGnoi

Gnoi!
e−λ, (5)

where P is the probability function of the distribution of a random variable according to
Poisson’s law; Kn is the percentage of the total amount of processor time in the interval
between n and n− 1 that the processor spent on processing tasks when running in the kernel
mode; ha is the UAV’s flight altitude; Gn is the state of fixation by satellites (i.e., the number
of satellites from which the UAV receives position information); Gu is the GPS’s uncertainty;
Gnoi is the GPS’s noise (these parameters are discrete); λ is the mathematical expectation
(the average number of events of interest per unit of time); and e is Euler’s number.

To obtain the distribution, ten random variables are used. Then the sliding window
concept is used to update the distribution information. Six previous values and four new
ones are taken and a new distribution is constructed. This concept allows fixing a sharp
increase in values. Further, to determine the presence of an anomaly or a state change, it is
necessary to determine to what extent the distributions differ from each other. Comparison
of distributions rather than raw data gives a more accurate result. Raw data can vary
dramatically. At the same time, the changes and observations obtained based on raw data
will not indicate an anomaly or attack. Normalizing the raw data and bringing it to a
suitable distribution will capture the change in the system. If the entropy values are used
(i.e., differences between distributions), an anomaly can be detected. The Kullback-Leibler
divergence can be used to calculate the entropy value, for example as in Afgani et al.’s
work [30]. In this case, it is necessary to use not an integral value, but a sum, since we are
talking about discrete quantities:

D(Pn(λn)∆t||Pn(λn)(∆t− 1)) = ∑
ni∈N

Pn(λn)∆t ∗ ln
Pn(λn)∆t

Pn(λn)(∆t− 1)
, (6)

where Pn(λn)∆t is the Poisson distribution for a given exponent n for the current period ∆t;
Pn(λn)(∆t− 1) is the Poisson distribution for a given exponent n for the previous period
of time; and ln is the natural logarithm.

Then, our algorithm for detecting anomalies is as follows:

1. Fixation of the raw values of the analyzed parameters for a certain period of time.
2. Plotting a suitable distribution type for the collected parameters.
3. Selection of the previous values and supplementing them with those collected at a

new point in time, to build a time series of values using a sliding window.
4. Construction of a new distribution for new values according to the same distribu-

tion law.
5. Calculation of the Kullback-Leibler divergence between the two distributions.
6. The higher the obtained value of the Kullback-Leibler divergence, the more likely it is

that the system has been influenced in the form of an attack or external destructive
influence. Typically, this value should be greater than or equal to two. This value was
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chosen with the condition that the divergence should tend to zero and not exceed one.
But to avoid unnecessary false alarms, the threshold was increased to two, which was
confirmed experimentally.

7. Repeat the algorithm for subsequent values, starting from step 3.

Therefore, the higher the entropy, the more likely it is that abnormal behavior is
observed. Abnormal behavior can occur not only due to the attack but also due to environ-
mental conditions. Thus, for example, changes in the engine speed and flight altitude may
not be related to an attack. To unambiguously identify an attack, it is necessary to analyze
several indicators at once and determine the degree of their deviation. Figure 1 shows the
calculation of the entropy value for the UAV flight altitude during an attack.
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Figure 1. The result of calculating the Kullback-Leibler divergence of the deviation of the flight
altitude indicator during an attack.

Since the attack on the UAV did not begin immediately, the first few values in Figure 1
are quite low, and so we can see an increase in value only in the last three calculations. This
is because the UAV under attack may crash and has already begun to descend sharply, but
as a result of operator intervention in the crash process, it was prevented. But as mentioned
earlier, a lowering of the flight altitude can only indirectly confirm an attack. The most
indicative parameter is the number of GPS satellites. The parameter for this calculation is
shown in Figure 2.
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Figure 2. The result of calculating the Kullback-Leibler divergence for the indicator “number of GPS
satellites” at the time of the attack.

Figure 2 shows that high values begin in interval 3. This does not mean that the
number of satellites has increased as it also could have decreased. The main thing is that
the type of distribution between intervals 2 and 3 does not coincide, and this indicates that
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significant changes have occurred when the number of satellites should be approximately
the same. It should be noted that the comparison did not take place with the data obtained
in a normal situation. Namely, the data obtained from the different time intervals in the
same overall period of the UAV’s flight was compared. For example, let us compare the
results of searching for anomalies when analyzing the noise level with and without an
attack, as shown in Figure 3.
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(b) under normal conditions.

Figure 3 shows that during the attack, an increase in the entropy value is observed
three times. In other words, we can say that it took place throughout the entire flight.
During the normal flight, the entropy value remained at the minimum level. This does not
mean that there were no deviations during normal flight. They were simply insignificant
and did not affect the quality of the flight.

3. Results and Discussion

For the experimental study of our method, a quadcopter UAV whose architecture was
developed for testing attacks and analyzing security threats was used. Table 1 presents the
main characteristics of the experimental stand.

Table 1. Experimental stand characteristics.

Part Name Model

Flight controller Pix Hawk 4 (STable 10.1 firmware)
Frame S500

Speed controllers XT-XINTE 30A

Telemetry 3DR Radio Telemetry 915 MHz 100 mW Aerial Ground Data Transmission
Module for Pixhawk 4

Receiver FS-I6B
Battery ZOP Power 3S 11.1V 4200 mAh 40C Lipo Battery XT60 Plug

One of the scenarios is that the quadcopter, having determined its current position,
receives the static coordinates of its target. A copter-type UAV moves to a given point and
fixes its position in space, while maintaining its altitude. In the case of an external physical
impact, for example, a natural factor or impact from another object, the UAV’s autopilot
system increases the engine speed and sets it in the opposite direction to maintain a given
position. When the UAV is displaced from its preset position, the position hold system
increases the engine’s RPM power depending on the distance between the preset point
and the actual location of the UAV. When the UAV returns to a given point, the autopilot
enters the normal altitude control mode. In the scenario of maintaining a position with
fixed coordinates, an attacker could influence the direction and speed of movement. After
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the start of the attack, the quadcopter navigation system perceives the broadcast signal as
real, thus the actual location of the UAV differs from that determined by the navigation
system. After the autopilot system detects the displacement, the UAV starts moving in the
opposite direction. Thus, by indicating a fake offset on the circle, where the center will
be the fixation point of the UAV, you can set the direction of movement. The attacker’s
task is to smoothly shift the fake geo position from the center, that is, the place where the
quadcopter is fixed, to the point of the circle. By adjusting the radius of this circle, the
attacker can influence the speed of the quadcopter. By adjusting the speed and motion
vector, the attacker can control the location of the UAV. An important factor is that when
broadcasting a fake position, the attacker must independently consider the physical impact
on the UAV. To counteract external factors, it is important to determine the real position of
the quadcopter.

During our experimental study, an attack was carried out on the UAV five times,
while the positive effect took place every time. Let us consider the data collected from the
logbook during the attack and normal UAV flight. Figure 4 shows the result of fixing the
UAV’s flight trajectory.

In Figure 4, the red line shows the estimated trajectory (Estimated) which is the flight
path calculated by the on-board computer according to the accelerometer. The blue line
shows the GPS trajectory (GPS projected) which is a trajectory built based on GPS module
data.

As we can see from Figure 4a, both trajectories coincide during the normal flight and
this indicates the normal operation of the UAV. Figure 4b shows that during an attack,
the GPS trajectory differs from the UAV trajectory recorded by the internal sensor. Since
the attack was aimed at spoofing GPS data, it led to the difference in trajectories, because
many GPS systems are only updated once a second (and high-performance GNSS devices
are updated five to 10 times a second) and often have an accuracy of ±1 m only in good
conditions. The condition evaluator uses other sensors to fill in the gaps between 1 s GPS
updates and thus improves accuracy.

Next, it is necessary to analyze the UAV’s flight altitude in the normal mode and
during an attack since this parameter affects the detection of an attack. Figure 5 shows the
result of changing the UAV’s flight altitude in the normal mode and during an attack.
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In Figure 5, the red line (GPS Altitude) is the UAV flight altitude according to the
GPS module, and the blue line (Fused Altitude Estimation) is the estimate of the change in
altitude. Fused Altitude Estimation is the result of the state estimator, and so it uses not
only the raw GPS data but also the accelerometer. As shown in Figure 5a, the GPS altitude
and the final altitude coincide during normal UAV flight. Figure 5b shows that the altitude
changes and the GPS altitude graph and the final altitude graph do not coincide during an
attack on the GPS.

Next, we analyzed the data on the number of satellites that the UAV captures during
regular flight and under the influence of an attack, as shown in Figure 6. In Figure 6, the
gray line (Num Satellites used) is the number of satellites used. The blue line (GPS Fix) is
the state of fixation by satellites. The GPS uncertainty graph shows information from the
GPS device. The number of satellites used must be about 12 or higher.

Figure 6 shows that the GPS fix (blue line) is constant during normal flight. It means
that the drone does not lose communication with satellites and always knows where
it is. The average number of satellites used is 18 (gray line). During the attack (Figure 6),
communication with satellites is not stable and the number of satellites is constantly
changing. You can also see when the UAV loses its GPS fix, the number of satellites used to
determine the location is 0.

The GPS noise sensor readings are shown in Figure 7. In Figure 7, the red line (Noise
per msec) is the GPS noise. The GPS noise and interference graph is useful for checking
for GPS signal interference. The GPS signal is very weak and; therefore, can be easily
disturbed/jammed by components transmitting (via cable) or transmitting at the frequency
used by the GPS. The interference indicator should be around or below 40. Values around
80 or above are too high. Signal interference results in reduced accuracy and less satellite
usage. Figure 7 shows that during normal flight the noise does not exceed 105 per ms, but
during an attack, this indicator is not stable and at the peak has a value of 300 per ms. So
we can conclude that during the attack a high noise level is in the GPS channel.
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Figure 8 shows energy consumption. In the normal flight mode, the UAV has an
average power consumption of 500 to 1000 mAh. During the attack, we see a strong power
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consumption of 10,000 to 40,000 mAh. Thus, we can conclude that the UAV spends much
more energy to maintain its flight when it is under attack.
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Figure 9 shows the measurement result of the condition evaluator. It should be a
constant zero. If one of the flags is nonzero, the evaluator has encountered a problem that
requires further investigation. In most cases, this is a problem with the sensor, for example,
magnetometer interference.
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Figure 9. The state of the system performance evaluator: (a) In the normal mode; and (b) during a GPS attack.

Figure 10 shows the result of measuring the processor load. It shows that in the normal
mode of UAV flight, the central processor of the flight controller is loaded at its peak by
45%, and during the attack, the load is not stable and reaches 80% at its peak, which means
that the drone requires more computation during the attack to maintain its flight stability.
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From Figure 5b we can see that the flight altitude is rather uneven during the attack,
especially in the last time intervals when there is a sharp rise. This change in altitude is
correlated with the calculation of entropy which is shown in Figure 1. The figure shows
an increase in the entropy for the flight altitude indicator, which indicates the presence of
an anomaly. The parameter number of GPS satellites constantly changes during an attack,
and this is clearly seen from Figure 6b. If there is no attack, this graph looks like a straight
line. At the same time, it can be seen from Figure 2 that in the second time interval the
level of divergence has already grown significantly. This indicates the presence of serious
changes in the system and may indicate an anomaly. At the same time, we draw attention
to the fact that the numbers with a change in the altitude and the number of satellites
have different orders, but for our method, this turns out to be not important. Due to the
use of the probability distribution, we can recognize that the value of the divergence has
increased by more than two and this is enough to detect the anomaly.

Unlike previous work [23–26], we do not need to know which behavior is consid-
ered normal, or to compose many training datasets. It is enough for the UAV system to
obtain one value and it does not need to be compared with a normal value, as in other
approaches [8–12]. Our solution compares observable variables only using their own value
in the previous and current periods of time.

From Figure 7a, which shows the result of measuring the GPS noise level, it can be seen
that even during normal operation the graph is not a straight line and some noise is evident
with changes in its level. At the same time, as shown in Figure 3b, the Kullback-Leibler
divergence is at a low level, that is, the system does not consider this behavior an anomaly.
This is due to several factors. Firstly, the change in the noise level with normal behavior
is not significant. Secondly, due to the algorithm for processing incoming data, which is
presented in Section 2, during data processing, the series are constructed in such a way
that the probability distribution does not change its form too much with small changes.

This cannot be said about the situation with the GPS noise during an attack. In this
situation it changes significantly, as can be seen from Figure 7b. As a result, the divergence
value during the attack is quite high immediately after the first interval, as can be seen in
Figure 3a.

Even though the attack is directed at the GPS system, it ultimately affects several
parameters at once. These are both the flight altitude and GPS noise and the number of
GPS satellites and the level of CPU utilization and energy consumption. For other attacks,
such as the eavesdropping attack presented by Wang et al. [31], other sets of parameters
can be analyzed and applied. An attack can be detected precisely by a combination of
factors. In future papers, a decision-making system will be presented to determine both the
attack and, by analyzing several parameters and the degree of their changes, the type of
attack. It is difficult to do this using just one parameter, since weather conditions and noise
attacks, etc. can also be the cause of changes. In this paper, we focused on GPS spoofing
attacks only and studied in detail what parameters are affected and to what extent.

Thus, our presented method, based on the analysis of changes in the internal state of
the UAV, makes it possible to accurately detect the presence of anomalous behavior and
diagnose a possible spoofing attack. The novelty and advantages of our method are as
follows.

• It is versatile and can be applied to various data sets obtainable from the particular
UAV’s sensor system.

• It determines only that a change has occurred in the system and does so quite accu-
rately; it is then up to the decision-making system to determine whether the change is
an attack or not.

• It does not require information about reference and normal values, or inputs from
external sources. The UAV independently analyzes the changes in indicators and
compares its own state at different intervals. If the state is stable or quickly becomes
stable, it means that there are no anomalies.
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4. Conclusions

Although a large number of methods have been published for countering UAV navi-
gation system spoofing attacks, this topic is still relevant. To date, a number of successful
attacks on the navigation system of UAVs have been demonstrated. Our new self-diagnosis
method for analyzing and detecting system anomalies has several advantages that distin-
guish it from other methods.

First of all, the method is universal and can be used for any UAV subsystems from
which numerical readings can be taken. The main thing is to determine the correct type of
probability distribution for the analyzed parameter. Secondly, the method is lightweight
and energy efficient. The software implementation of the method has little impact on
CPU load and the UAV’s energy consumption. Thirdly, since the method allows analyzing
any parameters, it does not matter what configuration the UAV has, and so the approach
can work with whatever data is available. Fourthly, using our method, it is possible not
only to detect anomalies but also to determine a change in the patterns of UAV behavior
and a change in its states. If the values of entropy are not too high, and a single increase
takes place, then this may indicate a change in flight mode. Correlation of the analyzed
parameters can unambiguously reveal an attack and determine its type. Each attack
affects a certain number of subsystems so the type of attack can be characterized by which
parameters are affected. The data collected in the form of time series can be used in the
future to train a neural network, which can be trained on these sets and help to decide
about the presence of an attack.

This method can be implemented and applied to detect attacks on the GPS system
installed on a UAV to ensure its safe navigation. The method can be integrated into any
type of UAV. In addition, the method can be used for the analysis of other sets of parameters
and applied not only to UAVs, but to any cyber-physical system.
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