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Transforming early pharmaceutical 
assessment of genotoxicity: 
applying statistical learning 
to a high throughput, multi end 
point in vitro micronucleus assay
Amy Wilson1*, Piotr Grabowski2, Joanne Elloway1, Stephanie Ling2, Jonathan Stott3 & 
Ann Doherty1

To provide a comprehensive analysis of small molecule genotoxic potential we have developed and 
validated an automated, high-content, high throughput, image-based in vitro Micronucleus (IVM) 
assay. This assay simultaneously assesses micronuclei and multiple additional cellular markers 
associated with genotoxicity. Acoustic dosing (≤ 2 mg) of compound is followed by a 24-h treatment 
and a 24-h recovery period. Confocal images are captured [Cell Voyager CV7000 (Yokogawa, Japan)] 
and analysed using Columbus software (PerkinElmer). As standard the assay detects micronuclei (MN), 
cytotoxicity and cell-cycle profiles from Hoechst phenotypes. Mode of action information is primarily 
determined by kinetochore labelling in MN (aneugencity) and γH2AX foci analysis (a marker of DNA 
damage). Applying computational approaches and implementing machine learning models alongside 
Bayesian classifiers allows the identification of, with 95% accuracy, the aneugenic, clastogenic and 
negative compounds within the data set (Matthews correlation coefficient: 0.9), reducing analysis 
time by 80% whilst concurrently minimising human bias. Combining high throughput screening, 
multiparametric image analysis and machine learning approaches has provided the opportunity 
to revolutionise early Genetic Toxicology assessment within AstraZeneca. By multiplexing assay 
endpoints and minimising data generation and analysis time this assay enables complex genotoxicity 
safety assessments to be made sooner aiding the development of safer drug candidates.

Traditionally, toxicology assessments have been characterised by low throughput and high cost in vivo studies. 
However, there is now a drive to develop better predictive tools for toxicity studies, which would increase the 
accuracy of in vivo predictions and allow more informed assessments to be made, minimising unnecessary ani-
mal use and reducing the time and cost of pharmaceutical development. Advancements in screening approaches 
have led to rapid increases in the quantity and quality of data, which, when combined with the greater diversity 
of computational approaches to toxicology and risk assessment is driving the use of innovative approaches for 
the safety assessment of pharmaceuticals1,2.

Genetic Toxicology refers to the study of chemically or physically induced changes to DNA and chromosomes 
and the assessment of genotoxicity is a regulatory requirement during pharmaceutical development to evaluate 
potential carcinogenic risk. Genotoxicity can manifest in a variety of ways, including mutations (base substitu-
tions for example), chromosomal aberrations and changes in chromosome number, all of which can induce 
carcinogenesis by increasing genomic instability3.

The complex nature and multiple mechanisms by which DNA damage can arise has led to the development 
of a battery of recommended assays for the assessment of pharmaceutical carcinogenic potential (ICHS2r1)4. 
The in vitro micronucleus (IVM) assay is one of the recommended cytogenetic tests for the assessment of chro-
mosomal damage. The IVM assay assesses DNA damage at the chromosomal level by evaluating the presence of 
micronuclei. Micronuclei are small, membrane-bound nuclear bodies containing DNA, which are separated from 
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the main nucleus during mitosis and can therefore be readily assayed using standard microscopy techniques and 
image analysis software5–7. Micronuclei can form from both chromosome fragments (clastogenic mechanisms), 
or whole chromosomes (aneugenic mechanisms).

Traditional IVM assays are low throughput and labour intensive (weeks/compound), require large amounts 
of compound (hundreds of milligrams) and do not offer mode of action information without the addition of 
supplementary endpoints (fluorescence in-situ hybridisation—FISH). Traditional IVM assays are therefore not 
suitable for compound screening early in pharmaceutical development when synthesis levels are low. To address 
some of the limitations outlined above, various approaches have been developed to simultaneously detect geno-
toxic responses whilst providing mechanistic information. These approaches include the integration of multiple 
in vitro assay endpoints8, Litron Laboratories’ MultiFlow multiplexed genotoxicity assessment method, which 
uses biomarkers and machine learning to classify genotoxic compounds9, and the ToxTracker system, a mouse 
stem cell-based reporter assay10. The combination of γ.H2AX and phosphorylated Histone H3 biomarkers for 
mode of action determination has also been championed in multiple assay formats, including flowcytometric 
and imaging based approaches and has shown promising result for mode of action determination in multiple 
studies11. To date however, no single approach addresses all of the limitations outlined above. The compound 
requirements for these assays are still relatively high (10′s-100′s mg) and some require sample processing to 
provide indirect measurements of DNA damage, i.e. via activation of a reporter genes in ToxTracker or γ.H2AX 
as an indication of double strand break repair without measuring micronucleus induction directly.

In this study we describe the development, optimisation and validation of a high-throughput screening assay 
which provides a comprehensive analysis of small molecule genotoxic potential (Fig. 1). By leveraging commer-
cially available high-content imaging platforms, this assay concurrently detects micronuclei and other cellular 
markers associated with genotoxicity to provide mechanistic information. Combining these platforms with 
computational approaches and machine learning models has allowed the rapid and accurate assessment of the 
genotoxic potential of novel chemistry. By generating complex imaging data sets which can be probed for further 
information provides the potential to identify previously undetermined biomarkers of genotoxic risk. The assay 
provides the opportunity to screen multiple compounds simultaneously, for example early in pharmaceutical 
development when chemical design is not yet fixed and to predict for regulatory in vitro micronucleus assays 
that are required during pharmaceutical development.

Results
Assay development.  Initial analysis identified the human lung epithelial cell line (A549) as an appropri-
ate model system for this high-throughput assay; A549 cells are adherent, chromosomally stable (endogenous 
micronucleus frequency 3% ± 1.6% SD—data not shown) with a characteristic cell cycle profile. Other cell lines, 
including TK6, L5178Y and MCF10A were considered but dismissed based upon their adherence properties.

To align with the regulatory requirements for in vitro micronucleus assays an upper limit dose of 1 mM 
was selected4,12. The lower limit of 1 nM was selected following a literature review of doses at which genotoxic 
responses have been observed. Integrating Acoustic Droplet Ejection (ADE) technology with a 384 well plate 
format meant small compound amounts (~ 2 mg) were required to generate a 15-point half-log dose response 
(1 mM–1 nM), ensuring the suitability of the assay for the screening of compounds early in pharmaceutical 
development13 (S. Fig. S1). To minimise compound requirement dosing in 2% solvent was required, this did 
not induce significant morphologic or chromosomal changes in cells as illustrated by micronucleus analysis (S. 
Fig. S2a). A 24-h treatment with a 24-h recovery period was determined to be optimal for the determination of 
the genotoxic potential of both aneugens and clastogens (S. Fig. S2c,d).

The relationship between cytotoxicity and genotoxicity is complex, and since excessive cytotoxicity can mani-
fest as DNA damage it is recommended that the maximal limit dose for analysis in cytogenetic assays is the dose 
at which approximately 50% cytotoxicity is observed4,14. In this assay the first dose at which > 50% reduction in 
cell number compared to the DMSO control was observed was the limit (cytotoxic concentration: CC50) dose.

Assay validation.  The assay integrates multiple endpoints to provide mode of action information. Hoe-
chst, (nuclear DNA stain), is used to detect cell cycle changes, cell viability (cytotoxicity) as well as to measure 
micronucleus induction15,16. Phosphorylated Histone H2AX (γ.H2AX) was used to measure sites of DNA double 
strand break repair17, therefore, an induction of γ.H2AX foci indicated clastogenic damage. The presence of a 

Figure 1.   Representation of high throughput screening approach and methodologies to determine small 
molecule genotoxic potential. Illustrations in figure created with BioRender.com.
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kinetochore within a micronucleus indicates whole chromosome loss i.e. aneugencity, and was detected by anti-
bodies targeted to kinetochore regions18,19. CellMask plasma membrane stain (ThermoFisher Scientific) was also 
used to define the cytoplasmic boundary.

To validate the assay endpoints, the responses to a set of 28 validation compounds with well-defined geno-
toxic or non-genotoxic activities were examined in three replicate experiments (two technical replicates/experi-
ment)20,21. Confocal images of cells treated with validation compounds were analysed for micronucleus induc-
tion using Columbus image analysis software. All genotoxic compounds, except 5′Flourouracil and Cadmium 
Chloride, induced significant dose-related increases in the number of micronucleate cells (Fig. 2a). For the known 
aneugens a concurrent increase in the proportion of micronuclei that contained a kinetochore was observed 
whereas a decrease was observed for all known clastogenic compounds (Fig. 2a,b). All known clastogenic com-
pounds, except 5-Fluorouracil and Cadmium Chloride, induced significant increases in the number of γ.H2AX 
foci. As expected, no change in the number of γ.H2AX foci was observed upon treatment with known aneugens 
(Fig. 2a). The results for the primary assay endpoint, MN induction, correlated well with the results from previ-
ous in vitro studies, 86% sensitivity and 80% specificity.

When comparing assay runs, all-of the primary assay endpoints discussed above were highly reproducible. 
The induction of micronuclei in A549 cells upon exposure to Paclitaxel (2.5 nM) and Etoposide (0.35 µM), and 
the inter-plate control compounds, remained consistent (Fig. 2c), as did the dose-related induction of kine-
tochore positive micronuclei upon exposure to multiple different aneugenic compounds including colchicine and 
Paclitaxel (Fig. 2d). Exposure to clastogenic compounds (Aphidicolin and Etoposide) also induced remarkably 
reproducible dose related trends in γ.H2AX foci induction (Fig. 2e).

To establish thresholds for the assessment of the genotoxic activity of an unknown chemical entity, the 
observed magnitude of the responses of the validation compounds was compared to the inter-plate DMSO con-
trol wells. An unknown compound that induced greater than three-fold increase in micronucleus frequency was 
determined to give a positive genotoxic response in this assay; this threshold aligns with previously determined 
criteria for other high content micronucleus assays6,22 and all validation compounds were clearly positive using 
the criteria defined above, except the nucleoside analogue 5′Fluorouracil and the metal salt Cadmium Chloride. 
The antiviral agent zidovudine, induced a 2.7 (± 0.47) fold increase in micronucleus frequency in this assay, 
indicating a weak positive response. Multiple compounds that induced between a two and three-fold increase 
in micronuclei in this assay were tested in a regulatory in vitro micronucleus assay in L5178Y mouse lymphoma 
cells. All these compounds gave negative results according to the criteria set out in the guidelines, providing 
further support for the utilisation of a > 3-fold cut off for a positive response in this assay (S. Fig. S2b).

Data analysis.  To further increase the throughput of the assay, automated data analysis methods were devel-
oped and employed to determine compound genotoxic potential without human data interpretation. The statis-
tical analysis workflow consisted of three separate processes; initially the relevant compound concentrations to 
be used for subsequent analysis (CC50 exemplars) were determined. The data at these concentrations were then 
utilised to perform a genotoxicity flagging routine based solely on micronucleus frequency and finally mode of 
action was predicted for the genotoxic compounds (Fig. 3).

In the example shown here, the CC50 dose, or the first dose at which a greater than 50% reduction in cell 
number was observed for the pro-typical aneugen colchicine (0.1 µM) and for the clastogen Cisplatin (1 mM) are 
shown. Sucrose, which was utilised as a negative control in this study, did not exhibit any cytotoxicity therefore 
1 mM was selected as the exemplar dose for further analysis.

The frequency of micronuclei (compared to inter-plate DMSO control wells) at the selected dose was then 
plotted, the positive and borderline compounds, as determined using the thresholds defined above (in this case; 
Cisplatin and Colchicine) were then selected for mechanism assessment.

To enable the assessment of compound mode of action Gaussian curves were fitted using the plate-specific 
aneugenic and clastogenic control compounds (Paclitaxel and Etoposide respectively) using the values of their 
hallmark feature for aneugenicity and clastogenicity (numbers of micronuclei with kinetochores and numbers 
of γ.H2AX foci per nucleus, respectively).

A simple rule-based model was applied to predict mode of action; if a compound value for the hallmark 
feature was larger than mean of the plate controls then the compound received a maximal score for being an 
aneugen or a clastogen. However, if the compound value was below the plate control mean for that feature, then 
the probability density function (PDF) was evaluated at that point. The resulting likelihood was then divided 
by the maximal likelihood of the respective Gaussian function, creating a “mechanism score” (Score) bounded 
between 0.0 and 1.0. Using these methods, Colchicine was given a maximal score of 1.0 of being an aneugen and 
Cisplatin a score of 1.0 of being a clastogen.

Validation of additional assay endpoints.  The use of image analysis software (in this case, Columbus 
Image Data Storage and Analysis system) allowed the multiparametric comparison of numerous phenotypic end 
points and the images were further analysed for additional endpoints to form complex imaging data sets.

Changes in cellular and nuclear morphology, including but not limited to; nuclear and micronuclear symme-
try and roundness were examined for all fluorophores. Intensity and morphology measurements were recorded 
for each biomarker, for example, foci size, shape, intensity and symmetry for the γ.H2AX antibody.

Unlike flow-cytometry-based methods, this assay can discriminate between γ.H2AX foci and pan-nuclear 
staining (Fig. 4a), providing an opportunity to assess the sub-nuclear kinetics of γ.H2AX accumulation after 
compound treatment. γ.H2AX foci are formed at sites of double strand breaks and it is widely accepted that 
the number of foci are directly proportional to the number of breaks, and so, as in this assay, can therefore act 
as a quantifiable index of DNA damage23. By comparison pan-nuclear staining has been observed upon the 
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induction of intense replication stress and precedes irreversible cell death in this context24. More broadly pan-
nuclear γ.H2AX staining has been associated with toxicity, cell death and apoptosis25. The ability of this imaging 
based method to discriminate between these phenotypes is illustrated upon treatment with 4-Nitroquinoline 
1-oxide (4NQO26) which induced increases in γ.H2AX foci at lower concentrations than pan γ.H2AX stained 
nuclei, increases in which corresponded with the induction in markers of cell death (nuclear condensation and 
fragmentation) (Fig. 4b,c).
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Figure 2.   Validation of a high content in vitro micronucleus assay. (a) Normalised (c.f inter-plate DMSO 
wells) response (mean ± SEM) of validation compounds at the assay limit dose, illustrated are fold change in 
micronucleus per cell, fold change in kinetochore positive micronuclei per cell and fold change in γ.H2AX 
foci/nucleus. Non-genotoxic chemicals: purple shading, aneugenic chemicals: orange shading and clastogenic 
chemicals: green shading (n = 3, except Staurosporine and Zidovudine n = 2 and 5′Fluorouracil n = 4). (b) 
Representative images from plate control wells, cells treated with DMSO, Paclitaxel (2.5 nM) or Etoposide 
(0.35uM), DNA (Hoechst, blue), Kinetochore (CREST, green) and γ.H2AX foci (γ.H2AX, orange). (c) Intra-
assay reproducibility for inter-plate controls and MOA assay endpoints. Variability in cell number and number 
of micronuclei (expressed as micronuclei/cell), when normalised to mean DMSO control across 3 independent 
assay runs (8 plates/run); negative control (DMS; purple-14 wells/plate), aneugenic control (Paclitaxel; green-
12 wells/plate) and clastogenic control (Etoposide; orange-12 wells/plate). (d) Fold change (normalised to 
inter-plate DMSO controls) in kinetochore positive micronuclei following treatment with known aneugens: 
Colchicine and Paclitaxel from 3 independent assay runs. (e) Fold change (normalised to inter-plate DMSO 
controls) in γ.H2AX foci per nuclei following treatment with known clastogenic chemicals: Aphidicolin and 
Etoposide from 3 independent assay runs.
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The analysis of cell cycle changes is an important consideration when evaluating genotoxic mode of action and 
can ascertain differential cytotoxic and cytostatic responses. The assay obtains Hoechst intensity measurements 
at the single cell level which enabled the generation of cell cycle profiles using a novel algorithm based upon 
those utilised for flow cytometry cell cycle analysis27. To validate this algorithm unsynchronised A549 cells were 
dosed with well characterised cell-cycle modulators for 48 h and the responses, as detected by the algorithm and 
were verified by immunofluorescence staining with cell-cycle specific markers, Cyclin D1 or Cyclin A2 (Fig. 4d).

As expected, treatment with 5-Fluorouracil (5′FU) (300 µM), an inhibitor of thymidyl synthase activity during 
S phase22,28 led to a decrease in the proportion of cells classified as S phase and a concurrent increase in cells in 
G1, as well as an increase in apoptotic cells, as indicated by the increase in the Sub G1 cellular fraction (Fig. 4e). 
Treatment with the nucleoside analogue Cytarabine (ara-c) (300 µM) for 48 h, induced a cell-cycle arrest at S 
phase. In line with its mode of action, treatment with Nocodazole (Noc) (0.3 µM), an inhibitor of microtubule-
dependent cellular processes such as mitosis, lead to an increase in the proportion of cells in G2 (Fig. 4e).

Cyclin D1 levels increase during G2 phase, are maintained through mitosis and G1 phase, and decline when 
DNA synthesis begins29, whereas levels of Cyclin A2 increase through S Phase30 peak mid S phase and decline late 
in G231,32. For all the cell-cycle changes mentioned above, concurrent changes in cell-cycle phase specific mark-
ers were observed. In addition, an increase in the percentage of cells with newly synthesised DNA, as indicated 
using a 5-Ethynyl-2´-deoxyuridine (EdU) incorporation assay, was also noted with nocodazole and Cytarabine 
(Fig. 4d), indicating the suitability of the automated cell cycle analysis method for utilisation in this assay.

Figure 3.   Statistical analysis workflow for automated prediction of genotoxicity for validation compounds. 
(1) Section of CC50 exemplars: the first concentration at which a greater than 50% reduction in cell number 
is observed or in the case of no cytotoxicity the highest concentration, is selected. Highlighted are Colchicine 
(Orange:0.1uM), Cisplatin (Green: 1 mM) and Sucrose (Purple: 1 mM). (2) Genotoxicity flagging: the frequency 
of micronuclei compared to average inter-pate DMSO control for each validation compound is shown, 
compounds with ≥ 2–< 3-fold increase in micronuclei are flagged as borderline and compounds > 3-fold increase 
in micronuclei classed as positive. Highlighted are replicate responses of Colchicine (Orange), Cisplatin (Green) 
and Sucrose (Purple). (3) Genotoxicity mechanism prediction. Gaussian distribution of inter-plate aneugen 
and clastogen control well responses for (a) the proportion of micronuclei with a kinetochore and (b) number 
of H2AX foci/nucleus respectively are plotted, responses for colchicine (orange: aneugen) and cisplatin (green: 
clastogen) are represented on these curves.
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Discussion
By combining high-throughput screening technologies with multiparametric image analysis methods and com-
putational approaches in a single assay we can reliably indicate the genotoxic potential and mechanism of action 
of an unknown compound. In the context of pharmaceutical development this assays allows the complex assess-
ment of genotoxic potential to be made early in the drug development pipeline, when chemistry is not yet fixed, 
multiple compounds from different series are under evaluation, compound availability is limited and compound 
design can be influenced. The assay is currently used to predict for the regulatory standard in vitro micronucleus 
assay that is required for pharmaceutical development and therefore in turn this assay can be used to provide 
a mechanistic understanding of the genotoxic potential of a small molecule in vivo33. Small molecules assessed 
using this assay within AstraZeneca that are selected as candidate compounds are further assessed using the 
regulatory test battery, as shown here the results from this assay correlate well with the results observed in the 
regulatory assay and thereby this assay provides the opportunity to stratify compound selection. This assay may 
also be utilised outside of the pharmaceutical environment, the methodologies discussed here can be applied 
to the assessment of any unknown chemical entity and can be adapted for the assessment of, for example, 
agrochemicals. In addition, the endpoints discussed in this assay can also utilised more widely, for instance in 
oncology research, to assess the efficacy of potential treatments particularly those targeting the DNA Damage 
Response (DDR) pathways.
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Figure 4.   Validation of additional assay endpoints. Effect of A549 cell treatment with increasing concentrations 
of NQO on γ.H2AX phenotypes. (a) Quantification of the % of cells with pan γ.H2AX staining (blue), relative 
toxicity, illustrated by reductions in cell number (grey) and the average number of γ.H2AX foci per nucleus 
(pink). Horizontal lines illustrate the dose at which increases in γ.H2AX foci (pink) and % pan γ.H2AX stained 
cells were initially observed. (b) Quantification of the % of cells with pan γ.H2AX staining (blue), and nuclear 
condensation (green) and fragmentation (purple) phenotypes as indicators of cell death. (c) Representative 
immunofluorescence images of A549 cell nuclei treated with 0, 0.3 µM and 10 µM NQO (scale bar 20 µM), 
DNA (Hoechst, blue) and γ.H2AX (orange). Validation of use of Hoechst intensity for cell cycle analysis. (d) 
Representative immunofluorescence images of cells treated with DMSO (control), 5-Fluorouracil (5′-FU) 
(300 µM) Cytarabine (ara-c) (300 µM) and Nocodazole (0.3 µM); DNA (Hoechst, blue) with cyclin D1 (orange) 
EDU-GFP (green) or Cyclin A2 (pink). (e) Cell cycle analysis based on Hoechst intensity analysis of A549 
cells treated for 48 h with DMSO (control), 5-Fluorouracil (5′-FU) (300 µM) Cytarabine (ara-c) (300 µM) and 
Nocodazole (Noc) (0.3 µM).
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To determine the dosing schedule for this assay we investigated the responses of known aneugens and clasto-
gens after different treatment and recovery regimens (24 or 48-h continuous treatment or a 24-h treatment + 24-h 
recovery. The inclusion of a recovery period has been shown to aid the detection of aneugenic compounds34. 
In this assay, all known genotoxic compounds induced significant increases in micronuclei with all treatment 
regimens, however, the magnitude of genotoxic response (micronucleus frequency) for the aneugenic compounds 
increased with the inclusion of a recovery period whilst the detection of clastogens was not adversely affected. 
Therefore, the 24-h treatment plus 24-h recovery regimen was selected.

The assay was validated with a set of well-defined genotoxicants (clastogens and aneugens) and non-geno-
toxicants. All, bar two (5-Fluorouracil and Cadmium Chloride) of the known genotoxicants tested were deter-
mined to be genotoxic according to the acceptability criteria for a positive in this assay i.e. a ≥ 3-fold induction 
of micronuclei at the limit dose for cytotoxicity4,33. The results from the assay correlated with published in vitro 
micronucleus data from other mammalian cell lines. Zidovudine, an antiviral agent induced a weak positive 
response in this assay, this is in agreement with previously published data for in vitro micronucleus assays in 
L5178Y mouse lymphoma cells, where a weak positive result was obtained only at the highest concentrations 
tested (4000–5000 μg/ml)35. The principal advantage of this assay is the simultaneous detection of DNA dam-
age mode of action and resulting cell fate. Mode of action assessments of genotoxicity can be associated with 
carcinogenic risk36. Within the pharmaceutical industry acceptable thresholds can be established for compounds 
that are considered non-DNA reactive e.g. aneugens37. This is less accepted for a DNA reactive compounds38. 
However, the generation of high content quantitative dose response data, such as that in this assay, could enable 
safe dose margins or thresholds to be established for compounds using benchmark dose considerations38.

All genotoxic agents tested in this assay elicited the expected response except 5-Flurouracil and Cadmium 
Chloride. Cadmium Chloride is an inorganic carcinogen; the mechanisms that lead to cadmium induced car-
cinogenesis are complex and include aberrant gene expression, inhibition of DNA damage repair, induction of 
oxidative stress and apoptosis, these mechanisms have been shown to depend on dose and treatment duration39. 
Although non-genotoxic mechanisms such as the upregulation of intracellular signalling pathways leading to 
increased mitogenesis have been proposed to be a major contributor to the carcinogenic potential of Cad-
mium in vivo40, cadmium has been shown to induce micronuclei and DNA damage in vitro when solubilised in 
water41–43. In the development of this assay, all test compounds were solubilised in DMSO, although the solubility 
of cadmium chloride in DMSO (1800 g/l (25 °C) is similar to in water [1400 g/l (25 °C)], it is possible that the 
acoustic dosing technologies utilised in this assay may not be compatible with dosing metal salt solutions. In 
multiple cell lines, Cadmium induced DNA damage is observed at relatively high doses that are associated with 
cytotoxicity (500, 1000 and 2000 µM)44 furthermore A549 cells have been shown to exhibit tolerance towards 
cadmium induced cell death when compared to other lines (HEK293, HC116p53wt and HC116p53−/− and 
CHO-9)45,46, highlighting the potential cell line and dose specific effects of this compound that may contribute 
to the lack of response observed in this assay. To assess this prolonged treatment regimens, with and without the 
inclusion of a recovery period, as well as a broader dose range could be assessed.

For all known clastogens tested, except for 5-Flurouracil and Cadmium Chloride, an increase in micronu-
cleus frequency and in nuclear γ.H2AX foci was observed; there was also a marked decrease in proportion of 
kinetochore-containing micronuclei compared to the DMSO control, potentially highlighting this feature as a 
complementary indicator of clastogenicity. 5-Fluorouracil, is an analogue of uracil and is readily converted to 
a series of active metabolites in cells, which can be incorporated into RNA and DNA, disrupting synthesis as 
well as inhibiting the nucleotide synthetic enzyme thymidylate synthase, limiting the availability of thymidylate, 
which is necessary for DNA replication and repair47. The lack of observed response for 5-Fluorouracil may 
therefore reflect the mechanism by which 5-Fluorouracil exhibits genotoxic effects, γ.H2AX foci are not a direct 
measure of DNA damage rather of the DNA damage response associated with double stand break repair and 
therefore do not reflect all types of DNA damage e.g. single strand DNA breaks, replication fork stalling etc.48. 
The inclusion of a compound-free recovery period in this assay, during which double strand breaks may be 
repaired may also contribute especially considering γ.H2AX formation has been shown to be rapid, for example 
foci formation after ionizing radiation reaches a maximum after 30 min14. It cannot be ruled out however, that 
the difference in sensitivity observed in this assay compared to others reported in the literature11 may be due 
to a cell-line specific effect as demonstrated by Khuory et al. when comparing magnitude of γ.H2AX induction 
after treatment with 5-Fluorouracil in 4 cell lines49. Differences in DNA repair capacities or drug transporters 
in A549 cells compared to other commonly utilised cells lines may also contribute to this response. As increases 
in γ.H2AX foci are correlated with the transition in to mitosis (G2/M) in the cell cycle17, one must consider that 
increases in γ.H2AX foci may also indicate increased cell proliferation or cell cycle block. To further confirm 
the γ.H2AX foci increases observed in this assay are due to damage other markers for DNA damage response 
such a 53BP1 could also be assessed25,50,51.

For all the known aneugens tested, an increase in the proportion of kinetochore-containing micronuclei was 
observed and interestingly, a concurrent decrease in the number of nuclear γ.H2AX foci. This result corresponds 
with previously reported results from52 who measured γ.H2AX using whole cell ELISA and found that a decrease 
or no change in γ.H2AX was observed for aneugens at concentrations that induced micronuclei. Although the 
evaluation of the presence of a centromeric signal in micronuclei is accepted as a reliable method for assessing 
genotoxic mode of action, in other published genotoxicity screening assays, phosphorylated histone-H3, a bio-
marker of mitotic cells (aurora kinase family mediated phosphorylation of Serine 10 is required during mitosis for 
chromosome segregation and condensation53), has been utilised to determine an aneugenic mode of action11,54. 
In the assay presented here, a comprehensive analysis of the ability of a compound to induce micronuclei via an 
anagenic modes of action is generated by combining the image analysis process implemented in Columbus and 
the cell cycle profile analysis which allows the quantification of both the number of mitotic cells and number of 
micronuclei containing a kinetochore as well as compound induced cell cycle blocks.
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By applying automated screening technologies13, this assay has significantly increased throughput compared to 
traditional in vitro micronucleus assays; we have generated data from hundreds of compounds in a short period 
of time (> 1000 compounds screened in 14 independent assay runs). The ability to test multiple compounds from 
various chemical series and compare the magnitude of micronucleus response (and other genotoxic endpoints) 
to on and off target efficacy provides the opportunity to determine chemical sub-structures that may be associ-
ated with increased carcinogenic risk. There is a long history of rule-based in silico models for genotoxicity 
prediction and there multiple commercially available QSAR and machine learning models for the prediction 
of mutagenic (Ames positive) compounds55–57, however, models for prediction of other mechanisms of DNA 
damage are very limited. Utilising the high content data generated from this assay may provide the basis for the 
development of such models.

An important consideration for the assessment of genotoxicity is the metabolic competence of a test system as 
some test substances require transformation to form a DNA reactive metabolite. This assay uses A549 cells, which 
have been shown to have limited metabolic capacity, specifically A549 cells have been shown to express both 
P450 IA1 and P450 IIB6, suggesting a capacity for phase I oxidative metabolism58, however the specific metabolic 
capacity of these cells, and their ability to perform phase II metabolism is not clear. To address this limitation, 
this assay could be supplemented by the addition of an exogenous metabolic activation system, such as the S9 
fraction from the homogenized livers of chemically induced rats. S9 fraction has been shown to induce significant 
cytotoxicity in cell-based assays59 a phenomenon we have observed with A549 cells. Further approaches such 
as the use of a hepatoma cell lines and terminally differentiated HepaRG cells are also currently being explored.

Understanding the potential on and off target genetic toxicology effects of a small molecule is particularly 
important for classes of compounds where promiscuity is known to be an issue, and can influence the chemical 
design of, for example kinase inhibitors. Olaharski et al.60 compared kinase inhibition to micronucleus frequency 
and identified a panel of 21 kinases predictive of micronucleus induction. By combining the assay we have 
developed here with, for example CRISPR knock out cell lines and phenotypic siNRNA and CRISPR screening 
approaches, there is the potential to aid in the identification of further novel molecular targets associated with 
genotoxic risk61.

The variability between assay runs was very low; dose responses observed for individual chemicals were 
highly reproducible for all the assay endpoints, even those measured at the single pixel level (kinetochore). This 
reproducibility may, in part, be facilitated by the use of robotic automation, which can enable improvements in 
the consistency of assay timings and in the control of plate handling; however, although the assay discussed here 
is fully automated from dosing to fixation, manual handling of plates can also be employed to reduce instrumen-
tation cost and therefore enable transfer of similar assays to facilities without automation.

The use of immunofluorescence and confocal image analysis provides several benefits over the current com-
mercially available flow-cytometry-based multi end-point genotoxicity assessment assays. By utilising image 
analysis software and single cell intensity measurements of nuclear stains, well characterised methods from flow 
cytometry applications can be adapted and applied to determine cell cycle profiles from images. This method 
allows the analysis of cell cycle and cytostatic events in one channel without the use of further immunofluores-
cence markers and enables the direct assessment of cell cycle profiles alongside genotoxic and mode of action 
endpoints. The ability to directly measure multiple end-points, in situ, in real time and at the single cell level 
allows a more robust assessment of mode of action and the tracking of the impact of DNA damage throughout 
the cell cycle. This high-content assays’ ability to distinguish between apoptosis, and both γ.H2AX foci and 
pan γ.H2AX provides further information regarding the mode of action, as a sudden the change from foci to 
pan γ.H2AX can indicate replication catastrophe62. The high content images generated from this assay proved 
unprecedented levels of information and the potential to utilise these images to develop deep learning models, 
such as CNN (convolutional neural networks) to provide direct predictions of genotoxic potential without image 
analysis software is currently being explored.

By applying data analysis approaches and simple rule-based models we were able to determine compound 
genotoxic potential from image analysis data sets without manual data interpretation. The advantage of apply-
ing these techniques and utilising the respective Gaussian function approach discussed here is that the effect 
of assay-to-assay variability is minimised (by fitting curves to plate-specific controls), potential human bias is 
removed and the throughput of the assay is further increased. Moreover, the methods discussed here can be 
applied to data from various image analysis platforms and are not limited to the complex data sets generated in 
this screen. When compared to manual interpretation the model developed here classified with 95% accuracy, 
the aneugenic, clastogenic and negative compounds within the data set (Matthews correlation coefficient: 0.9), 
reducing analysis time by 80% whilst concurrently minimising human bias.

In conclusion, by combining high throughput screening, multiparametric image analysis and machine learn-
ing approaches we can generate complex genotoxicity safety assessments of early chemistry from a single assay, 
ensuring the development of safer drugs and transforming the assessment of genotoxicity within AstraZeneca.

Materials and experimental proceedures
Reagents.  A549 Cells (American Type Culture Collection (ATCC), cat. No. CCL-185). All reagents and 
validation compounds were purchased from Sigma Aldrich unless otherwise stated.

Validation compound selection.  Validation compounds were selected from the recommended list of 
chemicals for the assessment of the performance of new or old improved genotoxicity assays20 and from other 
published assays developed for the assessment of genotoxicity9,10,54.
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Cell culture.  A549 Cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 media supple-
mented with 2 mM l-Glutamine (Gibco), 10% v/v Foetal Calf Serum (FCS) (Gibco) and penicillin (100 units)-
streptomycin (0.1  mg/ml). Cells were maintained sub-confluent prior to treatment. All incubations prior to 
fixation were at 37 °C, 5% CO2 in a humidified incubator.

Screening assay.  A549 cells were seeded at 750 cells/well in 384-well CellCarrier-384 Ultra microplates 
(PerkinElmer) 24 h prior to treatment. An integrated robotic system from HighRes BioSolutions controlled by 
Cellario software (HighRes BioSolutions) was used to perform the assay. A Multidrop Combi (ThermoFisher 
Scientific) was used to dispense cells and antibody solutions. Aspiration and wash steps were completed using a 
BioTek EL406 plate washer (BioTek).

Compound treatment.  A Labcyte Echo 555 Acoustic Dispenser (Labcyte) was used to dose a 15-point 
half-log dose response (1 mM–1 nM, solvent 2% v/v) according to plate map design in S. Fig. S1. Inter-plate 
control compounds were as follows; [Paclitaxel (aneugen), 12 wells 2.5 nM) and Etoposide (clastogen), 12 wells 
(0.35 μM)]. Cells were incubated for 24 h prior to washing with media and a further 24-h incubation.

Fixation and immunofluorescence.  Cell were fixed in 4% paraformaldehyde (PFA) for 30 min at room 
temperature, prior to washing three times with phosphate buffered saline (PBS) followed by permeabilisation 
and incubation in blocking solution (PBS with 1.1% BSA and 0.1% Triton X-100) for one hour at room tempera-
ture. Cells were then incubated overnight at 4 °C with the following antibodies: anti-Centromere Antibodies 
(derived from human CREST patient serum (1:1000, Antibodies Incorporated)) and anti-γ.H2AX [(anti-phos-
pho-Histone H2AX (Ser139), mouse) clone JBW301, 1: 10,000, Millipore] prepared in PBS block. Cells were 
washed three times with PBS and incubated at room temperature for one hour with secondary antibodies and 
DNA and cellular stains prepared in PBS block: [Goat anti-human Alexa 488 (1:500, ThermoFisher Scientific), 
Goat anti-mouse Alexa 555 (ThermoFisher), HCS CellMask Deep Red Plasma Membrane Stain (1:20,000, Ther-
moFisher Scientific) and Hoechst 33342 (1:1000, Invitrogen)]. Cells were washed with and then stored in PBS 
with ProClin 300 prior to imaging.

Confocal microscopy.  Cells were imaged on a confocal scanner (Cell Voyager 7000 (Yokogawa Inc.)) using 
20× objective. Eight identical fields of view were captured per well in a single focal plane as determined by the 
integrated software focus algorithm in the Hoechst channel (455 nm). An ACell benchtop robot (HighRes Bio-
Solutions) controlled by Cellario software (HighRes BioSolutions) was used for plate handling.

Image analysis.  Image analysis was completed using Columbus Image Data Storage and Analysis System 
(PerkinElmer), image analysis software, scripts and building blocks and each assay run was calibrated using 
positive and negative control treated wells. Nuclei were detected using the “find nuclei” building block in the 
Hoechst channel, border objects were removed to ensure only whole nuclei were analysed. Micronuclei (MN) 
were detected using the “find Micronuclei” building block, and were filtered to align with the MN scoring crite-
ria described by Fenech (2007)63. The “find spots” building block was utilised for kinetochore and for γ.H2AX 
foci analysis. Staining intensity and morphological properties were calculated for nuclei in all channels and pan 
γ.H2AX nuclei were determined from nuclear intensity properties.

The csv files of output data from Columbus were annotated with compound information and cell cycle profiles 
analysed using the R 3.6.0 software64. Cell-cycle distribution was estimated using Hoechst intensity measure-
ments at the single nuclei level and an adaption the Dean-Jett-Fox algorithm27, which assumed all G1 cells had 
2 N DNA, all G2 cells had 4 N DNA, with S phase cells distributed between. It was assumed all measurements 
are perturbed by normally distributed random noise. Cell-cycle distributions were fitted to DMSO control 
cells and calculated as follows: the G1 to G2 peak ratio was fixed to account for the inherent noise generated by 
immunofluorescence data, the standard deviation of the noise was assumed to be equal over the whole range of 
measurements; cells more than two standard deviations below the G1 peak were classified as Sub G1; cells within 
two standard deviations of the G1 peak and cells above two standard deviations from G1, but below 2 standard 
deviations from the G2 peak were classified as S; cells within 2 standard deviations of the G2 peak were classified 
as G2 and those greater than 2 standard deviations above the G2 peak were classified as greater than 4 N. All 
parameters were optimised simultaneously using the Nelder–Mead algorithm65.

This use of Hoechst channel intensities for cell-cycle analysis was validated by treatment of A549 cells for 24 h, 
48 h, or 24 h (+ 24-h recovery period) with cell-cycle modulators using the same treatment and wash methods 
as above. Immunofluorescence was completed as above using Cyclin A (1:100, Abcam) and Cyclin D (1: 1000, 
Abcam) antibodies. DNA synthesis analysis was completed using the Click-iTTM EDU Alexa Fluro 488 Imaging 
Kit and the Click- iTTM reaction cocktail (ThermoFisher Scientific) followed by incubation with DNA stain 
FxCycle Violet (ThermoFisher Scientific) for 1 h.

Well‑masking procedure.  Compound precipitation can interfere with micronucleus identification. To 
identify wells that contained precipitated compounds, the number of micronuclei/well was plotted against com-
pound concentration. Excessive increases in micronuclei numbers, which could not be explained by genotoxic 
activity (for example, an increase from 50 to 15,000 micronuclei/well upon a two-fold increase of compound 
concentration), were flagged as potentially containing compound precipitation. The flagged wells were omitted 
from the analysis (CC50 exemplar selection, see below).
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Statistical workflow for genotoxicity prediction.  The statistical framework for data processing and 
analysis was developed using Python 3 and consisted of three consecutive steps:

1.	 CC50 exemplar selection algorithm
	   For CC50 exemplar selection, the mean cell number in the DMSO control wells was calculated per plate. 

This was utilised as the assumed “expected” cell number for each well on the plate, if the test compound had 
no effect on cell number. For each well, the ratio of the number of cells in that well (“observed”) compared 
to the expected number of cells was calculated. Wells or with an observed/expected ratio ≤ 0.5 were flagged 
as cytotoxic. In order to minimise potential experimental errors that may confound the results, for example 
pipetting or washing errors in a single well or position in a plate or imaging artefacts that may artificially alter 
cell number, a data smoothing algorithm scanned the assigned CC50 labels for each 15 point dose response. 
A cytotoxic concentration surrounded by two negative, non-cytotoxic concentrations, was exchanged for 
non-cytotoxic label as in such cases it was likely that such a response was due to well-to-well variability, rather 
than genuine cytotoxicity. If none of the fifteen concentrations were assigned cytotoxic label, the algorithm 
assigned CC50 to be the highest concentration.

	   After selecting one CC50 exemplar for each replicate, a well-masking routine was employed. Briefly, for 
every well that was masked (due to compound precipitation), the algorithm removed that well and all wells 
with higher concentrations of that compound and set the highest remaining concentration as the CC50 
exemplar.

2.	 Genotoxicity activity flagging
	   To identify genotoxic compounds, a simple rule-based approach was employed. In line with the validated 

thresholds for genotoxic potential identification, an individual well was classified as “genotoxic” if at least 
a three-fold increase in the mean number of micronuclei/cells compared to the plate DMSO controls was 
observed. A fold increase between two and three-fold the number of micronuclei was flagged as a “border-
line genotoxic” response. Compounds with less than a two-fold increase in the proportion of micronuclei 
containing cells were considered “non-genotoxic”.

3.	 Genotoxicity mechanism prediction
	   An unsupervised machine learning method was employed to assign scores for genotoxic compound 

mechanisms of action; aneugenic, clastogenic or mixed mode of genotoxicity. Two features were employed 
for this task: the mean number of micronuclei with kinetochore per each cell (abbreviated further as F1, 
hallmark of aneugenicity) and the mean number of γ.H2AX foci per nucleus (F2, hallmark of clastogenicity). 
For each assay plate, two univariate Gaussian curves were fitted using Python 3 SciPy package66 to the F1 and 
F2 values of the intra-plate aneugen and clastogen controls, respectively. The estimated standard deviations 
of the Gaussians were then multiplied by a factor of 3. A compound with F1 value equal or higher than the 
mean of the aneugen control was automatically assigned a maximal score of 1.0 of being an aneugen. If the 
compound’s F1 value was below the mean of the aneugen control, the Gaussian probability density function 
(PDF) at that point was evaluated and the resulting likelihood was converted to a score by dividing it by the 
maximal likelihood of that PDF (a score of 0.0 meaning a non-aneugenic and 1.0 meaning a highly aneugenic 
compound). The same procedure was then repeated for the F2 values of each compound to calculate the 
clastogenicity score using the respective clastogen plate controls. Finally, the mechanism predictions of the 
two replicates were aggregated using mean.

Python code for this algorithm and an example data set is provided in supplementary data file 1.

Code availability
Commercially available Python 3 SciPy package was utilised in this study.
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References
	 1.	 Mattiazzi Usaj, M. et al. High-content screening for quantitative cell biology. Trends Cell Biol. 26, 598–611. https​://doi.org/10.1016/j.

tcb.2016.03.008 (2016).
	 2.	 Murphy, K. P. Machine Learning: A Probabilistic Perspective (The MIT Press, New York, 2012).
	 3.	 Sieber, O. M., Heinimann, K. & Tomlinson, I. P. Genomic instability—the engine of tumorigenesis?. Nat. Rev. Cancer 3, 701–708. 

https​://doi.org/10.1038/nrc11​70 (2003).
	 4.	 Guideline, I. H. T. in International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for 

Human Use. ICH Expert Working Group. 1–25.
	 5.	 Diaz, D., Scott, A., Carmichael, P., Shi, W. & Costales, C. Evaluation of an automated in vitro micronucleus assay in CHO-K1 cells. 

Mutat. Res. 630, 1–13. https​://doi.org/10.1016/j.mrgen​tox.2007.02.006 (2007).
	 6.	 Mondal, M. S. et al. High-content micronucleus assay in genotoxicity profiling: Initial-stage development and some applications 

in the investigative/lead-finding studies in drug discovery. Toxicol. Sci. 118, 71–85. https​://doi.org/10.1093/toxsc​i/kfq18​1 (2010).
	 7.	 Sun, B. et al. Assessing dose-dependent differences in DNA-damage, p53 response and genotoxicity for quercetin and curcumin. 

Toxicol. In Vitro Int. J. Publ. Assoc. BIBRA 27, 1877–1887. https​://doi.org/10.1016/j.tiv.2013.05.015 (2013).
	 8.	 Wilde, E. C. et al. A novel, integrated in vitro carcinogenicity test to identify genotoxic and non-genotoxic carcinogens using 

human lymphoblastoid cells. Arch. Toxicol. 92, 935–951 (2018).
	 9.	 Bryce, S. M., Bernacki, D. T., Bemis, J. C. & Dertinger, S. D. Genotoxic mode of action predictions from a multiplexed flow cyto-

metric assay and a machine learning approach. Environ. Mol. Mutagen. 57, 171–189. https​://doi.org/10.1002/em.21996​ (2016).
	10.	 Hendriks, G. et al. The extended ToxTracker assay discriminates between induction of DNA damage, oxidative stress, and protein 

misfolding. Toxicol. Sci. 150, 190–203. https​://doi.org/10.1093/toxsc​i/kfv32​3 (2016).

https://doi.org/10.1016/j.tcb.2016.03.008
https://doi.org/10.1016/j.tcb.2016.03.008
https://doi.org/10.1038/nrc1170
https://doi.org/10.1016/j.mrgentox.2007.02.006
https://doi.org/10.1093/toxsci/kfq181
https://doi.org/10.1016/j.tiv.2013.05.015
https://doi.org/10.1002/em.21996
https://doi.org/10.1093/toxsci/kfv323


11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2535  | https://doi.org/10.1038/s41598-021-82115-5

www.nature.com/scientificreports/

	11.	 Kopp, B., Khoury, L. & Audebert, M. Validation of the γH2AX biomarker for genotoxicity assessment: A review. Arch. Toxicol. 93, 
2103–2114. https​://doi.org/10.1007/s0020​4-019-02511​-9 (2019).

	12.	 Food & Drug Administration, H. International conference on harmonisation; guidance on S2 (R1) genotoxicity testing and data 
interpretation for pharmaceuticals intended for human use; availability. Federal Reg. 77, 33748 (2012).

	13.	 Roberts, K. et al. Implementation and challenges of direct acoustic dosing into cell-based assays. J. Lab. Autom. 21, 76–89. https​
://doi.org/10.1177/22110​68215​59521​2 (2016).

	14.	 Lorge, E. Comparison of different cytotoxicity measurements for the in vitro micronucleus assay using L5178Y and TK6 cells in 
support of OECD draft Test Guideline 487. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 702, 199–207 (2010).

	15.	 Chambliss, A. B., Wu, P.-H., Chen, W.-C., Sun, S. X. & Wirtz, D. Simultaneously defining cell phenotypes, cell cycle, and chromatin 
modifications at single-cell resolution. FASEB J. 27, 2667–2676 (2013).

	16.	 Chan, G. K. Y., Kleinheinz, T. L., Peterson, D. & Moffat, J. G. A simple high-content cell cycle assay reveals frequent discrepancies 
between cell number and ATP and MTS proliferation assays. PLoS One 8, e63583 (2013).

	17.	 Tu, W.-Z. et al. γh2AX foci formation in the absence of DNA damage: Mitotic H2AX phosphorylation is mediated by the DNA-
PKcs/CHK2 pathway. FEBS Lett. 587, 3437–3443 (2013).

	18.	 Lynch, A. & Parry, J. The cytochalasin-B micronucleus/kinetochore assay in vitro: Studies with 10 suspected aneugens. Mutat. Res. 
Fundam. Mol. Mech. Mutagen. 287, 71–86 (1993).

	19.	 Becker, P., Scherthan, H. & Zankl, H. Use of a centromere-specific DNA probe (p82H) in nonisotopic in situ hybridization for 
classification of micronuclei. Genes Chromosom. Cancer 2, 59–62 (1990).

	20.	 Kirkland, D. et al. Updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of 
new or improved genotoxicity tests. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 795, 7–30. https​://doi.org/10.1016/j.mrgen​
tox.2015.10.006 (2016).

	21.	 Kirkland, D., Kasper, P., Muller, L., Corvi, R. & Speit, G. Recommended lists of genotoxic and non-genotoxic chemicals for assess-
ment of the performance of new or improved genotoxicity tests: A follow-up to an ECVAM workshop. Mutat. Res. 653, 99–108. 
https​://doi.org/10.1016/j.mrgen​tox.2008.03.008 (2008).

	22.	 Ghoshal, K. & Jacob, S. T. An alternative molecular mechanism of action of 5-fluorouracil, a potent anticancer drug. Biochem. 
Pharmacol. 53, 1569–1575 (1997).

	23.	 Nikolova, T. et al. The γH2AX assay for genotoxic and nongenotoxic agents: Comparison of H2AX phosphorylation with cell death 
response. Toxicol. Sci. 140, 103–117. https​://doi.org/10.1093/toxsc​i/kfu06​6 (2014).

	24.	 Moeglin, E. et al. Uniform widespread nuclear phosphorylation of histone H2AX is an indicator of lethal DNA replication stress. 
Cancers https​://doi.org/10.3390/cance​rs110​30355​ (2019).

	25.	 de Feraudy, S., Revet, I., Bezrookove, V., Feeney, L. & Cleaver, J. E. A minority of foci or pan-nuclear apoptotic staining of γH2AX 
in the S phase after UV damage contain DNA double-strand breaks. Proc. Natl. Acad. Sci. 107, 6870–6875 (2010).

	26.	 Brüsehafer, K. et al. The clastogenicity of 4NQO is cell-type dependent and linked to cytotoxicity, length of exposure and p53 
proficiency. Mutagenesis 31, 171–180 (2015).

	27.	 Fox, M. H. A model for the computer analysis of synchronous DNA distributions obtained by flow cytometry. Cytometry 1, 71–77. 
https​://doi.org/10.1002/cyto.99001​0114 (1980).

	28.	 Walko, C. M. & Lindley, C. Capecitabine: A review. Clin. Ther. 27, 23–44. https​://doi.org/10.1016/j.clint​hera.2005.01.005 (2005).
	29.	 Yang, K., Hitomi, M. & Stacey, D. W. Variations in cyclin D1 levels through the cell cycle determine the proliferative fate of a cell. 

Cell Div. 1, 32 (2006).
	30.	 Pagano, M., Pepperkok, R., Verde, F., Ansorge, W. & Draetta, G. Cyclin A is required at two points in the human cell cycle. EMBO 

J. 11, 961–971 (1992).
	31.	 Henglein, B., Chenivesse, X., Wang, J., Eick, D. & Brechot, C. Structure and cell cycle-regulated transcription of the human cyclin 

A gene. Proc. Natl. Acad. Sci. 91, 5490–5494 (1994).
	32.	 Yam, C., Fung, T. & Poon, R. Cyclin A in cell cycle control and cancer. Cell. Mol. Life Sci. 59, 1317–1326 (2002).
	33.	 Économiques ODCEDD. Test No 487. In Vitro Mammalian Cell Micronucleus Test (OECD Publishing, Paris, 2016).
	34.	 Cheung, J. R. et al. Histone markers identify the mode of action for compounds positive in the TK6 micronucleus assay. Mutat. 

Res. Genet. Toxicol. Environ. Mutagen. 777, 7–16 (2015).
	35.	 Ayers, K. M., Clive, D., Tucker, J. W. E., Hajian, G. & de Miranda, P. Nonclinical toxicology studies with Zidovudine: Genetic toxicity 

tests and carcinogenicity bioassays in mice and rats. Fundam. Appl. Toxicol. 32, 148–158. https​://doi.org/10.1006/faat.1996.0118 
(1996).

	36.	 Bolt, H. M. & Degen, G. H. Human carcinogenic risk evaluation, part II: Contributions of the EUROTOX specialty section for 
carcinogenesis. Toxicol. Sci. 81, 3–6 (2004).

	37.	 Elhajouji, A., Lukamowicz, M., Cammerer, Z. & Kirsch-Volders, M. Potential thresholds for genotoxic effects by micronucleus 
scoring. Mutagenesis 26, 199–204. https​://doi.org/10.1093/mutag​e/geq08​9 (2011).

	38.	 Wills, J. W., Johnson, G. E., Battaion, H. L., Slob, W. & White, P. A. Comparing BMD-derived genotoxic potency estimations across 
variants of the transgenic rodent gene mutation assay. Environ. Mol. Mutagen. 58, 632–643 (2017).

	39.	 Joseph, P. Mechanisms of cadmium carcinogenesis. Toxicol. Appl. Pharmacol. 238, 272–279. https​://doi.org/10.1016/j.
taap.2009.01.011 (2009).

	40.	 Beyersmann, D. & Hechtenberg, S. Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol. Appl. Pharmacol. 
144, 247–261. https​://doi.org/10.1006/taap.1997.8125 (1997).

	41.	 Fowler, P. et al. Cadmium chloride, benzo[a]pyrene and cyclophosphamide tested in the in vitro mammalian cell micronucleus 
test (MNvit) in the human lymphoblastoid cell line TK6 at Covance laboratories, Harrogate UK in support of OECD draft Test 
Guideline 487. Mutat. Res. 702, 171–174. https​://doi.org/10.1016/j.mrgen​tox.2010.02.016 (2010).

	42.	 Fellows, M. D. & O’Donovan, M. R. Etoposide, cadmium chloride, benzo[a]pyrene, cyclophosphamide and colchicine tested in 
the in vitro mammalian cell micronucleus test (MNvit) in the presence and absence of cytokinesis block using L5178Y mouse 
lymphoma cells and 2-aminoanthracene tested in MNvit in the absence of cytokinesis block using TK6 cells at AstraZeneca UK, 
in support of OECD draft Test Guideline 487. Mutat. Res. 702, 163–170. https​://doi.org/10.1016/j.mrgen​tox.2009.09.003 (2010).

	43.	 Hartwig, A. Role of DNA repair inhibition in lead- and cadmium-induced genotoxicity: A review. Environ. Health Perspect. 
102(Suppl 3), 45–50. https​://doi.org/10.1289/ehp.94102​s345 (1994).

	44.	 Fotakis, G., Cemeli, E., Anderson, D. & Timbrell, J. A. Cadmium chloride-induced DNA and lysosomal damage in a hepatoma 
cell line. Toxicol. In Vitro 19, 481–489. https​://doi.org/10.1016/j.tiv.2005.02.001 (2005).

	45.	 Ravindran, G., Chakrabarty, D. & Sarkar, A. Cell specific stress responses of cadmium-induced cytotoxicity. Anim. Cells Syst. 21, 
23–30. https​://doi.org/10.1080/19768​354.2016.12670​41 (2017).

	46.	 Zapór, L. Evaluation of the toxic potency of selected cadmium compounds on A549 and CHO-9 cells. Int. J. Occup. Saf. Ergon. 20, 
573–581. https​://doi.org/10.1080/10803​548.2014.11077​080 (2014).

	47.	 Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-Fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 
330–338. https​://doi.org/10.1038/nrc10​74 (2003).

	48.	 Sirbu, B. M. et al. Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev. 25, 1320–1327. https​
://doi.org/10.1101/gad.20532​11 (2011).

	49.	 Khoury, L., Zalko, D. & Audebert, M. Evaluation of four human cell lines with distinct biotransformation properties for genotoxic 
screening. Mutagenesis 31, 83–96. https​://doi.org/10.1093/mutag​e/gev05​8 (2016).

https://doi.org/10.1007/s00204-019-02511-9
https://doi.org/10.1177/2211068215595212
https://doi.org/10.1177/2211068215595212
https://doi.org/10.1016/j.mrgentox.2015.10.006
https://doi.org/10.1016/j.mrgentox.2015.10.006
https://doi.org/10.1016/j.mrgentox.2008.03.008
https://doi.org/10.1093/toxsci/kfu066
https://doi.org/10.3390/cancers11030355
https://doi.org/10.1002/cyto.990010114
https://doi.org/10.1016/j.clinthera.2005.01.005
https://doi.org/10.1006/faat.1996.0118
https://doi.org/10.1093/mutage/geq089
https://doi.org/10.1016/j.taap.2009.01.011
https://doi.org/10.1016/j.taap.2009.01.011
https://doi.org/10.1006/taap.1997.8125
https://doi.org/10.1016/j.mrgentox.2010.02.016
https://doi.org/10.1016/j.mrgentox.2009.09.003
https://doi.org/10.1289/ehp.94102s345
https://doi.org/10.1016/j.tiv.2005.02.001
https://doi.org/10.1080/19768354.2016.1267041
https://doi.org/10.1080/10803548.2014.11077080
https://doi.org/10.1038/nrc1074
https://doi.org/10.1101/gad.2053211
https://doi.org/10.1101/gad.2053211
https://doi.org/10.1093/mutage/gev058


12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2535  | https://doi.org/10.1038/s41598-021-82115-5

www.nature.com/scientificreports/

	50.	 Bryce, S. M. et al. Interlaboratory evaluation of a multiplexed high information content in vitro genotoxicity assay. Environ. Mol. 
Mutagen. 58, 146–161. https​://doi.org/10.1002/em.22083​ (2017).

	51.	 Callen, E. et al. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153, 
1266–1280 (2013).

	52.	 Matsuzaki, K., Harada, A., Takeiri, A., Tanaka, K. & Mishima, M. Whole cell-ELISA to measure the γH2AX response of six aneugens 
and eight DNA-damaging chemicals. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 700, 71–79 (2010).

	53.	 Prigent, C. & Dimitrov, S. Phosphorylation of serine 10 in histone H3, what for?. J. Cell Sci. 116, 3677–3685. https​://doi.org/10.1242/
jcs.00735​ (2003).

	54.	 Bryce, S. M. et al. Interpreting in vitro micronucleus positive results: Simple biomarker matrix discriminates clastogens, aneugens, 
and misleading positive agents. Environ. Mol. Mutagen. 55, 542–555. https​://doi.org/10.1002/em.21868​ (2014).

	55.	 Banerjee, P., Siramshetty, V. B., Drwal, M. N. & Preissner, R. Computational methods for prediction of in vitro effects of new 
chemical structures. J. Cheminform. 8, 51. https​://doi.org/10.1186/s1332​1-016-0162-2 (2016).

	56.	 Xu, C. et al. In silico prediction of chemical Ames mutagenicity. J. Chem. Inf. Model. 52, 2840–2847. https​://doi.org/10.1021/ci300​
400a (2012).

	57.	 Cassano, A. et al. Evaluation of QSAR models for the prediction of ames genotoxicity: A retrospective exercise on the chemical 
substances registered under the EU REACH regulation. J. Environ. Sci. Health Part C 32, 273–298. https​://doi.org/10.1080/10590​
501.2014.93895​5 (2014).

	58.	 Foster, K. A., Oster, C. G., Mayer, M. M., Avery, M. L. & Audus, K. L. Characterization of the A549 cell line as a type II pulmonary 
epithelial cell model for drug metabolism. Exp. Cell Res. 243, 359–366. https​://doi.org/10.1006/excr.1998.4172 (1998).

	59.	 Ooka, M., Lynch, C. & Xia, M. Application of in vitro metabolism activation in high-throughput screening. Int. J. Mol. Sci. https​
://doi.org/10.3390/ijms2​12181​82 (2020).

	60.	 Olaharski, A. J. et al. Identification of a kinase profile that predicts chromosome damage induced by small molecule kinase inhibi-
tors. PLoS Comput. Biol. 5, e1000446. https​://doi.org/10.1371/journ​al.pcbi.10004​46 (2009).

	61.	 Johansson, J., Larsson, M. H. & Hornberg, J. J. Predictive in vitro toxicology screening to guide chemical design in drug discovery. 
Curr. Opin. Toxicol. 15, 99–108. https​://doi.org/10.1016/j.cotox​.2019.08.005 (2019).

	62.	 Toledo, L., Neelsen, K. J. & Lukas, J. Replication catastrophe: When a checkpoint fails because of exhaustion. Mol. Cell 66, 735–749 
(2017).

	63.	 Fenech, M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2, 1084–1104. https​://doi.org/10.1038/nprot​.2007.77 (2007).
	64.	 Team, R. C. (2016).
	65.	 Nelder, J. A. & Mead, R. A simplex method for function minimization. Comput. J. 7, 308–313 (1965).
	66.	 Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272. https​://doi.

org/10.1038/s4159​2-019-0686-2 (2020).

Author contributions
All authors contributed to the study conception and design. A.D. was instrumental in conceptual design of this 
study. Material preparation, data collection and analysis were performed by A.W., J.E. and S.L.. P.G. and J.S. were 
instrumental in the analysis of data and the generation of data analysis platforms. P.G. generated Fig. 3. The first 
draft of the manuscript was written by A.W. and J.E. and all authors commented on previous versions of the 
manuscript. All authors read and approved the final manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https​://doi.
org/10.1038/s4159​8-021-82115​-5.

Correspondence and requests for materials should be addressed to A.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1002/em.22083
https://doi.org/10.1242/jcs.00735
https://doi.org/10.1242/jcs.00735
https://doi.org/10.1002/em.21868
https://doi.org/10.1186/s13321-016-0162-2
https://doi.org/10.1021/ci300400a
https://doi.org/10.1021/ci300400a
https://doi.org/10.1080/10590501.2014.938955
https://doi.org/10.1080/10590501.2014.938955
https://doi.org/10.1006/excr.1998.4172
https://doi.org/10.3390/ijms21218182
https://doi.org/10.3390/ijms21218182
https://doi.org/10.1371/journal.pcbi.1000446
https://doi.org/10.1016/j.cotox.2019.08.005
https://doi.org/10.1038/nprot.2007.77
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41598-021-82115-5
https://doi.org/10.1038/s41598-021-82115-5
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Transforming early pharmaceutical assessment of genotoxicity: applying statistical learning to a high throughput, multi end point in vitro micronucleus assay
	Results
	Assay development. 
	Assay validation. 
	Data analysis. 
	Validation of additional assay endpoints. 

	Discussion
	Materials and experimental proceedures
	Reagents. 
	Validation compound selection. 
	Cell culture. 
	Screening assay. 
	Compound treatment. 
	Fixation and immunofluorescence. 
	Confocal microscopy. 
	Image analysis. 
	Well-masking procedure. 
	Statistical workflow for genotoxicity prediction. 

	References


