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Abstract: Parkinson’s disease (PD) is a common neurodegenerative disorder. Recent identification
of genes linked to familial forms of PD has revealed that post-translational modifications, such
as phosphorylation and ubiquitination of proteins, are key factors in disease pathogenesis. In
PD, E3 ubiquitin ligase Parkin and the serine/threonine-protein kinase PTEN-induced kinase 1
(PINK1) mediate the mitophagy pathway for mitochondrial quality control via phosphorylation
and ubiquitination of their substrates. In this review, we first focus on well-characterized PINK1
phosphorylation motifs. Second, we describe our findings concerning relationships between Parkin
and HtrA2/Omi, a protein involved in familial PD. Third, we describe our findings regarding inhibitory
PAS (Per/Arnt/Sim) domain protein (IPAS), a member of PINK1 and Parkin substrates, involved in
neurodegeneration during PD. IPAS is a dual-function protein involved in transcriptional repression
of hypoxic responses and the pro-apoptotic activities.

Keywords: Parkinson’s disease; 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP); Parkin;
PINK1; HtrA2/Omi; IPAS

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease and is
characterized by progressive resting tremors, rigidity, bradykinesia, gait disturbances, postural
instability, and dementia [1,2]. The motor symptoms of PD are associated with the degeneration
of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Although most PD cases
are sporadic, approximately 10% are familial cases [3]. The pathogenesis of sporadic PD is yet to
be established, but it is suggested that genetic predispositions and environmental toxins causing
mitochondrial dysfunction and oxidative stress are involved [1-3]. In the early 1980s, the first
evidence linking PD to mitochondrial dysfunction appeared with the observation that exposure to
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes dopaminergic neurodegeneration [4].
MPTP is a synthetic by-product of meperidine production. The product of MPTP oxidation,
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1-methyl-4-phenylpyridinium (MPP*), selectively enters dopaminergic neurons via the dopamine
transporters and inhibits mitochondrial complex I, a key component of the mitochondrial respiratory
chain [5]. Subsequently, MPP* induces oxidative stress and dopaminergic neuronal death [6]. Exposure
to other toxins, including 6-OHDA, or the pesticides rotenone and paraquat, also results in the loss of
nigrostriatal dopaminergic neurons [7,8]. They produce effects similar to parkinsonian phenotypes in
animal models and humans. In MPTP-induced mouse models, there are two typical dosing regimens
for MPTP, acute and subacute [9]. In the former type, mice are intraperitoneally injected four times
with MPTP (15-20 mg/kg) at 2-h intervals (6-h period) within a single day. Dopaminergic neuron loss
can be observed at 3-7 days after the last dose of MPTP. For the latter type, mice were intraperitoneally
injected once a day with MPTP (30 mg/kg) for five consecutive days. Dopaminergic neuron loss can be
observed 7 days after the last dose of MPTP. The concentrations of MPTP and MPP* in plasma, striatum,
and cortex were studied in mice [10]. Elevated concentrations of MPP* in plasma and the striatum are
maintained for 72 h and 12 h after administration, respectively. N-methylmercaptoimidazole increases
the amount of MPTP delivered from the peripheral nervous system to the central nervous system [10].

Accumulated genetic analyses have identified that several gene mutations are associated
with an early onset of parkinsonism, including a-synuclein (SNCA), (PARK1 and PARK4), Parkin
(PARK2), PTEN-induced kinase 1 (PINK1) (PARK®6), DJ-1 (PARK?), leucine rich repeat kinase 2
(LRRK2) (PARKS), ATP13A2 (PARKDY), HtrA2/Omi (PARK13), PLA2G6 (PARK14), VPS35 (PARK17),
coiled-coil-helix-coiled-coil-helix (CHCH) domain 2 (CHCHD?2) (PARK22) [3,11]. Among these, mutations
of park genes including Parkin, PINK1, HtrA2/Omi and CHCHD?2 are directly involved in mitochondrial
dysfunction [12-15]. PINK1, HtrA2/Omi, and CHCHD2 proteins have a positively charged
mitochondrial targeting sequence (MTS) in their N-terminus that forms an amphipathic «-helix
(Figure 1). Meanwhile, Parkin does not have an MTS, but does translocate to the mitochondria
during mitochondrial dysfunction (Figure 1). Studies of these genes using knockout mice and
knockout cell lines demonstrate a relationship between these proteins and mitochondrial quality
control [12-16]. Autosomal recessive mutations in the Parkin gene (PARK2), which encodes an
E3 ubiquitin ligase, are the most common cause of early onset of PD [1-3]. Recently, increased
in vitro studies examining the molecular mechanisms of the PINK1/Parkin pathway using the
mitochondrial uncouplers, carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and carbonyl cyanide
p-(trifluoromethoxy) phenyl hydrazone (FCCP) [13,14]. In healthy mitochondria, PINK1 is translocated
and imported to mitochondria via its N-terminal MTS. There, it undergoes cleavage by the mitochondrial
processing peptidase (MPP) in the inner membrane to form a 60 kDa intermediate [17]. Following, a
presenilin-associated rhomboid-like protein (PARL) and/or matrix-AAA (m-AAA) proteases cleave
it to generate a 52 kDa processed form of PINK1 that attached to the inner membrane [17,18]. The
cleavage site by PARL has been mapped to Ala!%, near the MTS in PINK1 [17,19]. N-terminally
cleaved PINK1 is then degraded by the ubiquitin/proteasome system in cytosol. Under these
conditions, Parkin remains inactive in the cytosol [13]. Upon mitochondrial damage, such as oxidative
stress and experimental CCCP treatment, the membrane potential of mitochondria is decreased;
hence, PINK1 is not imported into mitochondria and accumulates on the outer mitochondrial
membrane (OMM) to activate Parkin [13,18]. PINK1-mediated phosphorylation of the ubiquitin and
the ubiquitin-like (UBL) domain of Parkin enable its E3 ubiquitin ligase functions in concert with
E2 ubiquitin-conjugating enzymes [20-23]. Poly-ubiquitin with p-Ser®® bound to OMM substrates
acts as a Parkin receptor; further recruiting Parkin to the mitochondria. These poly-ubiquitin chains
can be cleaved by de-ubiquitinating enzymes, including USP15 and USP30, to reverse PINK1/Parkin
functions [24,25]. Individual OMM proteins decorated with poly-ubiquitin can be extracted from the
mitochondrial membrane and degraded by the 26 S proteasomes. Severely damaged mitochondria
are decorated by large numbers of poly-ubiquitin chains that signal for the accumulation of the
ubiquitin-binding cargo receptors, NDP52, optineurin, and p62 [26]. NDP52 can bind LC3 in
phagophores and recruit the autophagy initiator complex, Fip200-Ulk1, leading to progression of
the mitochondrial autophagy (mitophagy) [26,27]. Poly-ubiquitin chains also serves as tags for the
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accumulation of RabGEF1 on mitochondria, leading to activation of Rab5-Rab7 signaling and the
subsequent recruitment of Atg9A vesicles to mitochondria [28]. Autophagosomes containing damaged
mitochondria fuse with lysosomes, leading to the generation of autolysosomes, where the cargo is
degraded [26]. Recently, our group developed a mitochondria-selective pH-sensitive small-molecule
fluorescent dye, Mtphagy Dye, which is incorporated into mitochondria and emits a strong red
fluorescence in autolysosomes upon acidification during mitophagy [29]. Mtphagy Dye is a useful tool
for easy visualization and detection of mitophagy.
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Figure 1. Structures of mitochondrial-localized proteins for genes associated with familial parkinsonism
and their phosphorylation sites. The human Parkin, PINK1, HtrA2/Omi, and CHCHD?2 proteins
are drawn approximately to scale, with some pathogenic point mutations in red. Parkin contains a
UBL domain at the N-terminus followed by three really-interesting-new-gene (RING) finger domains
(RO-R2) separated by In-Between-RING fingers (IBR) and repressor element of Parkin (REP) domains.
A phosphorylation site for PINK1 occurs at Ser®®. PINK1 contains an MTS, transmembrane domain
(TM), the kinase domain, and C-terminal sequences of uncertain function. Autophosphorylation sites
are at Ser??® and Ser??2. HtrA2/Omi consists of an MTS, TM, and a conserved catalytic trypsin-like
serine protease domain, and a C-terminal PSD-95/Dlg/ZO-1 (PDZ) domain. Ser'#? is phosphorylated
by p38 in a PINK1-depedent manner and Ser? is phosphorylated by CDK5. CHCHD2 has an MTS,
TM, and CHCH domain. The CHCH domain consists of twin CX(9)C motifs and two disulfide bonds
that stabilize the CHCH fold.

PINK1 was initially named PTEN-induced “putative” kinase-1, and the topology of PINK1 on/in
mitochondria was unknown. Although tumor necrosis factor type 1 receptor—associated protein
(TRAP1) and the serine protease HtrA2/Omi have been identified as putative PINK1 targets [30,31],
TRAP1 and HtrA2/Omi are localized primarily in the mitochondrial matrix and mitochondrial
intermembrane space, respectively. Furthermore, previous reports suggest that the kinase domain of
mitochondrial PINK1 faces the cytoplasm [32]. Subsequently, increasing numbers of studies using CCCP
treatment have investigated the substrates of PINK1 phosphorylation, including Mirol/Rhot1 [33],
PINK1 (autophosphorylation) [34], Parkin [20,21], Mitofusin 2 [35], Ubiquitin [22,23], inhibitory PAS
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(Per/Arnt/Sim) domain protein (IPAS) [36], Parkin-Interacting Substrate (PARIS) [37], and drosophila
MIC60/Mitofilin [38]. In addition to LC-MS/MS phosphorylation analyses, some studies used
Phos-tag gel mobility shift assays, a powerful and useful tool for detecting the phosphorylation
of proteins [39]. Our group has reported well-characterized PINK1 phosphorylation motifs [36]
and updates them in this review (Figure 2). Almost all PINK1 target sites in Mus musculus have
hydrophobic amino acids at position +2 after the phosphorylation site. In addition, hydrophobic
amino acids or acidic amino acids at position +1 after phosphorylation sites are preferred by PINK1.
Basic amino acids at positions —3 and —2 (in some cases —5, —4 and —1) are preferred, expect for
Parkin. The phosphorylation sites of PARIS are Ser®?2-P and Ser®3-P. Both serine sites have a proline
at position +1. As a pS/T-P sequence is preferred by mitogen activated protein (MAP) kinases and
cyclin-dependent kinases (CDK), the phosphorylations of PARIS could be regulated by MAP kinases
similar to HtrA2/Omi (chapter 2). Thus, PINK1 phosphorylation consensus motifs are valuable for
predicting the phosphorylation sites of PINK1-binding proteins and bioinformatical approaches for
detecting mitochondrial PINK1-target proteins.
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Figure 2. Alignment of amino acid sequences containing the phosphorylation sites of several PINK1
substrates. The known Ser or Thr residues phosphorylated by PINK1 (blue box) are indicated by an
arrowhead with phosphorylation (P). Protein sequences of Mus musculus are presented. Hydrophobic
amino acids (green box) and alanine (yellow box) found two residues (+2) after phosphorylation sites
are shown. Hydrophobic amino acids or acidic amino acids at position +1 after the phosphorylation
site are preferred. Basic amino acids found before the phosphorylation sites are shown (red box).
Phosphorylation sites of drosophila MIC60/Mitofilin are not included because phosphorylation sites
of mouse MIC60/Mitofilin corresponding to drosophila MIC60/Mitofilin cannot be identified using
homology searches. From these observations, an optimal PINK1 target motif is given at the top using
one-letter codes (¢: hydrophobic amino acids).

As mentioned above, many studies report the activation mechanism of the PINK1/Parkin pathway
and the pathogenesis of PD using cultured cells and mouse models. Next, we will review our findings
including the relationships between Parkin and HtrA2/Omi in Parkin-transgenic (Parkin-Tg) mice [40].

2. Parkin-Tg Introduction into mnd2 Mice; Neurodegeneration in HtrA2/Omi Mutant Mice Is Not
Rescued by Parkin Transgene Expression

HtrA2/Omi is a serine protease localized in mitochondria (Figure 1) [12]. HtrA2/Omi is expressed
as a 49 kDa proenzyme that is targeted to the intermembrane space of the mitochondria where it
undergoes proteolytic maturation via cleavage of the first 133 N-terminal residues [41]. HtrA2/Omi
contains an N-terminal trypsin-like protease domain and a C-terminal PDZ domain (Figure 1). Ser306
is the active site of the protease domain and mutation of Ser?% inactivates HtrA2/Omi [12]. Ser'*? and
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Ser® are the known phosphorylation sites of HtrA2/Omi [30,42]. Upon oxidative stress, p38 MAP
kinase phosphorylates Ser'#? of HtrA2/Omi in a PINK1-depdenent manner. CDK5 phosphorylates
Ser*® of HtrA2/Omi in a p38-dependent manner, resulting in the enhancement of HtrA2/Omi proteolytic
activity and increased resistance of cells to mitochondrial stress. Meanwhile, mature HtrA2/Omi is
released from mitochondria into the cytosol where it is bound to the inhibitor of apoptosis proteins
(IAPs); promoting cell death upon apoptotic induction [43,44]. HtrA2/Omi has therefore been proposed
to be a pro-apoptotic protein. However, more importantly, HtrA2/Omi is required for maintaining
mitochondrial function. This opinion is supported by studies employing HtrA2/Omi-deficient mice,
motor neuron degeneration mutant (mnd2) mice [12]. Mnd2 mice possess a non-functional missense
mutation at Ser?’® to Cys in the protease domain of HtrA2/Omi, close to Ser®® [12]. Protease activity
of HtrA2/Omi is greatly reduced in the tissues of mnd2 mice. Mnd2 mutant cells are more vulnerable
to Ca?*-induced permeability transitions and mitochondrial membrane permeabilization [12]. Mnd2
mice exhibit weight loss, muscle wasting, neurodegeneration, involution of the spleen and thymus,
and finally die within 40 days of birth, and therefore are considered to be a useful animal model for
PD [45]. Neuronal cell death in mnd2 mice exhibits features of both apoptosis and necrosis, whereas
motor abnormalities and striatal neuronal loss in mnd2 mice are not prevented by overexpression of the
anti-apoptotic protein Bcl-2 [46] or cyclophilin D deficiency [47]. Interestingly, Parkin overexpression
prevents both neurotoxin-induced and mutant o-synuclein-induced PD models [48-50]. Injection of
lentiviral vector encoding human Parkin has neuroprotective effects in 6-hydroxydopamine (6-OHDA)
rat models for PD; rats overexpressing Parkin display behavioral improvements [48]. Parkin expression
protects dopaminergic neurons against the toxicity associated with mutant «-synuclein in vitro [49] and
in vivo [50]; thus, Parkin deficiency and a-synuclein mutations are linked to the common pathogenic
symptoms associated neuronal cell death. In addition, Parkin overexpression protects neurons from
tau-induced dopaminergic degeneration in rats [51]. As mentioned above, both Parkin and PINK1
play a role in the elimination of damaged mitochondria by mitophagy [14], and these functions may be
the mechanism by which Parkin protects against PD. With this hypothesis in mind, we examined the
expression levels of these proteins in mnd2 mouse brains [40]. Parkin protein levels in the striatum
were dramatically reduced in the mnd2 mice at 4 weeks after birth. The decrease started from 2 weeks
after birth before neurodegenerative symptoms were observable. Although Parkin protein levels
in hippocampus were also decreased in mnd2 mice, the decrease was weaker than that in striatum.
The protein levels of x-synuclein, another PD-related protein, were not changed in mnd2 mice when
compared to wild-type (WT) littermates. These results suggest that the decrease of Parkin expression
may be involved in the neurodegenerative disorders of mnd2 mice (Figure 3) [40], and we hypothesize
that when Parkin expression is compensated for by overexpression, neurodegeneration can be delayed
or recovered. Thus, we generated Parkin-Tg mice where Parkin was specifically expressed in the
brain by regulation of a prion promoter [40]. We observed increased levels of Parkin in striatum,
hippocampus, and cerebral cortex in Parkin-Tg mice. Parkin-Tg mice have no remarkable abnormalities
or neurodegenerative symptoms. Parkin-Tg mice were then crossed with mnd2 mice to generate
Parkin-Tg/mnd2 mice. Both Parkin-Tg/mnd2 mice and mnd2 mice were smaller than WT mice. The
body weight of Parkin-Tg/mnd2 and mnd2 barely increased over the first 2 weeks after birth and was
about 50% of WT mice after 4 weeks. Body weight trends in mnd2 and Parkin-Tg/mnd2 mice were
almost identical. Previous reports indicate that mnd2 mice died within 40 days after birth. Therefore,
we examined whether the Parkin transgene prolongs the survival rate of mnd2 mice. However, the
average survival of mnd2 and Parkin-Tg/mnd2 mice was the same (mnd2: 30.5 + 9.14 days and
Parkin-Tg/mnd2: 27.8 + 8.16 days). To examine behaviors reflecting neuromuscular abnormalities,
hanging wire tests were performed. Mice need balance and grip strength to remain on the wire
net during the test. WT mice remained on the wire net for longer than 60 s, while mnd2 mice and
Parkin-Tg/mnd2 mice dropped within 17 s. These results indicate that the Parkin transgene does not
rescue the disabilities of mnd2 mice [40]. Taken together, although Parkin protein levels in the striatum
is decreased in mnd2 mice, the Parkin transgene did not eliminate the neurodegenerative disorders
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in the mnd2 mice (Figure 3). However, the observation that Parkin protein levels are significantly
decreased in striatum of mnd2 mice is an interesting finding; this suggests that HtrA2/Omi controls the
transcriptional level of Parkin mRNA and/or the stability of Parkin proteins due to post-translational
regulation. The latter is more likely, because HtrA2/Omi is a protease that can cleave other proteins
involved in Parkin removal. Further studies are necessary to elucidate the mechanism(s). As the Parkin
transgene does not eliminate the neurodegenerative disorders in the mnd2 mice, either the Parkin
protein does not play a major role during neurodegeneration in mnd2 mice or the Parkin transgene
alone is not sufficient to rescue mitochondrial dysfunction. In latter pattern, PINK1 up-regulation is
necessary for further activation of Parkin.
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Figure 3. Neurodegeneration in mnd2 mutant mice is not prevented by Parkin-Tg. (A) Mnd2 mice
have a non-functional missense mutation at Ser?’® to Cys in the conserved catalytic trypsin-like serine
protease domain of HtrA2/Omi which leads to motor neuron degeneration and selective loss of striatal
neurons. In mnd2 mice, Parkin protein expression is low in the striatum. Parkin protein levels in
the hippocampus are also decreased in mnd2 mice; the decrease is significantly weaker than that in
striatum. It was unknown that low level of Parkin causes motor abnormalities and striatal neuronal loss
in mnd2 mice before performing experiments with Parkin-Tg/ mnd2 mice (an arrow with a question
mark). (B) Overexpression of Parkin by Parkin-Tg does not suppress PD phenotypes in mnd2 mice.
Arrow and dashed arrow tracks indicate cause-and-effect relationships. Down-arrows and an up-arrow
indicate low level and high level, respectively.
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3. One of PINK1/Parkin-Target Proteins, IPAS; Its Molecular Mechanism of Pro-Apoptotic
Activation, and Its Deficient Mouse Model

Some reports have identified multiple Parkin substrates [52], such as the Pael receptor [53],
Mirol/Rhotl [33], FAF1 [54], Mitofusin 2 [35], IPAS [36], BNIP3L [55], PARIS [37], and
MITOL/March5 [56]. These Parkin substrates are also phosphorylated by PINK1 which induces
Parkin-mediated ubiquitination. Parkin interacts with and ubiquitinates these proteins, leading to their
degradation, except for MITOL/March5. Parkin-mediated ubiquitination of MITOL/March5 causes
its translocation to peroxisomes [56]. As mentioned above, MPTP inhibits mitochondrial complex I
activity, resulting in an increased reactive oxygen species generation. In addition, MPTP inhibits the
ubiquitin ligase activity of Parkin due to S-nitrosylation in vitro and in vivo [57]. Hence, MPTP is useful
for experimental PD mouse models (for relating Parkin substrates) and Parkin substrates accumulate in
the SNpc of MPTP-treated mice and their knockout mice are protected from MPTP-induced neuronal
degeneration [36,54,58]. This review focuses on our findings regarding IPAS, a substrate of both PINK1
and Parkin enzyme activity [36].

IPAS was first reported as a potent negative regulator of hypoxia-inducible factor-1 (HIF-1) [59],
a master regulator of mammalian oxygen homeostasis [60]. IPAS directly binds to HIF-1x, an
oxygen-sensitive subunit of HIF-1, preventing their binding to hypoxia response elements (HRE)
localized in the transcription-control region of subordinate genes. The binding of IPAS to HIF-1«-like
factor (HLEF, also known as HIF-2« and EPAS1) has also been observed. IPAS is one of the alternatively
spliced variants of HIF-3«x, a family member of HIF-1x [61]. Expression of IPAS is highly tissue specific.
Makino et al. found that IPAS is constitutively expressed in the Purkinje cells of the cerebellum and
corneal epithelium where IPAS was involved in the regulation of angiogenesis [59]. Our observation
strongly suggested that IPAS is inducibly expressed in the neurons but not in glial cells of the central
nervous system [36]. To our knowledge, IPAS is expressed only in PC12 cells but no other cell
culture lines, suggesting the expression of IPAS to be tissue specific [62]. In addition, IPAS is induced
by both sustained hypoxia and intermittent hypoxia-induced oxidative stress/NF-«B signaling via
the activation of HIF-1 [59,62]. Once induced, IPAS localizes to the nucleus and functions as a
negative feedback inhibitor of HIF family-dependent hypoxic responses (Figure 4A). As induction
of IPAS is also dependent on the TNF-alpha/NF-«B signaling pathway, there is crosstalk between
inflammation pathways and HIF-dependent hypoxic responses [63]. We reported a novel function
of IPAS as a pro-apoptotic factor acting on mitochondria [64]. Detailed analyses using subcellular
localization studies demonstrate that IPAS is localized to both the nucleus and mitochondria. IPAS has
a bipartite-like nuclear localization signal and nuclear export signal in its N- and C-terminal region,
respectively, and may shuttle between the nucleus and cytosol [65]. Other HIF-3« variants have nuclear
localization signal, but they neither have nuclear export signal nor shuttle between the nucleus and
cytosol [66,67]. Mitochondrial IPAS interacts with pro-survival Bcl-2 proteins, including Bel-x, Bel-w,
and Mcl-1, but not Bcl-2 and Ala, through its C-terminal domain (CTD). The conformation change in
IPAS occurs by binding of Bel-xy, [68]. The physical interactions between IPAS and pro-survival factors
results in the dissociation of Bax from pro-survival factor and facilitates the translocation of Bax to
mitochondria. Bax translocation leads to the release of cytochrome c from the mitochondria, activation
of caspase-3, and finally apoptosis. These findings demonstrate that IPAS is a dual-function protein
involved in both transcription repression and apoptosis (Figure 4A), although other HIF-3c variants
are involved in transcription regulation [66].
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of IPAS at Thr!2 may induce a conformation change of IPAS to make the PAS-like region accessible
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(bottom). KD: kinase domain. Arrow tracks indicate signal transduction or IPAS translocation to
nucleus/mitochondria. An up-arrow indicates high level of expression and activation.
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We have sought post-translational modifications of IPAS, by which the pro-apoptotic activities of
IPAS may be regulated. We observe that the phosphorylation of IPAS Ser!84 by MAP kinase-activated
protein kinase 2 (MK2 or MAP-KAPK?2), a direct substrate of p38 MAP kinase, enhances the
pro-apoptotic activity of IPAS (Figure 4A) [69]. Perinuclear clustering of mitochondria and activation of
caspase-3 induced by IPAS expression increased by ultraviolet B irradiation (312 nm), which activates
the p38 MAP kinase cascade; this enhancement was completely blocked by a p38 MAP kinase inhibitor,
a MK2 inhibitor, and siRNA treatment against MK2. Mass spectrometry analysis revealed that several
serine residues including Ser!84, Ser?!?, and Ser??® in the CTD of IPAS are phosphorylated. Of these

219 223

serine residues, Ser~” and Ser“~> match with the p38 MAP kinase consensus sequence, PXpS/TP.

The minimal consensus for MK2 phosphorylation has been reported to be RXXpS/T [70]; Ser!'8*
(RMKpS) completely matches with this consensus motif. Among these identified phosphorylation
sites, replacement of Ser'® by Ala alone led to a total loss of enhanced perinuclear clustering of
mitochondria and the activation of caspase-3 in UVB-irradiated cells. Furthermore, replacement of
Ser'# by Asp, a phosphomimetic mutation, led to the enhancement of abnormality of mitochondria
and the activation of caspase-3 without UVB irradiation. Notably, the interaction between the IPAS
phosphomimetic mutant and Bcl-x;, was up-regulated, indicating the phosphorylation of IPAS Ser!84
enhances its affinity for pro-survival Bcl-2 family proteins. Collectively, the pro-apoptotic activity of
IPAS is regulated by the p38 MAP kinase/MK2 signaling pathway (Figure 4A).

Finally, we investigated physiological and pathological processes in which the pro-apoptotic
activity of IPAS is involved. Considering that IPAS is induced by oxidative stress in neural tissues and
that the pro-apoptotic activity of mitochondrial IPAS is activated by oxidative stress, we suggest a
relationship between IPAS-induced neural cell death and neurodegenerative disorders. PD researchers
have identified mitochondrial targets for both PINK1 phosphorylation and Parkin ubiquitination, such
as Mirol/Rhotl and Mitofusin2. Therefore, we hypothesize that IPAS is also a good mitochondrial
substrate for PINK1 and Parkin. Our studies confirmed this hypothesis [36,71]. When cultured cells
(SH-SY5Y and HelLa cells) were treated with CCCP, in the presence of MG132 to inhibit proteasome
activity, mitochondrial IPAS was bound to Parkin via its CTD. IPAS is subsequently ubiquitinated by
Parkin at the position lys'®”~1% in the second PAS-like domain (Figure 4B). The poly-ubiquitin chains
of IPAS are predominantly K48 linkages, which are known as a tag for proteasomal degradation of
target proteins. K63 linkages on IPAS were not observed after CCCP treatment. The degradation of
mitochondrial IPAS, but not nuclear IPAS, was rapidly increased by CCCP treatment. Pathogenic
missense mutations of Parkin present in RINGO, RING1, and IBR, and RING2 domains exhibited a little
or no ubiquitination activity for IPAS. However, the R42P mutant of Parkin enhances IPAS ubiquitination
for unknown reasons. Perhaps, Parkin (R42P) may enhance interactions with substrates, as IPAS is
markedly bound to Parkin (R42P) without CCCP treatment. Of note, CCCP treatment also increases
the interactions between IPAS and PINK1. Moreover, IPAS is phosphorylated by PINK1 at several
sites including Thr!2. The sequence flanking Thr!? closely matches with the PINK1 phosphorylation
consensus motifs (Figure 2). PINK1 siRNA treatment reduces both IPAS phosphorylation and the
binding of IPAS to Parkin. Moreover, replacement of Thr'? by Ala leads to reduced interactions
between IPAS and Parkin as well as a total loss of IPAS ubiquitination by Parkin; suggesting that
IPAS phosphorylation by PINK1 induces conformation changes in IPAS to make its PAS-like domain
accessible to Parkin. Treatment of cells with CCCP completely abolished IPAS-induced apoptosis;
notably, the inhibition of apoptosis was reversed by a concomitant knockdown of Parkin. Parkin WT,
but not a ligase-deficient mutant (T415N), also decreases the IPAS-induced apoptosis. Collectively,
these results strongly suggest that IPAS is a mitochondrial substrate in the PINK1-Parkin pathway and
is stabilized when PINK1-Parkin activity is decreased. Up-regulation of IPAS leads to apoptosis in
neural cells (Figure 4B) [36].

We next sought evidence for causal relationship between IPAS expression and PD pathogenesis.
IPAS mRNA and protein are rapidly and strongly induced after at four injections of MPTP.
Immunohistochemical analysis indicate that induced IPAS proteins are expressed mainly in the
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cytoplasm region, but not in nucleus, of tyrosine hydroxylase (TH)-expressing dopaminergic neurons
in the SNpc. Therefore, we made mice which lack the IPAS-specific 16th exon. In homozygous mice
(IPAS!64/162) ‘endogenous IPAS loses its pro-apoptotic activity. The mutant mice were fully viable,
fertile, apparently normal in appearance and behavior, and the expression of other HIF-3« splicing
variants appeared to be normal. Acute administration of MPTP to IPAS!®A/16A mice caused a modest
decrease in the number of TH-positive neurons, whereas MPTP significantly reduced TH-positive
neurons in WT littermates. These results demonstrate that the pro-apoptotic activity of IPAS is involved
in MPTP-dependent degeneration of dopaminergic neurons in the SNpc.

Some studies demonstrate that MK2-deficient mice are resistant to MPTP-induced
neurodegeneration in the SNpc when compared with WT mice [72] and that the selective activation of
p38 signaling by MPTP treatment occurs in dopaminergic neurons within the SNpc [73]. From these
findings, we speculate that involvement of p38/MK2 signaling in neural death may be derived, at least
partly, from the pro-apoptotic activity of IPAS by phosphorylation IPAS Ser!84
(Figure 4B). Next, expression levels of IPAS in the SNpc neurons of patients with sporadic PD were
investigated [36]. Formalin-fixed, paraffin-embedded sections of the midbrain of six patients and six
neurologically normal control individuals were analyzed by immunohistochemistry. The intracellular

in the SNpc of mice

distribution of IPAS was similar to that observed in the TH-positive neurons of MPTP-treated mice.
The intensity of IPAS immunostaining was significantly greater in the neurons of sporadic PD patients
versus control individuals. These results suggest that IPAS contributes to the neurodegeneration of
dopaminergic neurons in the SNpc of patients with sporadic PD as well as MPTP-treated mouse PD
models (Figure 4B) [36].

4. Conclusions

In this review, we first focus on well-characterized PINK1 phosphorylation motifs. We also
describe our findings for Parkin-Tg expression in mnd2 mouse models. Although Parkin protein levels
in the striatum are decreased in mnd2 mice, the Parkin transgene did not rescue the neurodegenerative
disorders in mnd2 mice. Recently, new mutations of CHCHD2 have been identified in familial and
sporadic PD cases [11]. Although CHCHD2 primarily localizes to the intermembrane spaces of
mitochondria, a pathogenic point mutation of CHCHD?2 induces the translocation of CHCHD?2 into
cytosol where it aggregates with a-synuclein [74]. Under these conditions, the possibility exists that
Parkin-Tg can prevent neurodegeneration by inhibiting aggregation of CHCHD?2 and «-synuclein. Our
Parkin-Tg mice are a powerful tool for elucidating these questions. Third, we describe our findings
regarding IPAS, a newly identified target of the PINK1/Parkin pathway. IPAS is a bi-organellar factor
with roles in nuclear transcription repression and mitochondprial pro-apoptotic function. This conversion
is controlled by its subcellular localization via binding to anchoring proteins, and post-translational
modification by other signaling pathways, such as p38 MAP kinase/MK2 signaling. The next challenge
is a finding of the nuclear/mitochondrial anchoring proteins for IPAS by which IPAS bi-organellar
function is regulated. Experiments using knockout mice lacking these proteins will dramatically
enhance our understanding of novel pathogenic mechanism in PD.
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