
fgene-12-688447 August 12, 2021 Time: 13:34 # 1

ORIGINAL RESEARCH
published: 18 August 2021

doi: 10.3389/fgene.2021.688447

Edited by:
Adil Mardinoglu,

King’s College London,
United Kingdom

Reviewed by:
Vikram Dalal,

Washington University in St. Louis,
United States

Francesco Strati,
European Institute of Oncology (IEO),

Italy

*Correspondence:
Saliha Ece Acuner

ece.ozbabacan@medeniyet.edu.tr

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal

Frontiers in Genetics

Received: 30 March 2021
Accepted: 19 July 2021

Published: 18 August 2021

Citation:
Maden SF and Acuner SE (2021)

Mapping Transcriptome Data to
Protein–Protein Interaction Networks

of Inflammatory Bowel Diseases
Reveals Disease-Specific

Subnetworks.
Front. Genet. 12:688447.

doi: 10.3389/fgene.2021.688447

Mapping Transcriptome Data to
Protein–Protein Interaction Networks
of Inflammatory Bowel Diseases
Reveals Disease-Specific
Subnetworks
Sefika Feyza Maden and Saliha Ece Acuner*

Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey

Inflammatory bowel disease (IBD) is the common name for chronic disorders associated
with the inflammation of the gastrointestinal tract. IBD is triggered by environmental
factors in genetically susceptible individuals and has a significant number of incidences
worldwide. Crohn’s disease (CD) and ulcerative colitis (UC) are the two distinct types
of IBD. While involvement in ulcerative colitis is limited to the colon, Crohn’s disease
may involve the whole gastrointestinal tract. Although these two disorders differ in
macroscopic inflammation patterns, they share various molecular pathogenesis, yet the
diagnosis can remain unclear, and it is important to reveal their molecular signatures
in the network level. Improved molecular understanding may reveal disease type-
specific and even individual-specific targets. To this aim, we determine the subnetworks
specific to UC and CD by mapping transcriptome data to protein–protein interaction
(PPI) networks using two different approaches [KeyPathwayMiner (KPM) and stringApp]
and perform the functional enrichment analysis of the resulting disease type-specific
subnetworks. TP63 was identified as the hub gene in the UC-specific subnet and p63
tumor protein, being in the same family as p53 and p73, has been studied in literature
for the risk associated with colorectal cancer and IBD. APP was identified as the hub
gene in the CD-specific subnet, and it has an important role in the pathogenesis of
Alzheimer’s disease (AD). This relation suggests that some similar genetic factors may
be effective in both AD and CD. Last, in order to understand the biological meaning of
these disease-specific subnets, they were functionally enriched. It is important to note
that chemokines—special types of cytokines—and antibacterial response are important
in UC-specific subnets, whereas cytokines and antimicrobial responses as well as
cancer-related pathways are important in CD-specific subnets. Overall, these findings
reveal the differences between IBD subtypes at the molecular level and can facilitate
diagnosis for UC and CD as well as provide potential molecular targets that are specific
to disease subtypes.

Keywords: inflammatory bowel disease, ulcerative colitis, Crohn’s disease, protein–protein interaction networks,
transcriptome
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INTRODUCTION

Inflammatory bowel disease (IBD) is a chronic disease with
gastrointestinal tract inflammation, and there are approximately
6.8 million IBD cases worldwide (Jairath and Feagan, 2019;
Meyers et al., 2020). Genetic factors have been scientifically
proven to be effective in the onset of the disease, so individuals
with a family history are likely to have the disease (Zhu
et al., 2019). IBD can develop at all stages of life and last a
lifetime, significantly reducing the quality of life of patients
(Pugliese et al., 2020). Moreover, patients with IBD have a
high risk of developing colon cancer (Pugliese et al., 2020).
Although the cause of IBD is not known exactly, various
environmental factors trigger the emergence and progression
of the disease in genetically susceptible individuals. IBD
includes two similar types of idiopathic bowel diseases, namely,
ulcerative colitis (UC) and Crohn’s disease (CD), that differ
in location and depth of involvement in the intestinal wall.
The involvement in UC is limited to the large intestine,
whereas CD may be involved in any part of the gastrointestinal
tract from mouth to anus (Zhu et al., 2019; Winter and
Weinstock, 2020). While these two subtypes share a variety of
molecular pathogenesis, the macroscopic inflammation patterns
are clinically different. Since UC and CD patients tend to
show similar symptoms, appropriate diagnosis and treatment
options may remain unclear. Improved molecular understanding
can reveal disease-type-specific and even individual-specific
targets (Vennou et al., 2019; Mitsialis et al., 2020); thus, it is
important to reveal the molecular signatures of UC and CD at
the network level.

In genomics studies, genes functioning in the epithelial barrier
function and genes related to cellular innate immunity are found
to be particularly associated with UC and CD, respectively
(Fakhoury et al., 2014; Cohen et al., 2019). The NOD2 gene
located at the IBD1 locus is the first gene associated with CD
(Hugot et al., 2001). ATG16L1, which is necessary for autophagy
in the cell, and STAT3 polymorphisms involved in cellular
function by regulating gene activity are also associated with CD
(Magalhaes et al., 2011; Wang et al., 2014). IRF5 polymorphisms
(Gathungu et al., 2012) and ILR23 variants (Duerr et al., 2006)
are associated with both UC and CD. Although most gene
loci found for IBD show the same direction of action for
UC and CD subtypes, some genes also have adverse effects.
For example, while NOD2 and PTPN22 genes are risk factors
for CD, they showed a significant protective effect for UC
(Wawrzyniak and Scharl, 2018).

Understanding the complex mechanisms of diseases is
important in both the diagnosis and treatment steps. In systems
biology, the molecular understanding that develops with the
analysis of biological networks can serve for disease type-
and even individual-specific goals (Ran et al., 2013; He et al.,
2017). One of the most effective approaches for disease-specific
subnetwork (subnet) detection is the method of integrating
transcriptome data into protein–protein interaction (PPI)
networks (He et al., 2017). Transcriptome data include the
whole gene transcripts (RNA molecules) expressed within the
cell and represent the relationship between the information

stored and encoded in DNA and the phenotype (Kaur, 2013).
PPI networks, on the other hand, inform of the interactions
between proteins in the organism (Rao et al., 2014). PPI
networks and associated experimental data, different for each
organism, can form a bridge between cellular processes and
disease states (He et al., 2017). By mapping transcriptome data
to PPI networks, proteins encoded by genes with significantly
changed expression levels due to the relevant situation can
be determined, and new modules can be obtained (He
et al., 2017). This approach can reveal proteins and cellular
mechanisms previously unknown to be related to the disease
condition. Thus, with an integrated transcriptome and proteome
analysis approach, the different mechanisms underlying
network dynamics can be highlighted (Rakshit et al., 2014;
Chen et al., 2016).

In a study comparing the performance of subnet discovery
algorithms under different conditions, KeyPathwayMiner (KPM)
(Alcaraz et al., 2014) has been reported to show high performance
(Batra et al., 2017). KPM algorithm was also used to investigate
the effect of chemotherapy (Warsow et al., 2013) and to
understand the mechanism of Huntington’s disease (Alcaraz
et al., 2011). Genes in the subnetwork modules, handled by
KPM, are defined as significantly active genes in relation
to the investigated situation (Warsow et al., 2013). In this
paper, the expression data of IBD subtypes (UC and CD)
were compared, and differentially expressed genes (DEGs) with
respect to the healthy state were determined for each subtype.
Moreover, disease subtype-specific PPI networks were extracted,
topologically analyzed, and transcriptome data were mapped
to PPI networks to identify UC- and CD-specific subnets.
Biological significance of the disease-specific subnets was further
explored by functional enrichment, revealing the differences
between the IBD subtypes at the molecular level. The network-
based pathway functional enrichment method can be used to
discover molecular mechanisms related to diseases. With this
approach, situation-specific functional modules are extracted
from large interaction networks, and new modules are obtained
and subjected to analysis (Batra et al., 2017). Our results can
facilitate diagnosis for IBD subtypes UC and CD, and provide
potential molecular targets.

MATERIALS AND METHODS

The expression data for IBD subtypes (UC and CD) were
obtained from the GEO database, and differentially expressed
genes (DEGs) with respect to the healthy state were determined
for each subtype. All PPI network analyses and visualization
were performed by the Cytoscape (3.8.0) application. Cytoscape
(Shannon, 2003; Cline et al., 2007) is an open-source software
for visualizing, modeling, and analyzing molecular and genetic
interaction networks. Cytoscape can be applied to any molecular
component and interaction system. In recent years, its use has
increased with the emergence of large databases for protein–
protein, protein–DNA, and genetic interactions of humans and
model organisms (Shannon, 2003; Cline et al., 2007). In our study,
two different approaches were used to map the transcriptome
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FIGURE 1 | Workflow of the comprehensive protein–protein interaction (PPI) network analysis by mapping transcriptome data for the discovery of ulcerative colitis
(UC)- and Crohn’s disease (CD)-specific subnetworks.

data to the disease subtype-specific PPI networks to identify
UC- and CD-specific subnetworks (subnets) (Figure 1). The
first approach uses KeyPathwayMiner (KPM) to determine the
modules in the disease-specific PPI networks, whereas in the
second approach, disease- and DEG-related PPI networks are
merged using stringApp, and their intersection yields the disease-
specific subnets. Last, biological significance of the disease-
specific subnets, coming from different approaches, was explored
by functional enrichment, revealing the differences between the
IBD subtypes at the molecular level. The details of each step are
explained in the following subsections, and the workflow of our
comprehensive analysis of PPI networks with transcriptome data

for the discovery of UC- and CD-specific subnetworks is shown
in Figure 1.

Acquisition and Analysis of
Transcriptome Data
Transcriptome data for the IBD subtypes ulcerative colitis
(UC) and Crohn’s disease (CD) were obtained from the Gene
Expression Omnibus (GEO) database1 under microarray datasets
GSE126124 and GSE3365 (Table 1). These microarray datasets
were chosen because of the coexistence of samples from UC,

1http://www.ncbi.nlm.nih.gov/geo
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TABLE 1 | Characteristics of the expression profiling microarray datasets
GSE126124 and GSE3365 analyzed in this study.

Datasets Ulcerative colitis
(UC)

Crohn’s disease
(CD)

Normal
controls

GSE126124 36 samples 76 samples 51 samples

GSE3365 26 samples 59 samples 42 samples

CD, and normal (healthy) groups. The acquired transcriptome
datasets were analyzed individually by comparing two disease
conditions with the healthy condition such as UC vs. healthy
tissue and CD vs. healthy tissue using GEO2R, a web tool
that can perform R-based gene expression analysis. As default
in GEO2R analyses, we applied quantitative normalization and
the Benjamini and Hochberg procedure for controlling false
discovery rate (FDR). This is the most frequently used adjustment
for microarray data because of the good balance between limiting
significant genes and false positives. Finally, for determining
the differentially expressed genes (DEGs) that differ in mRNA
level in UC vs. control and CD vs. control groups, the p-value
threshold was considered as 0.05, and the direction of the change
in gene expression was assigned according to fold change (FC)
values. Genes with logarithm of fold change (logFC) value above
1 was considered as upregulated and below 1 as downregulated
(|logFC| ≥ 1).

Identifying Ulcerative Colitis- and
Crohn’s Disease-Specific Subnets
Mapping Transcriptome Data to Disease-Specific
Protein–Protein Interaction Networks With
Cytoscape—KeyPathwayMiner
Disease-specific PPI data for UC and CD were extracted using
the PSICQUIC web service (October 29, 2020).2 Then the
KeyPathwayMiner (KPM)3 (version 5.0.1) plugin for Cytoscape
was downloaded. The KPM plugin of Cytoscape is able to
efficiently uncover all the maximum connected subnets in a
biological network. The KPM algorithm processes transcriptome
data, p-values as “1” or “0” (Alcaraz et al., 2016), so p-values are
arranged as “1” for significantly expressed genes (SEGs) (with
p-value < 0.05) and “0” for non-significantly expressed genes,
respectively. The K-value, which is an important parameter for
KPM, indicates how many nonsense genes will be in the module.
The optimal K-value was determined as 5 by trial and error
(Alcaraz et al., 2016), such that significant genes are missed
when the K-value is below 5, and no new significant genes are
added when above 5. In this study, after loading the disease-
specific PPI networks to Cytoscape, genes and p-values obtained
from GSE126124 and GSE3365 datasets were arranged in the
appropriate format for KPM and uploaded as two separate
files. The K-value was assumed to be 5; the transcriptome data
in the two sets were logically connected using “AND” and
mapped to the PPI network so that new modules for UC and
CD were obtained.

2http://www.ebi.ac.uk/Tools/webservices/psicquic/view/main.xhtml
3https://apps.cytoscape.org/apps/keypathwayminer

Merge Analysis of Differentially Expressed Gene- and
Disease-Specific PPI Networks With
Cytoscape—StringApp
The STRING database is designed to comprehensively combine,
evaluate, and disseminate protein–protein relationship
information (Franceschini et al., 2012). With StringApp4

(version 1.6.0), PPI queries can be performed in four different
ways: protein query, PubMed query, disease query, and
protein/compound query. In this study, the PPI network of
DEGs in the two datasets was constructed using the STRING
database, and an interaction with a composite score of > 0.95
was considered as statistically significant. Also, an interaction
with a maximum protein count of 500 and a composite score
of > 0.95 was considered statistically significant when querying
the disease names (ulcerative colitis and Crohn’s disease) in
the STRING database. In this way, DEG- and disease-specific
PPI networks for UC and CD were merged (intersection
analysis) with the Cytoscape application, and new intersection
modules were obtained.

Functional Enrichment of
Disease-Specific Network Modules
Disease Subtype-Specific Modules Obtained by
KeyPathwayMiner
Last, the new modules obtained with KPM were functionally
analyzed using g:Profiler (Reimand et al., 2016),5 which is
an online, user-friendly, and comprehensive database for
functional enrichment analysis. It contains the methods
commonly used in standard pipelines of biological entity
(gene/protein)-centered computational analysis. g:Profiler
currently includes Gene Ontology for biological pathway
analysis; KEGG, Reactom, and WikiPathways, to determine the
regulatory motifs in DNA; TRANSFAC and miRTarBase for
protein databases; and it contains commonly used data sources
such as the Human Protein Atlas and CORUM (Raudvere et al.,
2019). Gene lists in the new disease subtype-specific modules
obtained for UC and CD were given as input to g:Profiler
algorithm; Benjamini–Hochberg was applied as the statistical
correction method, and terms with p-values less than 0.05 were
considered as significant.

Disease Subtype-Specific Modules Obtained by
StringApp
String Enrichment can perform functional analysis of the
modules created by STRING, which performs overrepresentation
tests for a total of 11 functional path classification
frameworks. Some commonly available frameworks are: Gene
Ontology, KEGG paths, UniProt keywords, and Reactome
paths (Szklarczyk et al., 2020). Functional enrichment
by String Enrichment was applied on the intersection
module obtained after the merge analysis of DEG- and
disease-specific PPI networks for UC and CD, and the
results were compared.

4https://apps.cytoscape.org/apps/stringapp
5https://biit.cs.ut.ee/gprofiler
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RESULTS AND DISCUSSION

Functional Enrichment of
Disease-Specific Differentially Expressed
Genes
DEG analysis of GSE126124 and GSE3365 datasets resulted in
144 DEGs (84 upregulated and 60 downregulated) common for
UC and CD, 136 UC-specific DEGs (68 upregulated and 68
downregulated), and 195 CD-specific DEGs (107 upregulated and
88 downregulated) (Tables 2, 3). Literature search of common
up- and downregulated disease-specific genes confirms their
importance in IBD. The regenerative gene (REG) family shows
increased expression during IBD-associated inflammation (Xu
et al., 2019). OLFM4 secreted by human intestinal epithelial cells
is upregulated in the inflamed mucosa of IBD patients; however,
its functional role in IBD has remained uncertain (Kuno et al.,
2021). DMBT1 gene, which is considered as a candidate tumor
suppressor gene for the brain, lungs, stomach, and colorectal
cancers, has shown an increased expression in inflamed tissues
of IBD patients, and it has been stated that impaired DMBT1
function may be associated with the onset of Crohn’s disease
(Renner et al., 2007). Moreover, polymorphisms/mutations of
Toll-like receptors (TLR), which are innate immune receptors,
have been directly linked to IBD (Lu et al., 2018), and activation of
epithelial TLR4 in IBD and colorectal cancer has been associated
with upregulation of DUOX2 (Burgueño et al., 2020). It has
been reported that MARK2, a master regulator of cell polarity
in intestinal epithelial cells, may contribute to the initiation
and progression of IBD by interfering with the protein kinase
cascade (Yuan et al., 2017). Disease-specific DEGs were further
analyzed by functional enrichment using ClueGO, as explained
below (Figure 2).

UC-specific genes were found to be mainly associated with
signaling pathways such as antibacterial humoral response,
positive regulation of interferon-alpha production, and
phagocytosis recognition. Considering the antiviral effect of
interferon alpha and the importance of phagocytosis in the early
stage of bacterial infections, it can be said that UC-specific genes
are effective on various immune system signaling pathways.
Although the etiology of UC is not exactly known, it is assumed
that it is a multifactorial condition that causes immune response
(Zhang et al., 2017; Tatiya-Aphiradee et al., 2018). The immune
response plays an important role in the initiation and progression
of UC, and any loss of immune tolerance results in inflammation
(Tatiya-Aphiradee et al., 2018). The relationship between CD-
specific genes and chemokines and again the immune system
was observed. It has been reported that the immunoregulatory
effects of cytokines play an important role in the pathogenesis
of IBDs such as Crohn’s disease (CD), where they control many
aspects of the inflammatory response (Stallmach et al., 2004;
Neurath, 2014).

Identified Ulcerative Colitis- and Crohn’s
Disease-Specific Subnets
Mapping Transcriptome Data to Protein–Protein
Interaction Networks With
Cytoscape—KeyPathwayMiner
The visualization and topological analysis of the disease-specific
PPI network modules extracted from the PSICQUIC database
were done by Cytoscape. UC-specific PPI module contains
88 proteins and 100 interactions (Figure 3A). Topological
analysis revealed that there is only one hub gene (TP63) in
the UC module. UC transcriptome data were mapped to the
corresponding UC PPI network to find disease-specific new

TABLE 2 | Top five upregulated differentially expressed genes (DEGs) and their corresponding p-values and logFC values of the ulcerative colitis-specific, Crohn’s
disease-specific, and common genes.

UC-specific CD-specific Common genes

Gene symbol p-value logFC Gene symbol p-value logFC Gene symbol p-value logFC

RNU5D-1 1.49E–03 1.9 FCGR1CP 3.16E–05 1.5 REG1B 1.24E–04 2.3

MMP12 1.87E–02 1.5 CXCL9 7.52E–04 1.3 REG1A 1.23E–03 2.2

PTCH2 1.55E–02 1.4 ANKRD22 4.99E–07 1.3 DUOX2 2.14E–05 1.9

TNFRSF17 6.13E–05 1.4 CD274 7.34E–10 1.3 OLFM4 4.76E–03 1.7

SAA1 1.26E–05 1.4 CXCL10 5.72E–03 1.2 DMBT1 2.79E–03 1.6

TABLE 3 | Top five downregulated DEGs and their corresponding p-values and logFC values of the UC-specific, CD-specific, and common genes.

UC-specific CD-specific Common genes

Gene symbol p-value logFC Gene symbol p-value logFC Gene symbol p-value logFC

LIMD1-AS1 2.35E–05 −1.2 XCL2 2.12E–11 −1.8 NPRL2 1.12E–11 −2.2

KLF6 8.95E–09 −2.7 KLRF1 2.11E–12 −1.7 MYCBP2 8.41E–08 −2.1

DDX24 3.37E–06 −1.8 MYOM2 1.87E–05 −1.6 CLIC3 1.03E–08 −2.1

SART3 1.21E–05 −1.5 MIR664B 2.57E–14 −1.6 MARK2 5.09E–09 −1.9

KMT2A 2.94E–07 −1.5 HNRNPH1 1.13E–07 −1.6 SNRNP70 7.68E–13 −1.8
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FIGURE 2 | Functional enrichment of UC- and CD-specific differentially expressed genes (DEGs).

modules by KPM analysis (Figure 3B). The resulting UC-specific
new module in the PPI network includes 11 nodes mapped
to the DEGs (green circles) and one node (TP63, red circle)
added by KPM was in the expression dataset but not found
as a DEG (Figure 4B). The hub node TP63 (with the highest
number of connections) is in the same family as the tumor
proteins p53 (TP53) and p73 (TP73), which have been studied
for risk associated with both colorectal cancer and inflammatory
bowel disease (IBD) (Hudspath et al., 2018). Note that the
existence of this hub node in the expression dataset but not being
differentially expressed in disease conditions might be due to its
vital role in various cellular processes and the network not being
robust to changes in its expression levels.

CD-specific PPI module contains 2,777 proteins and 3,475
interactions (Figure 4A). In the new CD-specific module
obtained by KPM analysis, 170 nodes were mapped to DEGs
(green circles), and the APP hub node (yellow circle) was mapped
to both transcriptome datasets but was significantly expressed
in only one. Note that NOD2 gene, which is known to be
related with CD, was not included in the modules, and this

may be due to the fact that the NOD2 gene is not subtype-
specific but rather generally associated with IBD. HTT and
VHL hub nodes (red circle) were mapped to both transcriptome
datasets but were not significantly expressed. The NCF1 hub
node (red pentagon) was mapped to only one transcriptome
dataset but was not significantly expressed. P19711 hub node
(red triangle) could not be mapped to the transcriptome datasets
(Figure 4B). Similar to the UC-specific subnet, hub genes were
mapped to the expression dataset but not differentially expressed
in the disease condition; indicating them to be critical for the
network robustness. These CD-specific hub nodes and their
disease relation can be listed as APP in Alzheimer’s disease
(Neha et al., 2008), HTT in Huntington’s disease (HD) (Warby
et al., 2011), and VHL as a tumor suppressor gene (Kim, 2004).
Topological analysis reveals that the APP was the hub gene with
the highest number of interactions with the expressed genes in
the datasets. In addition, a recent study reported that APP gene is
an important DEG for CD disease (Li et al., 2020). These results
suggest that some similar genetic factors may be effective in both
Alzheimer’s disease (AD), and CD as APP is a critical gene in
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FIGURE 3 | Mapping transcriptome data to UC-specific PPI network for the discovery of subnetworks with KeyPathwayMiner (KPM). (A) PPI network for UC
obtained from the PSICQUIC database, including 88 proteins and 100 interactions. (B) Mapping transcriptome data to UC-specific PPI network reveals a module
containing 13 proteins and 16 interactions. Green and red colored nodes correspond to the DEGs in the expression dataset and the genes that are not significantly
different from the healthy samples, respectively, whereas circle-shaped nodes indicate they were mapped to both of the expression datasets.

FIGURE 4 | Mapping transcriptome data to CD-specific PPI network for the discovery of subnetworks with KPM. (A) PPI network for CD obtained from the
PSICQUIC database, including 2777 proteins and 3475 interactions. (B) Mapping transcriptome data to CD-specific PPI network reveals a module containing 175
proteins and 217 interactions. Green and red colored nodes correspond to the DEGs in the expression datasets and the genes that are not significantly different from
the healthy samples, respectively. Genes depicted in yellow are DEGs in only one of the datasets. Circle-shaped nodes were mapped to both of the expression
datasets, nodes with pentagon shape were mapped to only one of the datasets, and triangle nodes were not mapped to any of the datasets.
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FIGURE 5 | Analyzing disease- and DEG-specific PPI networks for the discovery of a UC-specific subnetwork with StringApp.

both. Functional interpretation of the modules is given in the
functional enrichment section.

Merged Differentially Expressed Gene- and
Disease-Specific Protein–Protein Interaction
Networks Using Cytoscape—StringApp
Using ulcerative colitis as the String Disease Query, a PPI network
containing 500 proteins and 1,318 interactions was retrieved.
When the non-interacting proteins with the rest of the network
were removed, 293 proteins and 1,303 interactions remained
in the UC-specific PPI network. In the String Protein Query
search, a total of 280 UC-specific DEGs, including 152 up- and
128 downregulated genes, were used. As a result, a PPI network

containing 246 proteins and 51 interactions was obtained, and
removing the non-interacting proteins resulted in a DEG-specific
PPI network of 51 proteins and 49 interactions. These two
networks were subjected to merge analysis using Cytoscape, and
the intersection of the two modules revealed a UC-specific subnet
module containing 12 proteins and 14 interactions (Figure 5).
A similar approach was also used for the discovery of a CD-
specific subnetwork and the resulting number of proteins and
interactions in the PPI networks are shown in Figure 6. Note
that, Crohn’s disease as the String Disease Query, yielded 500
proteins and 1,263 interactions, which reduced to 297 proteins
and 1,250 interactions after the elimination of the non-interacting
nodes with the rest of the network. On the other hand, using
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FIGURE 6 | Analyzing disease- and DEG-specific PPI networks for the discovery of a CD-specific subnetwork with StringApp.

a total of 339 CD-specific DEGs, including 191 up- and 148
downregulated genes, a PPI network containing 317 proteins and
144 interactions was obtained, and removal of non-interacting
proteins with the rest of the network resulted in 80 proteins
and 137 interactions. The CD-specific subnet module, which is
the intersection of the disease- and DEG-specific PPI networks,
includes 19 proteins and 35 interactions (Figure 6).

Functional Enrichment of
Disease-Specific Subnets
As described above, the disease-specific subnets for UC and
CD were obtained integrating transcriptome data into PPI

networks using two different methods (Figures 1, 7, 8). In
order to understand the biological meaning of these disease-
specific subnets, they were functionally enriched. The functional
enrichment of UC-specific module obtained by KPM showed that
these genes mostly play a role in the regulation of the activity
of cancer suppressor TP53 (Figure 7A). Studies have reported
the presence of p53 overexpression in UC patients (Lu et al.,
2017). Moreover, p53 expression is closely associated with colon
cancer development in UC patients, and the prevalence of TP53
is reported to be high in patients with UC and colon cancer
(Yashiro, 2014; Du et al., 2017; Lu et al., 2017). Most studies
confirm that UC is a risk factor for colon cancer (Yashiro, 2014;
Choi et al., 2016; Kobayashi et al., 2017). UC-associated colon
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FIGURE 7 | Functional analysis and comparison of UC-specific modules. (A) UC-specific module by KeyPathwayMiner (KPM) and the top 5 enrichment results
based on the p-value. (B) UC-specific module by StringApp and the top 5 enrichment results based on the p-value.

cancer develops through the inflammation-dysplasia sequence,
so early detection of any malignancy formation in patients with
UC is very important (Kobayashi et al., 2017). The p53 protein
overexpression as a result of the mutation of the p53 gene or
the development of dysplasia can be used as a biomarker in
the diagnosis of UC-associated colon cancer (Du et al., 2017;
Kobayashi et al., 2017). On the other hand, the functional
enrichment of the UC-specific module obtained by StringApp
revealed that genes mostly play a role in the chemokine and
disruption of cells of other organisms (Figure 7B). Chemokines
are small cytokines secreted by cells that play a role in immunity
and inflammation (Griffith et al., 2014). The UC-specific modules
obtained by the two different approaches reveal common
functional properties such as CXC chemokine receptor 1/2,
and CXC chemokine, cellular response to transforming growth
factor beta (TGF-beta) stimulus, T-cell proliferation involved in
immune response, and identical protein binding. The following
literature findings support these signature pathways in UC. CXC
chemokine receptors 1/2 (CXCR1 and CXCR2) have similar
signaling mechanisms (Muthas et al., 2016). Ligands of CXC
chemokine receptor 1/2, which are chemoattractants of PMN
(polymorphonuclear leukocyte), have been found at elevated

levels in the mucosa of UC patients and the activation of
PMN to the colonic mucosa causes tissue damage in patients
with UC (Buanne et al., 2007). There is increasing evidence
to suggest that CXCL8 (IL-8) has an important role in the
pathogenesis of IBD (Williams et al., 2000). CXCL8 binds to
CXCR1 and CXCR2 to mediate neutrophil recruitment and
trigger cytotoxic action at the sites of infection (Nasser et al.,
2009; Fisher et al., 2019). As a result of some studies, it was
stated that the mucosal levels of CXCL8 were elevated in UC,
but not observed in CD (Mahida et al., 1992; Bruno et al.,
2015), and CXCL8 has been reported to mediate inflammation
in UC (Zhu et al., 2021). Cytokine TGF-beta has critical
functions for the fibrosis process such that it regulates the genes
involved in wound healing, including enhancing extracellular
matrix (ECM) formation, disordering the ECM cycle, and in
the growth of connective tissue and insulin (Burke et al., 2007;
Li and Kuemmerle, 2014; van Haaften et al., 2020). UC disease
is characterized by cytokine production and T-cell infiltration
(Koch Hansen et al., 2014). The pathogenesis of UC is associated
with differences in immune regulatory T cells (Watanabe et al.,
1997). Known for its anti-inflammatory roles, IL-10 cytokine
has an important role in suppressing the exacerbation of
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FIGURE 8 | Functional analysis and comparison of CD-specific modules. (A) CD-specific module by KeyPathwayMiner (KPM) and the top 5 enrichment results
based on the p-value. (B) CD-specific module by StringApp and the top 5 enrichment results based on the p-value.

disease symptoms of UC (Wang et al., 2020). Since IL-7 has an
important role in the proliferation and differentiation of T cells,
it contributes to the disruption of immune regulatory T cells in
UC (Watanabe et al., 1997).

As a result of the functional enrichment of the CD-
specific module obtained by KPM, general biological pathways
have mainly emerged. These are, namely, protein binding,
acetylation, response to organic substance, intracellular organelle
lumen, and Ubl conjugation (Figure 8A). On the other
hand, functional enrichment of CD-specific module obtained
by StringApp results in functional pathways, such as IL-
17 signaling pathway, cytokine–cytokine receptor interaction,
cell killing, positive regulation of neutrophil migration, and
cellular response to lipopolysaccharide (Figure 8B). The
following literature findings support these signature pathways
in CD. Interleukin-17 (IL-17) is determined to be the main
immunoregulatory cytokine that can cause IBD with their
disturbances (Hudspath et al., 2018). Due to its importance
in the widespread expression of IL-17, the expression of
various cytokines and chemokines are stated to be induced

(Kim, 2004). The CD-specific modules obtained by the two
different approaches reveal common functional properties such
as cytokine production, interleukin-1 (IL-1) receptor activity,
NF-kappa B (NF-κB) signaling pathway, bladder cancer, and
growth factor activity. In CD patients, greater cytokine release
and tissue damage were observed in inflamed tissues compared
with non-inflammatory tissues (Sarrabayrouse et al., 2020).
Interleukin-1 (IL-1) is one of the cytokines that promote
inflammation (Dinarello, 2019). IL-1α and IL-1β are pro-
inflammatory cytokines with similar structures; they bind to
the same receptor and are present in different signaling
pathways such as JNK, with NF-κB as the main active pathway
(Dinarello, 2011; Garlanda et al., 2013; Anka Idrissi et al., 2021).
Dysregulation of the NF-kB signaling pathways involved in
regulating the immune response and inflammation is directly
related to CD disease (Shih and Targan, 2007; Buttó et al.,
2015; Han et al., 2017; Nissim-Eliraz et al., 2021). As a
result of abnormal activation of NF-κB, overproduction of
proinflammatory cytokines that cause chronic inflammation in
the gut occurs (Han et al., 2017). Studies for CD patients have
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observed a significant increase in the number of NF-kB-positive
cells in the inflamed area compared with the non-inflamed
areas (Ellis et al., 1998). NF-κB activation status may reflect
the inflammatory load in CD: CD patients with high NF-κB
activation showed specific clinical signs such as higher frequency
of ileocolonic involvement and lower frequency of perianal
involvement compared with patients with low NF-κB activation
(Han et al., 2017). Studies have shown that patients with CD are
more likely to have bladder cancer than patients with UC (Geng
and Geng, 2021; Zhang et al., 2021).

CONCLUSION

Integrating transcriptome data into PPI networks to obtain
disease-specific subnetworks (modules) approaches, which can
be used to understand the complex natures of diseases,
reveals previously unknown relations of proteins and cellular
mechanisms with diseases. UC and CD are subtypes of IBD.
The diagnosis and treatment processes of these diseases still
remain unclear due to the complexity in the pathogenesis. In this
study, we identified UC- and CD-specific subnets by mapping
transcriptome data to PPI networks in order to reveal the
molecular signatures and important functional pathways of these
IBD subtypes. First, the analysis of GSE126124 and GSE3365
expression datasets showed UC- and CD-specific genes that
significantly differ in mRNA level with respect to healthy cases
(DEGs). Functional enrichment of these DEGs revealed that UC-
specific genes act on various immune system signaling pathways,
such as antibacterial humoral response, positive regulation of
interferon-alpha production, and phagocytosis recognition. On
the other hand, CD-specific genes were observed to be related
with chemokines and again with the immune system. Then,
new modules specific to CD and UC disease subtypes were
identified employing two different approaches. As a result of the
topological analysis of UC- and CD-specific modules obtained by
KPM, TP63 was identified as the hub gene in the UC-specific
subnet, and p63 tumor protein is studied for risk associated
with both colorectal cancer and IBD being in the same family
as p53 and p73. APP was identified as the most linked hub
gene in the CD-specific subnet, and it has an important role

in the pathogenesis of Alzheimer’s disease (AD). This relation
suggests that some similar genetic factors may be effective in
both AD and CD. Last, in order to understand the biological
meaning of these disease-specific subnets, they were functionally
enriched. The UC-specific modules obtained by the two different
approaches reveal common functional properties such as CXC
chemokine receptor 1/2 and CXC chemokine, cellular response
to transforming growth factor beta (TGF-beta) stimulus, T-cell
proliferation involved in immune response, and identical protein
binding. The CD-specific modules obtained by the two different
approaches reveal common functional properties such as
cytokine production, interleukin-1 (IL-1) receptor activity, NF-
kappa B (NF-κB) signaling pathway, bladder cancer, and growth
factor activity. It is important to note that chemokines—special
types of cytokines—and antibacterial response are important
in UC-specific subnets, whereas cytokines and antimicrobial
responses as well as cancer-related pathways are important in
CD-specific subnets. Overall, these findings reveal the differences
between the IBD subtypes at the molecular level and can facilitate
diagnosis for UC and CD as well as provide potential molecular
signatures that are specific to disease subtypes.
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