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Excess nutritional supply to the growing fetus, resulting
from maternal diabetes and obesity, is associated with
increased risks of fetal maldevelopment and adverse
metabolic conditions in postnatal life. The placenta, in-
terposed betweenmother and fetus, serves as the gateway
between the two circulations and is usually considered to
mediate maternal exposures to the fetus through a direct
supply line. In this Perspective, however, we argue that the
placenta is not an innocent bystander and mounts
responses to fetal “signals of distress” to sustain its own
adequate function and protect the fetus. We describe sev-
eral types of protection that the placenta can offer the fetus
against maternal metabolic perturbations and offer a theo-
retical model of how the placenta responds to the intra-
uterine environment in maternal diabetes and obesity to
stabilize the fetal environment. Our approach supports
growing calls for early screening and control of pregnancy
metabolism to minimize harmful fetal outcomes.

The placenta is a fetal organ interposed between the ma-
ternal and fetal circulation and thus is exposed to influences
from both sides. The placenta develops alongside, and
initially in advance of, the fetus throughout pregnancy.
Various factors can disrupt this development, and in this
context, much attention has focused on maternal under-
nutrition and preeclampsia (1). However, the metabolic,
endocrine, and inflammatory effects of maternal diabetes or
obesity are also associated with changes in placental struc-
ture and function (2). These changes are associated, poten-
tially causally, with variability in fetal phenotype and may
have long-term health effects (3). In particular, compared
with neonates of leanmothers or mothers without diabetes,
those of mothers with diabetes or obesity typically demon-
strate excessive fat accretion (4,5).

However, at the individual level, neonates exposed to
maternal metabolic dysfunction do not always show these

changes. Why, therefore, are some mothers with diabetes
or obesity prone to poorer neonatal outcomes? Beyond any
heterogeneity in maternal metabolic phenotype, some
reasons for variable fetal responses may relate to the
placenta itself. However, this issue has received minimal
attention.

The human fetus and neonate are unusual among
mammals in demonstrating high fat accretion before birth
(6), proposed to buffer the brain against potential mal-
nutrition in early infancy (6). The human neonatal brain
also consumes a much larger fraction of oxygen than any
other species (6). These traits require adequate mecha-
nisms of maternal oxygen supply across the placenta, not
only under normal conditions, but also when fetal oxygen
demand is high or maternal supply is impaired. The
placenta develops and operates in a low oxygen environ-
ment. At the end of pregnancy, placental glucose metab-
olism is mostly glycolytic, i.e., nonoxidative (7). This may
prevent the excessive generation of reactive oxygen species
(ROS) by the mitochondria but also spares energy for the
fetus through releasing a portion of placentally derived
lactate, which may aid fetal brain metabolism.

Several aspects of placental function indicate some kind
of adaptive response to variability in maternal phenotype,
which may benefit fetal outcomes. Until recently, the
primary focus was on maternal undernutrition. Under
the lens of “genetic conflict theory,” the placenta was
considered to act in the interests of the fetus, for example,
releasing hormones into the maternal blood stream that
elevate maternal blood pressure to force more nutrients
across the placental interface (8,9). This would protect
fetal fuel supply against low maternal circulating nutrient
levels.

However, we suggest that such responses may also
occur in the context of maternal diabetes or obesity.
The placenta may respond to enhanced fetal oxygen
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demand by enlarging the surface area of exchange, thus
facilitating maternal-to-fetal oxygen diffusion. Similarly,
the placenta may remove cholesterol from its circulation,
preventing formation of proatherosclerotic lesions that
might impede fetoplacental blood flow. Manifold other
placental changes have been described in diabetes and
obesity at the end of gestation. However, little attempt
has been made to interpret these changes within an
adaptive framework.

Here, we describe in more detail how the placenta can
protect the fetus against maternal metabolic perturbations
and offer a conceptual model of how this provides a stable
environment for the fetus. We use these concepts to
support the growing call for early screening (and control)
of pregnancy metabolism to minimize adverse fetal
outcomes.

PLACENTAL HOMEOSTATIC CAPACITY

During intrauterine development, the homeostatic capac-
ity of the fetus itself is immature and will only begin to
fulfill this function after delivery (as shown by the het-
erogeneity of neonatal glucose metabolism [10]). Varia-
tions in fetal metabolism can serve as signals to the
placenta, in particular to the endothelium, which lines

the fetoplacental vasculature. These signals can induce
placental responses, which can be interpreted as adapting
placental structure and function to protect fetal develop-
ment. Broadly, this allows the placenta to play a key role in
fetal metabolic homeostasis.

The classical example is the placental response to fetal
hypoxia. It has long been known that maternal overnu-
trition leads to fetal hyperinsulinism, which stimulates
glucose utilization through aerobic metabolism. As a result,
fetal oxygen demand rises. If this demand cannot be
adequately satisfied because of maternal undersupply, fetal
hypoxia may ensue. To protect the fetus, the placenta
enlarges its surface area of exchange to facilitate oxygen
transfer (11). One of the fetal signals that stimulates this
vascular growth (angiogenesis) through various cooperat-
ing mechanisms is insulin (12,13). Thus, the same signal
that causes the increased fetal demand for oxygen also
stimulates the adaptive placental response.

At the same time, the fetus increases its number of red
blood cells as acceptors for oxygen (14). In turn, this
augmented erythropoiesis increases fetal iron demand,
which is met by transplacental transfer of transferrin.
This may be enhanced in diabetes, as placental transferrin
receptor expression is increased in this condition (15). In

Figure 1—Fetal signals related to excess nutritional supply facilitate placental adaptation to prevent atherosclerotic plaques being formed.
Fetoplacental endothelial cells synthesize more cholesterol in GDM than in normal pregnancies (19). At the same time, two cholesterol efflux
transporters (ABCA1, ABCG1) are upregulated through activation of the LXR transcription factor in response to higher concentrations of
circulating and intraendothelial oxysterols formed by ROS-induced cholesterol oxidation. Cholesterol efflux from these endothelial cells is
also enhanced by insulin-induced upregulation of phospholipid transfer protein (PLTP) on the surface of the endothelial cells in GDM (20,72).
This enzyme transfers cholesterol fromHDL3 to HDL2, while pre-bHDL remains. Pre-bHDL can pick up cholesterol from the endothelial cells,
as it is a cholesterol acceptor (73). The majority of HDL2 will be taken up by the fetal liver and the cholesterol converted into bile acids. Thus,
there is a very efficient system for removing free cholesterol from fetoplacental endothelial cells and the fetoplacental circulation to avoid fetal
hypercholesterolemia under conditions of GDM. A second system to prevent formation of atherosclerotic plaques involves the down-
regulation of intercellular adhesion molecule 1 (ICAM-1) expressed on the surface of fetoplacental endothelial cells in GDM (74). ICAM-1
mediates the adhesion of leukocytes to endothelial cells, which then transmigrate into the subendothelial space. Outside pregnancy, this
mechanism plays a pivotal role in the inflammatory component of atherosclerosis (75). Loss of endothelial cell surface and soluble ICAM-1 in
GDMmay be induced, among other factors, by fetal insulin (76). Fetal insulin also increases endothelial nitric oxide synthase (eNOS) and nitric
oxide (NO) synthesis (12) providing atheroprotection (77). These three systems, and probably more, act in concert to ultimately protect the
fetoplacental circulation. Note: This is a schematic depicting the coordinated action of the players and not their precise location. PLTP is
located on the endothelial surface.
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sum, these adaptations link together metabolic responses
in the fetus and placenta that allow higher oxygen uptake
to be achieved.

A second example of placental adaptation relates to the
protection of vessels from preatherosclerotic lesions in
order to maintain blood flow and nutrient/oxygen supply.
While the maternal-decidual blood vessels, the intervillous
space (which harbors maternal blood), and the fetal
arteries all show signs of preatherosclerotic lesions
in situations of maternal overnutrition/hyperlipidemia
(16–18), such lesions have never been reported in the
vessels of the placenta itself. Thus, efficient mechanisms
must exist to protect these vessels from any preathero-
sclerotic lesions/foam cells/plaques, which may compro-
mise blood flow.

Recently, we found that oxidative stress in the fetal
circulation and placental endothelial cells associated with
gestational diabetes mellitus (GDM) lead to higher cho-
lesterol synthesis in the endothelial cells (19). At the same
time, the endothelial cells enhance their cholesterol efflux
capacity by upregulating two efflux transporters in re-
sponse to signals emerging from the adverse consequences
of the diabetic environment (ROS-induced formation of
oxysterols) as a stimulus for counterregulatory measures
(Fig. 1). These serve to avoid intracellular toxic effects of
cholesterol and, hence, maintain full function in the
endothelial cells. Moreover, the formation of preathero-
sclerotic lesions is also avoided, as one enzyme on the
surface of the endothelial cells, phospholipid transfer
protein, is upregulated in GDM by insulin (20). Thus,
this system efficiently removes free cholesterol from fetal
endothelial cells and the fetoplacental circulation under
conditions of GDM.

These examples highlight the capacity of the placenta,
at least at the end of pregnancy, to mount adaptive
responses to the adverse fetal environment generated
by maternal overnutrition, thereby protecting fetal de-
velopment. Intriguingly, fetal insulin, which is elevated in
GDM and metabolically abnormal obesity, seems to play
a key role in inducing several of these adaptive changes at
the end of pregnancy.

It is pertinent that early in pregnancy, the majority of
insulin receptors are located on the syncytiotrophoblast,
which represents the placental interface with the mater-
nal circulation. Later in pregnancy, insulin receptor lo-
cation undergoes a maternal-to-fetal shift, such that the
receptor majority is then on the surface of the endothelial
cells that interact with the fetal circulation and can
receive fetal insulin signals (21). This shift makes the
fetoplacental unit less susceptible to variations in mater-
nal insulin levels. At the same time, it also establishes
a mechanism for fetal protection, whereby “signals of
distress” from the fetus induce an adaptive placental
response. The timing of onset of this mechanism has
not been established yet but will not be before pregnancy
weeks 12–14, when insulin is secreted by the fetal pan-
creas into the circulation (22,23).

THE CAPACITY-LOAD MODEL
Homeostasis is a key physiological principle referring to
a range of metabolic regulatory processes that maintain
a relatively stable internal state in the face of environ-
mental fluctuations. The brain plays a key role but has also
“outsourced” many activities to other organs and tissues
while also protecting itself from metabolic perturbations
through its resistant blood-brain barrier (24).

While many challenges to homeostasis emerge directly
from the external environment (e.g., temperature, food
supply, predators), other stresses relate more closely to
“internal” components of metabolism. We have previously
proposed a “capacity-load” model of metabolism, noting
that many internal characteristics of the organism (e.g.,
lipogenic diet, abdominal adiposity, sedentary behavior,
psychosocial stress, infection, and immune response),
which we collectively term “metabolic load,” can pose major
challenges to homeostasis. This load must be resolved by
the functions of diverse organs, which we collectively term
homeostatic “metabolic capacity.” Failure to resolve these
challenges allows the early accumulation of risk factors for
a range of noncommunicable diseases (24–26).

From a life-course perspective, the development of
metabolic capacity occurs primarily in fetal life and early
infancy under the protective metabolic milieu of maternal
phenotype (24). During this period, development is dom-
inated by hyperplastic growth, which encompasses organ-
ogenesis (27). Other critical developmental processes
include the emergence of epigenetic effects in DNA ex-
pression and the development of hormonal set points
(28,29). Interindividual variability in many of these traits
tends to track on into later life and has life-long impact on
the capacity for homeostasis (24).

In contrast to metabolic capacity, metabolic load largely
develops from birth onward, though it may already be
present in the later stages of fetal life, as demonstrated by
the high fat content and hyperinsulinemia of neonates
born to mothers with obesity or diabetes (30,31).

The capacity-load model assumes that cardiometabolic risk
increases in associationwith both lowermetabolic capacity and
higher metabolic load (24–26). Numerous studies support the
hypothesis; for example, birth weight (a proxy for metabolic
capacity) shows an inverse association with the risk of type
2 diabetes or hypertension, whereas lipogenic diet, high BMI,
and sedentary behavior in adulthood (markers of load) all
increase the risk of these conditions (32). While sharing much
in common with the “thrifty phenotype” hypothesis (33),
a difference in the capacity-load model is that it assumes
dose-response associations of fetal nutritional supply and early
growth patterns with metabolic capacity. This helps explain
why inverse associations of birth weight with the risk of
noncommunicable diseases are observed across the majority
of the range of birth weight rather than being evident only in
those of low birth weight (32,34).

For most of the life course, both metabolic capacity and
load can be considered properties of individual organisms.
However, we suggest that this model should be adapted to
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address pregnancy, where metabolic load is broadly gen-
erated by the mother rather than the fetus and the fetus
has very limited direct capacity for homeostasis.

The examples of placental adaptability reviewed above
may therefore be reconceptualized as components of pla-
cental metabolic capacity unique to the developmental stage
of fetal life. When a mother develops a high metabolic load,
the placenta is uniquely positioned to protect the fetus. We
would then expect maternal metabolic aberrations, or their
correlated responses in the fetus, to become vital signals for
the placenta, eliciting protective responses. However, such
placental protection is expected to have limits, above which
it is overwhelmed by maternal and fetal metabolic pertur-
bations with adverse consequences for the fetus (Fig. 2).

VARIATION OF PLACENTAL TOLERANCE

Thismodel offers the advantage of incorporating several factors
relating to both mother and offspring that may collectively
modify the threshold of metabolic load that the placenta is
capable of tolerating. These are briefly reviewed below.

Fetal Sex
In terms of the model illustrated in Fig. 2, substantial
evidence indicates that females have a higher tolerance
threshold than males, resulting in males being more
susceptible to metabolic perturbations. These differences

may ultimately be due to the two sexes being subject to
contrasting selective pressures to maximize inclusive fit-
ness, resulting in different growth strategies in fetal life
(35). Male fetuses typically accrete more lean mass than
females (36), who accrete slightly more fat and demon-
strate a more central fat distribution (37).

Pregnancy outcomes have long been established to be
worse in males than in females (38). Sex dichotomy in
placentas may contribute to these different outcomes, as
male and female placentas differ molecularly and function-
ally. The effect of fetal sex on gene expression differs even
within the placenta in ways that are cell specific and related to
different functional pathways. In male placentas, these en-
compass signaling pathways for graft-versus-host disease as
well as immune function and inflammation, both of which
parallel poorer pregnancy outcomes amongmale fetuses (39).

These molecular sex differences may underlie sex-
dependent placental responses to environmental challenges.
Supplementing mothers with n-3 fatty acids modifies the
placental transcriptome in a sexually dimorphic manner,
with female placentas being more responsive to treatment
(40), potentially reflecting better plasticity to mount adap-
tive responses.

As detailed above, fetal insulin is a driver of placental
adaptation (12,41,42). However, these findings were obtained
using endothelial cells from female placentas, and males may
respond differently. For example, placental vascularization in
maternal diabetes shows a significant interactionwith fetal sex
(43). Similarly, the higher rate of stillbirths in males than
females (44) can be interpreted as metabolic load exceeding
placental homeostatic capacity and, thus, placental failure to
adapt to fetal oxygen demand by hypervascularization.

Fetal responses also differ by sex. Female neonates born
to GDM pregnancies are less insulin-sensitive than males
(45). Since insulin is a key determinant of fetal phenotype
in maternal overnutrition, this may represent a protective
mechanism that is especially pronounced in females. In
particular, the deposition of triglycerides in fetal/neonatal
adipocytes may be reduced in females. Consistent with
that hypothesis, a sex-dependent association between in-
sulin and neonatal fat was found for some depots, in-
dicating that fat deposition seems to be less affected by
insulin in female neonates compared with males (46).

Such sex differences are also apparent during maternal
undernutrition, as shown in the Dutch famine, where
exposure early in gestation was associated with a greater
reduction in placental area in boys than girls (47). In
a situation of maternal overnutrition such as GDM, es-
trogen receptor a in the decidual vessels, in particular the
extravillous trophoblast subpopulation, is downregulated
in pregnancies with male but not female fetuses (48). The
functional consequences are unclear.

Heterogeneity of the Placenta
The placenta is a heterogeneous organ composed of diverse
different cell types. Their activity and spatial arrangement
depend on the specific function of the anatomical key

low

high low

high

offspring
metabolic

risk

placental
capacity maternal

load

early pregnancy

late pregnancy

Figure 2—Placental homeostatic capacity/efficiency model. During
pregnancy, the placenta has a homeostatic capacity that will main-
tain fetoplacental homeostasis and determine the efficiency, with
which the placenta protects the fetus from adverse consequences of
a disturbed intrauterine environment. Up to a certain level ofmaternal
metabolic load, the placenta can respond to signals such as insulin
and orchestrate adaptive homeostatic responses that preserve an
optimal metabolic milieu for fetal development. We hypothesize that
this capacity is negligible during the early weeks in pregnancy and
fully developed at the end. However, above the limiting threshold,
such placenta capacity is exhausted and adverse fetal effects ensue.
This threshold may differ according to both maternal and fetal traits
(53).
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structures (villi) in which they are located. The surface
repertoire of molecules such as receptors and transporters
may therefore vary depending on the cells’ location within
the placental tissue. Even among endothelial cells, pheno-
typic heterogeneity suggests differential functional re-
sponses along the vascular tree (49). Such heterogeneity
may influence the placental capacity for protecting the
fetus. For example, insulin receptors are heterogeneously
distributed along the vascular tree (42); hence, insulin-
mediated adaptive responses may vary by location.

Time Period in Gestation
The capacity of the placenta for adaptive responses will
undoubtedly increase with gestational age. At the very
beginning of pregnancy, i.e., the blastocyst stage, even
minor environmental perturbations such as culture media
used in in vitro fertilization influence placental growth
(50), suggesting a high degree of sensitivity and vulnera-
bility at this stage.

Although at week 12 of pregnancy the placenta weighs
only 5% of its total final weight, it is in this period that it
grows most rapidly (51). It is known that rapidly growing
tissues/proliferating cells are most sensitive to environ-
mental perturbations (52). Indeed, there is circumstantial
evidence suggesting that placental growth is reduced in the
first trimester of type 1 diabetes pregnancies (53).

The consequence of impaired placental growth as a re-
sponse to the diabetic environment is a reduction in fetal
growth rate. Given that placental size limits fetal growth
early in pregnancy, shorter fetuses at this pregnancy stage
may be the consequence of smaller placentas. However, later
in pregnancy, the fetus can undergo catch-up growth, and at
the end of pregnancy, its weight may exceed that of the
neonate born to normal pregnancies (54). Parallel to its
growth, the adaptive capacity of the placenta may increase,
increasing its threshold for toleratingmetabolic disturbances.

Genetic Factors
Aside from any maternal genes associated with maternal
obesity and gestational diabetes mellitus (55), the placental
response to metabolic load may also be determined by its
genetic makeup. As a fetal tissue, the placenta is under the
genetic influence of both parents, with the paternal genome
promoting nutrient supply to the fetus while the maternal
genome acts in the opposing direction (56,57). As discussed
above, these asymmetric roles are assumed to have evolved
in the evolutionary context of energy scarcity, though
whether genomic imprinting evolved through overt conflict
between the two parents regarding the magnitude of ma-
ternal nutritional investment (58,59) or whether it evolved
more as a coadaptive process (60,61) remains unresolved.
Importantly, genomic imprinting may have different effects
depending on the trimester of pregnancy, for example,
impacting placental structure at earlier gestational age
and placental function at later gestational age (62,63).

While growth-promoting paternal genes may appear to
play a disproportionate role in generating the need for

placental protection, by increasing fetal exposure to maternal
metabolic excess, maternal genes may still play an important
role. Paternally expressed genes appear to promote growth of
functional tissues in the fetus such as skeletal muscle, bone,
and organ mass, whereas maternal-expressed genes favor
fetal fat accretion, which is augmented in maternal obesity
and diabetes (57). Moreover, it is not clear which of paternal
and maternal genes might then drive the adaptive responses
we have outlined above. On the one hand, paternal genes
might themselves promote this protection, to “insure”
against the costs of increasing nutrient demand. On the
other hand, maternal genes might promote placental homeo-
stasis to protect the fetus from such aggressive paternal
tactics. It is also possible that the genes of both parentsmight
contribute to the capacity for placental homeostasis.

Limits to Homeostatic Capacity
Any of these adaptive responses may, however, have
a limited capacity. When the metabolic load exceeds this
capacity, then the placental changes described above will
not be enough to protect the fetus and fetal compromise
may ensue. There are several examples for limited placen-
tal capacity and tolerance toward environmental changes/
stresses:

1. First, endothelial lipase (EL) is an enzyme on the surface
of the syncytiotrophoblast and on placental endothelial
cells. It mediates the uptake of fatty acids from high-
density lipoproteins. Its expression is unchanged in GDM
or obesity. Only when both conditions are combined (i.e.,
GDM and obesity) is EL upregulated, indicating that
placental homeostatic capacity has been exceeded (Fig.
3, left panel). We have identified proinflammatory cyto-
kines as key signals inducing this upregulation (64).

2. Second, the placenta can store fatty acids as triglycerides
in lipid droplets, potentially serving as a protective
mechanism to avoid lipotoxic effects in the placenta/
syncytiotrophoblast (65). The storage capacity has
a limit: with increasing BMI of the mother, i.e., with
increasing metabolic load as reflected by increasing fatty
acid and insulin concentrations, more triglycerides can
be stored (BMI ,25 vs. BMI 30–35). However, with
further increasing BMI, the placenta does not store any
more triglycerides (Fig. 3, right panel) (66), indicating
that metabolic load has exceeded placental capacity.

3. Third, studies show that transmission of the stress
generated by maternal obesity to the fetus may depend
not only on the placenta but also on the mother’s own
metabolic capacity. In a study of Swedish mothers, for
example, the association of maternal obesity with child-
hood obesity in the offspring was exacerbated if the
mother was also born with low birth weight (67). This
suggests that the capacity to maintain homeostasis and
regulate substrate supply to the fetus during pregnancy
is reduced among mothers with lower metabolic capac-
ity. Likewise, we propose that placental protection will
be more quickly exhausted among mothers with
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obesity/diabetes who developed lower levels of meta-
bolic capacity in early life.

CONCLUSION AND IMPLICATIONS

During evolution, the human placenta developed mecha-
nisms that support its role not only in sustaining fetal
development but also in protecting the growing fetus from
an affluent metabolic environment and potential adverse
consequences. Although it is difficult to reconstruct ma-
ternal pregnancy metabolism in ancestral populations,
apes such as orangutans are capable of storing fat to
fund lactation (68), while high levels of female body fat
in preagricultural human populations are indicated by
figurines that clearly depict very high BMI (69). Therefore,
it is plausible that natural selection could have favored the
evolution of such protective mechanisms. Moreover, the
prevalence of GDM worldwide is inversely associated with
the historical duration over which high-glycemic diets have
been consumed, indicating recent selection for blunted
metabolic responses to such diets (70).

Key components of these protective mechanisms are
fetal signals, which interact with placental endothelial cells
to induce adaptive responses that maintain homeostasis at
the fetoplacental interface. The homeostatic capacity of
the placenta depends on various factors including gesta-
tional age and fetal sex and may regionally vary along the
vascular tree. These protective effects, however, can be

overwhelmed by an excessive metabolic load of maternal
overnutrition associated with diabetes, obesity, or both.
This model offers an opportunity to integrate future
results on fetoplacental interactions into a framework
aligned with concepts on human evolution.

Our approach highlights placental function as a new
target to be considered in future intervention strategies,
and the window of early pregnancy may be especially
important, as the placenta develops ahead of the fetus.
Although the experimental results used to develop this
concept relate to the end of pregnancy, these mecha-
nisms must be in place at earlier time periods. This
perspective supports the growing call to control mater-
nal metabolism as early as possible (71). Early distur-
bance of maternal metabolism especially in high-risk
women such as those with obesity, history of GDM, and/
or a family history of diabetes is associated with poorer
pregnancy outcome of the newborn manifested, e.g., in
excessive fat accretion in utero. We propose that this is
in part the result of underdeveloped placental homeo-
static capacity.
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