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The cytochrome P450 mixed function oxidase enzymes are the major catalysts involved in drug
metabolism. There are many forms of P450. CYP2E1 metabolizes many toxicologically important
compounds including ethanol and is active in generating reactive oxygen species. Since several of the
contributions in the common theme series “Role of CYP2E1 and Oxidative/Nitrosative Stress in the
Hepatotoxic Actions of Alcohol” discuss CYP2E1, this methodology review describes assays on how
CYP2E1 catalytic activity and its induction by ethanol and other inducers can be measured using
substrate probes such as the oxidation of para-nitrophenol to para-nitrocatechol and the oxidation of
ethanol to acetaldehyde. Approaches to validate that a particular reaction e.g. oxidation of a drug or toxin
is catalyzed by CYP2E1 or that induction of that reaction is due to induction of CYP2E1 are important and
specific examples using inhibitors of CYP2E1, anti-CYP2E1 IgG or CYP2E1 knockout and knockin mice will
be discussed.

& 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Cytochrome P450 enzymes (CYPs) are the major catalysts
involved in drug metabolism [1,2]. The microsomal drug metabo-
lism system refers to an electron transfer system in which
electrons are transferred from NADPH via the flavin containing
NADPH cytochrome P450 reductase to reduce the heme containing
CYP to the ferrous redox state. Once reduced, the ferrous P-450 can
bind and activate molecular oxygen to promote the metabolism of
many substrates, depending on the specific form of P450 [3]. CYPs
catalyze the metabolism of exogenous compounds as well as the
oxidation of endogenous substrates such as steroids, bile acids,
fatty acids, eicosanoids etc. [1]. While CYPs can catalyze many
types of reactions, the basic reaction promoted by many CYPs is
the mixed function oxidase or monooxygenase reaction whereby
one atom of oxygen is inserted into the substrate and the other
atom is reduced to water:

+ + → + +SH O NADPH SOH H O NADP2 2
The catalytic activity of many CYPs can be determined from

assays of such substrate hydroxylation reactions.
CYP2E1 is one member of the P450 super family. It metabolizes

many toxicologically important substrates including ethanol, car-
bon tetrachloride, acetaminophen, and N-nitrosodimethylamine to
more toxic products [4–7]. CYP2E1 is an inducible enzyme, and
.V. This is an open access article u
many of the substrates for CYP2E1 can induce their own metabo-
lism. This was initially observed with ethanol, which is a substrate
for CYP2E1 and elevates CYP2E1 levels [4,7]. Whereas most
ethanol is oxidized by alcohol dehydrogenase, CYP2E1 assumes a
more important role in ethanol oxidation at elevated concentra-
tions of ethanol and after chronic consumption of ethanol [4,8].
CYP2E1 can oxidize ethanol, and generate reactive products from
ethanol oxidation, for example acetaldehyde and the 1-hydro-
xyethyl radical, can activate various agents (CCl4, acetaminophen,
benzene, halothane, halogenated alkanes, alcohols) to reactive
products, and can generate ROS, such as the superoxide anion
radical and H2O2 [9,10]. Since CYP2E1 catalyzed reactions can
generate ROS, and CYP2E1 is inducible by alcohol, CYP2E1 has
been suggested to be a major contributor to ethanol-induced
oxidant stress, and to ethanol-induced liver injury. In recent years,
in vitro and in vivo studies on cell lines over-expressing CYP2E1, or
on CYP2E1 knockout or CYP2E1 overexpression mice, have been
major tools for studying the mechanism of alcoholic liver diseases
[11–19]. For example, CYP2E1 knockout mice were developed by
Gonzalez and colleagues to determine the role of CYP2E1 in
xenobiotic metabolism and toxicity [10,15]. The development of
the CYP2E1 knockout mouse has been of great value in establish-
ing the role of CYP2E1 in the metabolism and toxicity of various
hepatotoxins. Studies using CYP2E1 KO mice [16] showed that
CYP2E1 plays a role in experimental alcoholic fatty liver in an oral
ethanol-feeding model. A CYP2E1 transgenic mouse model con-
taining human CYP2E1 cDNA was developed that overexpressed
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Table 1
Substrates metabolized/activated by CYP2E1.

Alcohols, aldehydes, ketones Acetaldehyde, ethanol, butanol, glycerol, isopropanol, methanol, propanol, pentanol, 2-butanone, acetone, acetol
Aromatic compounds Acetaminophen, aniline, benzene, chlorzoxazone, isonoazid, phenol, pyridine, p-nitrophenol, pyrazole, toluene
Fatty acids Arachidonic acid ω-1 and ω-2 hydroxylation, lauric acid ω-1 hydroxylation
Alkanes and alkenes Acetoacetate, acrylonitrile, 1,3 butadiene, chloroform, N,N-dimethylacetamide, N,N-dimethylformamide, enflurane, ethane, ethyl

carbamate, halothane, thioacetamide, trichloroethylene, vinyl chloride
Nitrosamines Azoxymethane, N,N-diethylnitrosamine, N,N-dimethylnitroamine, methylazoxymethanol, N-Nitrosopyrrolidine
Reducible substrates Oxygen, chromium VI, t-butylhydroperoxide, carbon tetrachloride
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CYP2E1. When treated with ethanol, the CYP2E1 overexpressing
mice displayed higher transaminase levels and histological da-
mage compared with the control mice [17]. Humanized CYP2E1
knockin mice were developed in which the human CYP2E1
transgene was introduced into the corresponding CYP2E1 null
mouse background [18]. This CYP2E1 knockin mouse allows
functional activities of the human CYP2E1 to be studied and
validates that decreased actions by ethanol in CYP2E1 knockout
mice can be restored by reintroduction of the human CYP2E1
[18,19]. Although CYP2E1 is located in the endoplasmic reticulum,
CYP2E1 can also be present in the mitochondria [20,21]. The
relative contributions of microsomal versus mitochondrial CYP2E1
in promoting drug and alcohol toxicity remain to be clarified.

Since several of the contributions in this common theme series
“Roles of CYP2E1 and Oxidative/Nitrosative Stress in the Hepato-
toxic Actions of Alcohol”, discuss CYP2E1, it was thought that a
brief discussion on how to assay CYP2E1 catalytic activity would
be informative. Many substrates can be effectively oxidized or
activated by CYP2E1. Table 1, adapted from Koop [6], Lieber [7],
Raucy et al. [22], Tanaka et al. [23], Bolt et al. [24] and summarized
in [25] describes some of the substrates which are effectively
metabolized by CYP2E1. Perhaps the most important physiological
substrate for CYP2E1 is acetone, which is oxidized to acetol and
methylglyoxal and eventually to glucose [26]. Other endogenous
compounds that can be metabolized by CYP2E1 include fatty acids
such as linoleic and arachidonic acids [27]. With respect to
exogenous compounds, CYP2E1 metabolizes a wide variety of
hydrophobic compounds such as solvents, aromatic hydrocarbons,
alcohols, halogenated anesthetics, nitrosamines, and drugs such as
acetaminophen and chlorzoxazone (Table 1). Of interest, the ratio
of 6-hydroxychlorzoxazone/chlorzoxazone can be used to estimate
levels of CYP2E1 in humans, including alcoholics [28]. Similar to
other CYPs, CYP2E1 can be induced by its substrates such as
ethanol, pyrazole, 4-methylpyrazole, benzene, imidazole, pyridine,
acetone and isoniazid [6–8]. The oxidation of para-nitrophenol
(PNP) to para nitrocatechol has been shown to be a rapid, easy and
relatively specific assay to determine catalytic activity dependent
on CYP2E1 and has been widely used in the literature [29–31]. As
mentioned above, initial interest in CYP2E1 reflected its involve-
ment in the microsomal oxidation of ethanol pathway (MEOS) as a
secondary pathway for the oxidation of ethanol [4,7,8]. Assays for
PNP and ethanol oxidation by liver microsomes as typically used in
our laboratory are described below.
Methods

Preparation of microsomes

Liver homogenates, 1:10 dilutions in 125 mM KCl–10 mM
potassium phosphate, pH 7.4, are centrifuged at 600g for 10 min.
The supernatant is removed and centrifuged at 8500g for 10 min.
The supernatant is removed and centrifuged again at 8500g for
10 min. The supernatant is then centrifuged at 100,000g for
60 min to pellet the microsomes. The microsomes are resuspended
in 125 mM KCl–10 mM KPi, pH 7.4 and centrifuged again at
100,000g for 60 min and the pellet is resuspended at a concentra-
tion of 1 g initial liver/ml of 125 mM KCl–10 mM KPi. The protein
concentration is determined by the method Lowry et al. [32].

Preparation of microsomes from cell lines e.g. HepG2 cell lines
expressing human CYP2E1 [33]. Once cells approach confluence,
the medium is removed and the cells are washed with cold
phosphate-buffered saline. The cells are harvested with a cell
scraper and resuspended at a concentration of about 10 million
cells in 8–10 ml of 100 mM KPi buffer, pH 7.4. The suspension is
sonicated for 10–15 s in an ice bath e.g. using a 40% duty cycle at
4 output. The suspension is centrifuged at 12,000g for 15 min and
the supernatant is removed and centrifuged at 100,000g for
45 min. The microsomal pellet is suspended in 0.1 ml of 125 mM
KCl–10 mM KPi, pH 7.4 and protein determined on an aliquot.

Oxidation of PNP

Reactions are typically carried out in 1.5 ml Eppendorf tubes.
Stock solutions are prepared and include 1 M KPi buffer, pH 7.2;
10 mM PNP; 10 mM NADPH; 30% wt/vol TCA; 10 N NaOH. Reac-
tions are carried out at 37 °C in a shaking water bath in a final
incubation volume of 0.1 ml containing 100 mM KPi, pH 7.2,
0.2 mM PNP, and about 0.2–1 mg microsomal protein (depending
on whether CYP2E1 is induced or basal activities are being
assayed). Reactions are initiated by the addition of NADPH to a
final concentration of 1 mM and terminated after 10–20 (liver
microsomes) or 45–60 (cell line microsomes) min by addition of
TCA to a final concentration of 1%. The mixture is centrifuged at
5000g for 10 min to remove precipitated protein and the super-
natant is transferred to a clean tube and 10 ml of NaOH is added.
The absorbance of the pink–yellow p-nitrocatechol product is
determined within a few minutes at 510 nm in a microcuvet in a
spectrophotometer. The concentration of p-nitrocatechol is deter-
mined either from the extinction coefficient 9.53 mM�1 cm�1 or
from a standard curve of p-nitrocatechol added to zero time
controls. Controls include omission of microsomes or PNP or
NADPH or adding the TCA before the NADPH (zero time control).
A NADPH-generating system consisting of 10 mM MgCl2–0.3 mM
NADP–10 mM glucose 6-phosphate–7 units of glucose 6-phos-
phate dehydrogenase can be used in place of the NADPH.

Oxidation of ethanol

Two different procedures can be used to assay the production
of acetaldehyde from ethanol. Reactions can be carried out in
stoppered 25 ml center well flasks which contain 0.6 ml of
semicarbazide HCl in 180 mM KPi buffer, pH 7.4, in the center
well (to trap the volatile acetaldehyde). The basic reaction mixture
in the flask contains 100 mM KPi, pH 7.4, ethanol at concentrations
ranging from 25 to 100 mM, 1 mM sodium azide (to inhibit
microsomal contaminating catalase since ethanol can be oxidized
to acetaldehyde via the peroxidatic activity of catalase-H2O2),
about 3–5 mg microsomal protein in a final volume of 3 ml.
Reactions are initiated by the addition of NADPH to a final
concentration of 1 mM and terminated after 5–15 min by the
addition of TCA to a final concentration of 4.5%. Flasks can be left
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overnight at room temperature or placed in a 37° water bath for
3 h to allow the acetaldehyde to diffuse into the center well.
Aliquots of the center well e.g., 0.2 ml are diluted with water to
3 ml and the absorbance of the acetaldehyde–semicarbazone
complex is determined at 224 nm. Standard curves can be pre-
pared by adding known amounts of acetaldehyde to zero time
controls or using an extinction coefficient of 9.4 mM�1 cm�1.
Controls include deletion of microsomes or NADPH or ethanol or
adding the TCA before the NADPH. A second procedure involving
headspace gas chromatography can also be used. Reactions are
carried out in regular 25 ml flasks sealed with tight fitting serum
caps. The reaction mixture described above is used. Reactions are
terminated by injecting perchloric acid (final concentration of
0.5 N) through the serum cap and the flasks are incubated for
60 min at 60° to allow the acetaldehyde to diffuse into the gas
phase. A 1 ml sample of the headspace is removed with a gas tight
1 ml syringe. The syringe plunger is drawn back and forth 10 times
to ensure adequate mixing of the gas phase. The sample is injected
into a gas chromatograph equipped with a flame ionization
detector e.g. a Hewlett-Packard Model 5840A. A 6 ft column of
porapak N, 50–80 mesh or of carbowax 20 M-Haloport F, 30–36
mesh, can be used to detect the acetaldehyde. Operating condi-
tions are column: 50°, inlet 100°, detector 150°, nitrogen carrier
flow of 35 ml/min. Under these conditions, the retention times for
acetaldehyde and ethanol are 0.4 and 1.1 min respectively. Relative
peak areas are quantitated by using standard curves prepared by
adding known amounts of acetaldehyde to zero time controls.

Induction of CYP2E1 by ethanol or pyrazole
SV129 male wild type or CYP2E1 knockout mice were initially

fed a control liquid dextrose diet (Bio-Serv, Frenchtown, NJ) for
3 days to acclimate them to Lieber and DeCarli liquid diets [16,34].
Afterward, the mice were fed either the liquid ethanol diet or the
control liquid dextrose diet for 4 weeks. The content of ethanol
was gradually increased every 7 days from 10% (1.77% vol/vol) of
total calories to 20% (3.54% vol/vol), 30% (5.31% vol/vol), and finally
Fig 1. Oxidation of PNP by rat liver microsomes isolated from male untreated Sprague-
concentration curve.
35% (6.2% vol/vol) of total calories. The control mice were pair-fed
with control dextrose diet on an isoenergetic basis. After 4 weeks,
mouse serum and liver were collected. Liver was rapidly excised
into fragments and washed with ice-cold saline. All samples were
stored at �80 °C and various assays, including CYP2E1 catalytic
activity were carried out. Chlormethiazole (CMZ), an inhibitor of
CYP2E1 [35], was used to validate a role for CYP2E1 in the various
activities being measured. CMZ, 50 mg/kg body wt, was injected ip
every other day over the last 3 weeks of ethanol feeding. For acute
ethanol experiments, the mice were gavaged with 30% ethanol,
3 g/kg body wt twice a day for 4 days. Controls were gavaged with
saline. In other experiments, pyrazole and 4-methylpyrazole were
used to induce CYP2E1 in rats [36,37]. Male Sprague-Dawley rats
weighing about 150–200 g were injected with either saline or
pyrazole, 200 mg/kg body wt or 4-methylpyrazole, 200 mg/kg
body wt, once a day for 1–3 days, and after an overnight fast, liver
microsomes were prepared. Polyclonal anti-CYP2E1 IgG was raised
in rabbits against CYP2E1 purified from pyrazole-treated rats [38].
Results

The oxidation of PNP to p-nitrocatchol by rat liver microsomes
in a NADPH-dependent manner was first reported in 1975 [39].
Reinke and Moyer [29] showed that PNP hydroxylation was a
microsomal oxidation which can be highly induced by ethanol.
Much smaller increases were produced by inducers of other CYPs
such as phenobarbital or β-naphthoflavone. They concluded that
PNP may be a useful substrate for studying changes in drug
metabolic reactions caused by ethanol. Koop [30] clearly demon-
strated that in rabbits, it was the ethanol-inducible P450 isozyme
3a (older terminology for CYP2E1) that was responsible for the
increase in PNP oxidation after ethanol treatment. Antibody to
P450 3a inhibited PNP oxidation by microsomes from untreated
and ethanol-treated rabbits by 95% [30]. In subsequent studies,
Koop et al. [31] extended these studies in rabbits to rats, mice,
Dawley rats. (A) Time course; (B) microsomal protein concentration curve; (C) PNP
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hamsters and deer mice, showing that in all these species, PNP
oxidation and the increase in this oxidation by ethanol were highly
sensitive to inhibition by anti-CYP2E1 IgG.

After some initial controversy, the pioneering studies of Lieber
and colleagues showed that the oxidation of ethanol to acetalde-
hyde by liver microsomes was catalyzed by a CYP-dependent
reaction and this Microsomal Ethanol Oxidizing System was
subsequently well characterized [4,7,8]. Using reconstituted sys-
tems containing purified isozymes of different CYPs and antibody
inhibition experiments, it was shown that CYP2E1 (P450 isozyme
3a, P450 j) was the most effective P450 catalyst for ethanol
oxidation. Described below are assays using either PNP or ethanol
to indicate catalytic activity of CYP2E1 and its induction by ethanol
and other inducers of CYP2E1.

Fig. 1 shows general characteristics of the oxidation of PNP by
microsomes isolated from untreated male rats. Formation of
p-nitrocatechol was linear over a 30 min time course (A) and with
microsomal protein up to about 3 mg/ml reaction mixture (B). A
PNP substrate concentration curve is shown in Fig. 1C. The Km

value for PNP was about 0.11 mM. Similar experiments with
ethanol as the substrate to assay for CYP2E1 catalytic activity
showed reactions were linear for 20 min and with microsomal
protein up to 3 mg/ml. The Km for ethanol by control rat micro-
somes was about 13 mM and Vmax about 8 nmol acetaldehyde
formed per min/mg protein. Fig. 2 shows the effect of anti-CYP2E1
IgG on the oxidation of PNP by control rat liver microsomes.
Oxidation of PNP was inhibited more than 80% by the anti-CYP2E1
IgG indicating the effectiveness of PNP as a substrate for CYP2E1.

Fig. 3 shows the utility of inhibitors of CYP2E1 to evaluate the
role of CYP2E1 in a microsomal drug oxidation reaction. Mice were
fed the Lieber–DeCarli ethanol liquid diet for 4 weeks or fed the
control diet in which dextrose replaces ethanol calories. Liver
microsomes were isolated and oxidation of PNP determined. The
protein level of CYP2E1 was assayed by Western blot. Some
ethanol-fed mice were also treated with the CYP2E1 inhibitor,
chlormethiazole, 50 mg/body wt, for the last 3 weeks of the
ethanol treatment. The chronic ethanol feeding elevated the levels
of CYP2E1 by about 2.5-fold (Fig. 3D, CYP2E1/β-actin ratio). This
elevation was lowered after the CMZ treatment. The chronic
ethanol feeding elevated CYP2E1 catalytic activity as reflected by
the 6-fold increase in oxidation of PNP (Fig. 3C). This increase in
PNP oxidation was lowered by the CMZ treatment. Fatty liver is a
common consequence of ethanol administration. Liver triglyceride
levels were elevated 2.5 fold after ethanol feeding (Fig. 3A). The
addition of CMZ to the ethanol-fed mice abolished the ethanol
elevation of TG in association with the decrease in CYP2E1
(Fig. 3A). Fatty liver induced by chronic ethanol feeding was also
demonstrated by histopathology (H&E staining) and by Oil Red O
Fig. 2. Effect of anti-CYP2E1 IgG on the rat liver microsomal oxidation of PNP. Anti-
CYP2E1 IgG was raised against CYP2E1 purified from pyrazole-treated rats. closed
circles refer to preimmune IgG, closed squares refer to anti-CYP2E1 IgG.
staining for lipid droplets (Fig. 3B). These increases in fat accu-
mulation were attenuated by CMZ (Fig. 3B). CMZ is a valuable tool
to validate the participation of CYP2E1 in a reaction and in the
increase by ethanol of CYP2E1 in that reaction.

Another approach to evaluate the role of CYP2E1 in a reaction
and in the increase produced by ethanol or other CYP2E1 inducers
is by use of CYP2E1 knockout mice, as developed by Gonzalez and
co-workers [18,19]. Wild type (WT) mice, CYP2E1 knockout (KO)
mice and CYP2E1 knockin (KI) mice (in which CYP2E1 was
restored in the KO mice) were kindly provided by Dr. Frank
Gonzalez, NCI./NIH and fed the chronic ethanol liquid diet or
dextrose control diet for 4 weeks. Liver microsomes were isolated
and oxidation of PNP determined. Immunoblots showed that the
ethanol feeding elevated levels of CYP2E1 2-fold in wild type mice
and about 4-fold in the KI mice (Fig. 4B) as compared to the
dextrose-fed controls. As expected, CYP2E1 levels were very low or
not detectable in the CYP2E1 KO mice with or without ethanol
feeding. The ethanol feeding produced a 2-fold increase in PNP
oxidation compared to the dextrose controls in the WT mice. Rates
of PNP oxidation were low in the dextrose and the ethanol-fed KO
mice; no increase in PNP oxidation by ethanol was observed in the
KO mice (Fig. 4A). Reintroduction of CYP2E1 into the KO mice
restored PNP oxidation as well as the increase in this oxidation by
the chronic ethanol feeding. Levels of CYP2E1 are about 2-fold
higher in the KI mice than the WT mice which accounts for the
higher PNP oxidation in the KI compared the KO mice. Oil Red O
staining confirmed increased fat accumulation in the ethanol-fed
wild type (Fig. 4C). Lower fat accumulation was found with the
ethanol-fed KO mice but was “restored” in the ethanol-fed KI mice
(Fig. 4C).

A similar approach was used to demonstrate the induction of
CYP2E1 by acute ethanol treatment. The WT, KO and KI mice were
gavaged with either ethanol or saline and oxidation of PNP
determined. As shown in Fig. 5, the acute ethanol gavage elevated
PNP oxidation 3-fold in WT mice and in the KI mice. However,
rates of PNP oxidation were very low in the KO mice and no
increase by acute ethanol was observed. Rates of PNP oxidation
paralleled the levels of CYP2E1 as determined by immunoblots
(Fig. 5).

CYP2E1 can be induced by other compounds besides ethanol
e.g. pyrazole or 4-methylpyrazole [36,37]. Table 2 shows an
experiment using rats instead of mice. Rats were treated with
either saline, or IP injection of pyrazole (200 mg/kg) once per day
for 3 days or 4-methylpyrazole (200 mg/kg) once per day for
3 days followed by isolation of liver microsomes. Immunoblots
(not shown) indicated that the levels of CYP2E1 were increased
about 3-fold after the pyrazole and 4-methylpyrazole treatments.
As shown in Table 2, oxidation of PNP was increased about 3-fold
after treatment with pyrazole or 4-methylpyrazole as compared to
the saline controls. The oxidation of another effective substrate for
CYP2E1, N,N-dimethylnitrosamine to formaldehyde was also in-
creased by pyrazole or 4-methylpyrazole. As mentioned in Intro-
duction, production of ROS is elevated after induction of CYP2E1.
Although not the focus of this Methodology Review, Table 2 shows
that associated with the increase in CYP2E1 as reflected by the
oxidation of substrates is an increase in the microsomal produc-
tion of superoxide anion radical, H2O2 and lipid peroxidation after
treatment with pyrazole or 4-methylpyrazole. Importantly, all
these elevated activities (substrate oxidation, ROS production)
were blunted by anti-CYP2E1 IgG.

HepG2 cells which express human CYP2E1 were developed to
study the biochemical and toxicological properties of CYP2E1 in
vitro [11,12,33]. The oxidation of PNP was used to assay for the
ability of ethanol added in vitro to these cells to induce CYP2E1.
The CYP2E1-expressing HepG2 cells were incubated in the ab-
sence or presence of 2–100 mM ethanol for 2 days. Microsomes
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were isolated and the oxidation of 0.2 mM PNP determined. As
shown in Table 3, experiment A, the rate of oxidation of PNP was
increased 2–3 fold when the cells were incubated in the presence
of 2–20 mM ethanol. HepG2 cells not transfected with the CYP2E1
construct did not metabolize PNP (data not shown). Immunoblot
analysis showed that the incubation with ethanol elevated the
levels of CYP2E1. Experiment B of Table 3 validates that the
oxidation of PNP by HepG2 clone MV2E1-9 under basal conditions
and the increase in this oxidation when the cells were incubated in
the presence of 5 mM ethanol are due to CYP2E1. Both the basal
and the elevated rates of PNP oxidation were lowered when
inhibitors of CYP2E1 such as pyrazole or diethyldithiocarbamate
(DDC) or a competitive substrate for CYP2E1 such as ethanol or
when anti-CYP2E1 (but not preimmune) IgG were added to the
microsomal incubation assay.

Ethanol is also an effective substrate for oxidation by CYP2E1
and is frequently used as a probe to detect the presence and
induction of CYP2E1. Table 4 shows that the oxidation of ethanol to
acetaldehyde by liver microsomes is increased 5-fold after chronic
ethanol administration, analogous to the increase in levels of
CYP2E1. Inhibitors of CYP2E1 such as pyrazole or 4-methylpyr-
azole when added to the in vitro microsomal incubation system
decreased the rate of ethanol oxidation by the dextrose-fed control
microsomes and the increased oxidation by the microsomes found
after the chronic ethanol feeding. Note, pyrazole and 4-methylpyr-
azole were more effective inhibitors of the ethanol oxidation by
the microsomes from the chronic ethanol-fed rats since CYP2E1 is
elevated in these microsomes. Kinetic analyses indicated that
pyrazole and 4-methylpyrazole elevated the Km for ethanol but
lowered the Vmax reflective of a mixed type of inhibition; Ki values
for pyrazole were about 1 mM in control microsomes but de-
creased to about 0.3 mM in the microsomes from the ethanol-fed
rats [36,37].
Discussion, pitfalls and troubleshooting

Since CYP2E1 is discussed in several articles in this Common
Theme, this brief review describes methodology for assays of
microsomal mixed function oxidase activity using PNP or ethanol
as probe substrates for CYP2E1. Other effective substrates such as
chlorzoxazone, aniline and N,N-dimethylnitrosamine are also fre-
quently used in the literature. PNP, as mentioned previously [29–
31] is especially useful since the assay is rapid, rather simple,
requires no special equipment and is relatively sensitive. PNP can
also be used in studies with intact hepatocytes or cell lines to
reflect CYP2E1 activity [40], whereas this is more difficult with
ethanol as substrate since the product acetaldehyde is rapidly
metabolized by aldehyde dehydrogenases. Oxidation of PNP is pH
sensitive [30] so the final pH should be between 6.8 and 7.2, and is
subject to substrate inhibition so the final substrate concentration
should not exceed 0.2–0.5 mM. With respect to ethanol as sub-
strate, both ethanol and especially acetaldehyde are volatile there-
fore evaporation needs to be minimized by using closed flasks. For
the center well assay, care is required to avoid getting any TCA into
the center well since it interferes with the absorbance of the
acetaldehyde–semicarbazone complex. Microsomes contain con-
taminating catalase and ethanol can be oxidized by catalase-H2O2

to acetaldehyde; microsomes generate H2O2 (e.g. Table 2) and
therefore azide should be added to inhibit catalase (this was part
of the initial controversies over the nature of MEOS; [4,7,8]).

Induction of CYP2E1 can, and should be, also measured by
immunoblot assays to accompany the PNP or probe substrate
assay. Induction of CYP2E1 is frequently not associated with
corresponding increases in CYP2E1 mRNA levels as the induction
mechanism is complex and may involve increases in gene tran-
scription or mRNA translation or stability or in many cases,
increased protein stability against proteosome-mediated



Fig. 4. Chronic ethanol feeding of WT, CYP2E1 KO and CYP2E1 KI mice. SV129 WT,
CYP2E1 KO and CYP2E1 KI mice were fed the Lieber–DeCarli liquid dextrose or
ethanol diets for 4 weeks. (A) Liver microsomes were isolated and oxidation of PNP
determined or (B) content of CYP2E1 assayed by immunoblot. WD and WE¼wild
type dextrose and wild type ethanol: KOD and KOE¼CYP2E1 knockout fed dextrose
or ethanol: KID and KIE¼CYP2E1 knockin fed dextrose or ethanol. (C) Triglyceride
levels were determined by Oil Red O staining as an index of fat accumulation.
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Fig. 5. Acute ethanol treatment of WT, CYP2E1 KO and CYP2E1 KI mice. SV129 WT,
CYP2E1 KO and CYP2E1KI mice were treated acutely by gavage with ethanol, 3 g/kg
body wt twice a day for 4 days, followed by isolation of liver microsomes and assay
of PNP oxidation (top) or immunoblots to determine levels of CYP2E1. * Po0.05;
** Po0.01.

Table 2
Induction of CYP2E1 by Pyr and 4-MP.

Reaction Rate (nmol/min/mg protein)

Saline Pyrazole 4-MP

PNP 1.5 4.7 5
DMN 1.8 7.3 5.9

−•O2 2.4 7.5 7.6

H2O2 2.2 4.3 4.2
CCL4-LP 0.5 1.5 1.1
FeATP-LP 0.5 1 0.9

Table 3
Oxidation of PNP by HepG2 cell microsomes.

Concentration of
ethanol (mM)

PNP oxidation
(nmol/min/mg
protein)

Addition PNP oxidation

Basel 5 mM
ethanol

A: 0 0.061 B: None 0.061 0.133
2 0.115 1 mM pyrazole 0.021 0.015
5 0.137 0.1 mM DDC 0.022 0.005

20 0.169 100 mM
ethanol

0.019 0.013

100 0.094 4 mg/mg pre-
immune IgG

0.059 0.110

4 mg/mg anti-
2E1 IgG

0.016 0.012

AHepG2 cells expressing human CYP2E1 (clone MV2E-9) were grown for 2 days in
the absence or presence of the indicated concentrations of ethanol. Microsomes
were isolated and oxidation of PNP assayed.
BClone MV2E1-9 was grown for two days in the absence or presence of 5 mM
ethanol. Microsomes were prepared and the oxidation of PNP was assayed in the
presence of the indicated additions.

Table 4
Microsomal oxidation of ethanol. The oxidation of 55 mM ethanol by microsomes
from chronic ethanol-fed rats and their pair-fed controls was determined in the
absence and presence of the indicated concentrations of pyrazole and
4-methylpyrazole.

Addition Concen
(mM)

Rate of ethanol oxidation
(nmol/min/mg microsomal
protein)

Effect of addition
(%)

Chronic
ethanol

Pair-fed
control

Chronic
ethanol

Control

None 13.071.9 2.770.4

Pyrazole 0.25 8.970.8# ND* �32 ND
0.5 7.371.2# 2.870.2 �44 4
1 6.870.7# 2.770.3 �48 0
3 ND 1.970.6 ND �30

4-Methylpyrazole 0.25 5.670.8& 2.370.1 �57 �15
0.5 5.270.7& 2.270.3 �60 �19
1 4.170.4& 2.170.3 �68 �22
3 ND 2.070.4 ND �24

ND¼not determined.
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degradation depending on the chemical inducer, the concentration
of the inducer e.g. ethanol, or the nutritional or pathophysiological
state.

While effective substrates for CYP2E1, PNP and ethanol can also
be oxidized by other CYPs such as CYP1A2 and 3A4 [41] although
activity with these CYPs is lower than with CYP2E1. It is therefore
important to validate that an increase in metabolism of a probe
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such as PNP is indeed due to CYP2E1. Several approaches can be
used for this such as inhibition by anti-CYP2E1 IgG [30,31], by
known inhibitors of CYP2E1 such as pyrazole, 4-methylpyrazole,
DDC, diallyl disulfide or especially chlormethiazole, or by use of
CYP2E1 KO mice. Recently, SiRNA has been used in cell cultures to
specifically inhibit CYP2E1 [42]. The utility of many of these
approaches has been described in this Methodological review
which hopefully will be informative and valuable to the reader.
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