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SUMMARY

Itch, the unpleasant sensation that evokes a desire to scratch, accompanies numerous skin and 

nervous system disorders. In many cases, pathological itch is insensitive to antihistamine 

treatment. Recent studies have identified members of the Mas-related GPCR (Mrgpr) family that 

are activated by mast cell mediators and promote histamine-independent itch. MrgprA3 and 

MrgprC11 act as receptors for the pruritogens chloroquine and BAM8–22, respectively. However, 

the signaling pathways and transduction channels activated downstream of these pruritogens are 

largely unknown. We found that TRPA1 is the downstream target of both MrgprA3 and 

MrgprC11, in cultured sensory neurons and heterologous cells. TRPA1 is required for Mrgpr-

mediated signaling, as sensory neurons from TRPA1-deficient mice exhibited profoundly 

diminished responses to chloroquine and BAM8–22. Likewise, TRPA1-deficient mice displayed 

little to no scratching in response to these pruritogens. Our findings demonstrate that TRPA1 is an 

essential component of the signaling pathways that promote histamine-independent itch.

INTRODUCTION

Acute pruritus, or itch, serves an important protective function by warning against harmful 

agents in the environment such as insects, toxic plants or other irritants. Itch also promotes 

scratching, which aids in clearing pruritogens and attenuates itch sensations. In contrast, 

pruritus can also be a debilitating condition that accompanies numerous skin, systemic, and 

nervous system disorders1. While many forms of itch are mediated by histamine signaling, 
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there are clearly other key neural pathways. For example, a side effect of the antimalaria 

drug chloroquine (CQ) is antihistamine-resistant, intolerable itch2. Likewise, spicules from 

the plant Mucuna pruriens produce intense itch via a histamine-independent pathway3–5. 

Moreover, immune cells release a variety of pruritogens that mediate allergy-evoked itch, 

psoriasis and eczema, and antihistamines are not effective in treating the full spectrum of 

allergic disorders6, 7. Finally, most pathophysiological itch conditions are insensitive to 

antihistamine treatment and therapeutic targets have yet to be identified8–11.

While the molecular and cellular mechanisms of itch have yet to be fully elucidated, recent 

studies have begun to delineate the basic characteristics of the itch circuitry. There is now 

evidence implicating dedicated neuronal pathways for itch, separate from pain12, 13. Mice 

lacking gastrin-releasing peptide receptor (GRPR)-positive cells in dorsal horn of the spinal 

cord display reduced itch behaviors, but normal pain behaviors14. Distinct subsets of 

primary afferent neurons mediating itch have also been identified. Approximately 5–20% of 

primary afferent C-fibers are activated by endogenous itch-producing compounds released 

by non-neuronal cells in the skin (e.g., mast cells), as well as by exogenous pruritogens, 

such as chloroquine1, 15, 16.

Itch-sensitive C-fibers can be divided into multiple subgroups based on pruritogen-

sensitivity. A subset of primary afferent C-fibers that express the capsaicin receptor, 

TRPV1, can be divided into three groups based on receptor expression and pruritogen 

sensitivity. The first group expresses the 5-hydroxytryptamine receptor 3 and the H1 

histamine receptor, and mediates itch-evoked responses to serotonin and histamine15. A 

second group expresses Mas-related GPCR A3 (MrgprA3) that mediates itch-evoked 

responses to CQ. The third group expresses both MrgprA3 and MrgprC11, the receptor for 

the endogenous pruritogen, BAM8–22 (BAM)16. MrgprA3 and MrgprC11 are members of 

the newly identified, sensory neuron-specific Mas-related G protein-coupled receptor 

family. While the function of most Mrgprs remains unknown, MrgprA3 and MrgprC11 have 

been shown to play key roles in histamine-independent pruritus. MrgprC11 is targeted by 

mast cell pruritogens released during allergic inflammation17. MrgprA3 is activated by the 

antimalaria drug CQ, which causes acute itch in rodents and intolerable itch in some 

patients.

The signaling mechanisms by which pruritogen-evoked activation of MrgprA3 and 

MrgprC11 leads to neuronal excitation remain unknown. MrgprA3 and MrgprC11 are 

expressed in a subset of TRPV1 positive afferents. In addition, MrgprA3-evoked excitation 

is inhibited by ruthenium red, a blocker of TRPA1 and TRPV1 channels16. While TRPV1-

expressing afferents mediate responses to a variety of pruritogens, mice lacking functional 

TRPV1 channels display reduced responses to histamine, but normal responses to serotonin 

and endothelin-115. These data imply that other ion channels are also activated by 

pruritogens in TRPV1-expressing afferents. These findings suggest that both TRPV1 and 

TRPA1 are candidate transduction channels in the Mrgpr-pruritic pathways.

The irritant receptor TRPA1 is highly expressed in a subset of TRPV1-positive neurons. 

TRPA1 is activated by a number of pain producing compounds such as isothiocyanates, the 

pungent compounds present in mustard oil and other Brassica plants, cinnamon oil, and 
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cannabinoids. Additionally, TRPA1 is activated downstream of G protein-coupled receptors, 

including the pro-algesic bradykinin receptor18, 19. Histamine, serotonin, chloroquine and 

BAM8–22 all evoke itch by acting on G protein-coupled receptors16, 20, 21. Thus, TRPA1 is 

a key candidate transduction channel for itch.

Here we show that TRPA1 is an essential player in the transduction of Mrgpr-mediated itch. 

Cultured sensory neurons from TRPA1-deficient mice exhibit profoundly diminished 

responses to both chloroquine and BAM8–22. The functional coupling between MrgprA3 

and TRPA1 is attenuated by disruption of Gβγ signaling, while coupling between MrgprC11 

and TRPA1 requires PLC signaling. TRPA1 is required for Mrgpr-evoked itch in vivo, as 

mice lacking TRPA1 do not display the chloroquine- or BAM8–22-evoked itch behaviors 

typical of wild type animals. Our findings support an emerging role for TRP channels in the 

transduction of pruritic stimuli.

RESULTS

BAM8–22 and CQ activate TRPA1 and TRPV1-expressing neurons

The endogenous pruritogen BAM8–22 and the pruritic antimalaria drug chloroquine activate 

a subset of TRPV1-positive neurons16. To determine whether these pruritogens activate the 

subset of TRPV1-positive neurons that also express TRPA1, we used ratiometric calcium 

(Ca2+) imaging to examine overlap between BAM- and CQ-sensitivity, and sensitivity to the 

TRPA1 agonist, allyl isothiocyanate (mustard oil; Fig. 1). We found that 9.8±1.2% of dorsal 

root ganglia (DRG) neurons and 16.1±2.3% of trigeminal (TG) neurons (Fig. 1a–c; n≥1050 

neurons) showed robust increases in intracellular Ca2+ following CQ (1 mM) application, 

while only 6.2±1.2% of DRG and 5.4±0.9% of TG neurons were responsive to both CQ and 

BAM (100 μM; Fig. 1a–c; n≥390 neurons). Subsequent exposure to mustard oil (MO; 200 

μM) or capsaicin (Cap; 1 μM) produced further increases in Ca2+ levels in all CQ- and 

BAM-positive cells (Fig. 1b–c). These results suggest that BAM and CQ activate a subset of 

TRPV1-positive sensory neurons that also express the ion channel TRPA1. To further test 

this, we used PCR to correlate TRPA1 gene expression with CQ and BAM sensitivity in 

individual sensory neurons, as determined by calcium imaging. Cells were subjected to RT-

PCR using MrgprA3, MrgprC11 and TRPA1-specific primers. As previously reported, 

BAM- and CQ-sensitive neurons showed amplification of MrgprA3 and MrgprC11, 

respectively (Fig. 1d; Supplementary Figure 1, online). Likewise, all BAM-sensitive 

neurons also expressed MrgprA3 (7 of 7) consistent with previous studies22, and our 

imaging data (Fig. 1b). In addition, the TRPA1 was amplified from all CQ-sensitive neurons 

(CQ+; n=7) and BAM-responsive (BAM+; n=7) neurons (Fig. 1d; Supplementary Figure 1, 

online). In contrast, BAM-, CQ-, and MO-insensitive cells did not display MrgprA3, 

MrgprC11 or TRPA1 expression (BAM− and CQ−; Fig. 1d; Supplementary Figure 1, 

online). These results clearly show that CQ activates a subset of sensory neurons that 

express TRPA1 and TRPV1; BAM, in turn, activates a subset of CQ-sensitive cells.

Histamine and other phospholipase C (PLC)-coupled receptor agonists promote the release 

of Ca2+ from intracellular stores and subsequent activation of TRP channels. Consistent with 

a previous study showing that the BAM receptor, MrgprC11, couples to PLC23, BAM 

application evokes Ca2+ release from intracellular stores in the absence of extracellular Ca2+ 
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(Ca2+
EXT; Fig. 1e). Subsequent addition of Ca2+

EXT triggers a rise intracellular Ca2+due to 

influx (Fig. 1e). Unlike BAM, CQ application in the absence of Ca2+
EXT fails to mobilize 

Ca2+ release from stores. However, CQ application in extracellular Ca2+ triggers influx 

across the plasma membrane (Fig. 1f). This demonstrates that both BAM and CQ trigger the 

influx of Ca2+ through transduction channels in the plasma membrane. TRPV1 and TRPA1 

are likely candidate transducers because they are expressed in CQ- and BAM-sensitive cells 

(Fig. 1) and are inhibited by ruthenium red, which abolishes CQ-evoked signaling16. We 

thus asked whether BAM- and CQ-evoked excitation is attenuated by pharmacological or 

genetic knockdown of TRPV1 or TRPA1 channels.

TRPV1 is not required for BAM or CQ signaling

We first compared BAM- and CQ-evoked Ca2+ signals in neurons isolated from TRPV1-

deficient mice to those isolated from wild type littermates (Fig. 2a–c). Cultured neurons 

isolated from TRPV1-deficient mice showed a decrease in the proportion of BAM-sensitive 

neurons (Fig. 2a,c) but no change in the magnitude of the Ca2+ signal in the responsive cells, 

as compared to wild type (WT peak=1.38±0.11; V1−/− peak=1.52±0.16; p=0.59). Similar 

results were observed in wild type neurons treated with the TRPV1 antagonist, capsazepine 

(Fig. 2c). In contrast, no significant differences in the amplitude (WT peak=1.57±0.18; 

V1−/− peak=1.62±0.21) or prevalence (Fig. 2a,c) of CQ-evoked signals were observed. Wild 

type neurons treated with capsazepine displayed normal CQ-evoked signals (Fig. 2c).

To further probe the role of TRPV1 in CQ and BAM signaling, we next performed current-

clamp recording of CQ-and BAM-evoked action potential firing in wild type and TRPV1-

deficient neurons (Fig. 2d). No significant differences in action potential firing were 

observed between wild type and TRPV1-deficient neurons following application of BAM 

(WT: 39.1±10.5; Trpv1−/−: 46.0 ±15.0; p=0.73; Fig. 2d) or CQ (WT: 8.0±1.8; Trpv1−/−: 

7.2±1.6; p=0.74; Fig. 2d). Taken together, these results demonstrate that functional TRPV1 

channels are not required for BAM- or CQ-evoked excitation.

TRPA1 is required for BAM and CQ-evoked neuronal excitation

We next asked whether deficiencies in TRPA1 would alter neuronal CQ and BAM 

sensitivity. Unlike TRPV1-deficient neurons that display a partial attenuation of BAM 

responses (Fig. 2), BAM-evoked Ca2+ signaling is ablated in TRPA1-deficient neurons (Fig. 

3a,c). Similarly, pharmacological inhibition of TRPA1 with the selective antagonist 

HC-030031 (HC; 100μM)24–26 significantly decreased neuronal sensitivity to BAM (Fig. 3c; 

Trpa1+/+: 6.18±1.49; Trpa1−/−: 0.57±0.36; HC-treated: 1.12±0.71).

We also examined the role of TRPA1 in CQ-evoked neuronal activation. CQ-evoked Ca2+ 

signals were significantly attenuated in TRPA1-deficient neurons (Fig. 3b,c) as compared to 

wild type neurons (Fig. 3b). Consistent with previous studies, MO-evoked responses were 

also attenuated in TRPA1-deficient neurons (Fig. 3a,b). Likewise, pharmacological 

inhibition of TRPA1 with HC-030031 (HC; 100 μM) significantly decreased neuronal 

sensitivity to CQ (Fig. 3c). Importantly, the prevalence of capsaicin-responsive cells was 

similar in wild type, mutant, and HC-treated neurons (Trpa1+/+: 52.1±5.17%; Trpa1−/−: 

56.7±6.9%; HC-treated: 55.5±6.1%).
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Finally, we used current-clamp recording to probe the role of TRPA1 in CQ- and BAM-

evoked neuronal excitation. CQ- and BAM-evoked action potential firing was compared in 

DRG neurons treated with vehicle versus HC-030031 (Fig. 3d). TRPA1 inhibition 

significantly attenuated CQ-evoked action potential firing (CQ+ vehicle=6.2±1.2; 100μM 

HC-030031=0.25±0.1; p=0.003; Fig. 3d) and BAM-evoked firing (BAM+ 

vehicle=21.3±4.2; 100 μM HC-030031=2.40±0.98; p=0.002; Fig. 3d). Together, our results 

clearly show that functional TRPA1 channels are required for CQ and BAM-evoked 

neuronal excitability.

While TRPA1 is required for CQ and BAM signaling, it does not mediate all forms of itch. 

Neurons isolated from TRPA1-deficient animals (Fig. 3c) or treated with HC-030031 

(100μM; Fig. 3c) display normal histamine-evoked responses. These findings are consistent 

with previous studies showing that TRPV1, but not TRPA1, is required for histamine 

signaling in sensory neurons15, 27, 28.

MrgprA3 and MrgprC11 functionally couple to TRPA1

The GPCRs MrgprA3 and MrgprC11 are required for CQ and BAM signaling in sensory 

neurons, respectively16. In addition to being activated directly by endogenous and 

exogenous irritants, TRPA1 is a receptor-operated channel that can be activated by 

bradykinin, or other GPCR-coupled inflammatory mediators29, 30. We therefore asked 

whether CQ or BAM could activate heterologous TRPA1 channels expressed in the CQ- and 

BAM-insensitive neuroblastoma cell line, NG108. CQ and BAM fail to trigger Ca2+ influx 

into TRPA1-transfected cells (Fig. 4a). However, these cells responded robustly to 

application of MO (200μM; Fig. 4a), confirming the presence of functional TRPA1 

channels. CQ-evoked Ca2+ signals were not observed in NG108 cells transfected with 

Mrgpra3 alone (Fig. 4ab). Consistent with our findings in TRPV1-deficient neurons (Fig. 2), 

CQ failed to trigger Ca2+ signals in cells expressing Mrgpra3 and TRPV1 (Fig. 4b). In 

contrast, NG108 cells transfected with both TRPA1 and Mrgpra3 (A1/A3) displayed robust 

increases in intracellular Ca2+ following CQ application (Fig. 4a–b); these responses were 

attenuated by HC-030031 (100μM; not shown). Thus, both MrgprA3 and TRPA1 receptors 

are required to confer CQ-sensitivity to NG108 cells.

BAM-evoked Ca2+ signals were observed in NG108 cells transfected with Mrgprc11 alone, 

but not cells transfected with TRPA1, TRPV1 or vector alone (Fig. 4c). This is consistent 

with our data showing that MrgprC11 activation leads to Ca2+-release from stores (Fig. 1e), 

and previous studies linking MrgprC11 and PLC31. Co-transfection of TRPV1 with 

Mrgprc11 caused an increase in the amplitude of the BAM response (30.1% increase; p=.

005 Fig. 4c, middle). However, co-expression of TRPA1 with Mrgprc11 led to an even more 

robust increase in intracellular Ca2+, 81% higher than with Mrgprc11 alone (p=.0001; Fig. 

4c). These data suggest that both TRPV1 and TRPA1 couple to MrgprC11, consistent with 

our findings that both channels contribute to BAM-evoked Ca2+ responses in neurons (Figs. 

2c and 3c).
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MrgprA3 and MrgprC11 couple to TRPA1 via distinct mechanisms

We next examined the mechanisms by which MrgprA3 preferentially activates TRPA1, but 

not TRPV1. Because many TRP channels are activated or modulated by PLC-coupled 

receptors32, and many pruritogens and members of the Mrgpr family activate PLC 

signaling23, we first tested the role of PLC in CQ-evoked signaling. The PLC inhibitor, 

U73122, had no effect on the amplitude (Fig. 5a) or prevalence (Fig. 5b) of CQ-evoked Ca2+ 

signals in cultured neurons or A1/A3 NG108 cells (not shown). BAM activation of 

MrgprC11 has been previously demonstrated to act through PLC23. Consistent with these 

findings, U73122 significantly reduced both the amplitude of BAM-evoked Ca2+ signals in 

cultured neurons (Fig. 5b) and the prevalence of BAM-sensitive neurons (Fig. 5c). Likewise, 

U73122 significantly attenuated histamine signaling in neurons (Fig. 5c). These data show 

that while PLC signaling is required for BAM- and histamine-evoked signaling, it is not 

required for MrgprA3 mediated activation of TRPA1.

GPCR signaling leads to the dissociation of both Gα and Gβγ subunits. In addition, Gβγ 

signaling has been shown to directly open ion channels33. We thus asked whether Gβγ 

signaling is required for MrgprA3-evoked activation of TRPA1. Pre-treatment of neurons 

with gallein, a small molecule inhibitor of Gβγ dramatically reduced both the amplitude of 

CQ-evoked Ca2+ signals (Fig. 5a), and the number of CQ-sensitive cells (vehicle: 

17.6±1.1%; gallein: 4.6±1.1%; Fig. 5c). Gallein does not act directly on TRPA1, as mustard 

oil-evoked activation of TRPA1 is not altered by this inhibitor (not shown). Likewise, 

gallein has no effect on histamine-evoked signaling in neurons (Fig. 5c). We also probed the 

role of Gβγ in CQ-evoked neuronal excitation using current-clamp recording. Gallein 

significantly attenuated membrane depolarization and action potential firing caused by CQ 

application (vehicle: 17.00±13.24; 100 μM gallein: 1.33±1.53; Fig. 5d). Finally, we explored 

the role of Gβγ in the coupling between MrgprA3 and TRPA1 in heterologous cells. Co-

expression of phosducin (Pdc), a Gβγ chelating peptide34, or treatment with gallein, 

significantly attenuates CQ responses in NG108 cells (Fig. 5e; control=82.34±9.61; 

phosducin=58.21±11.61; p=0.003; and data not shown). These experiments suggest that Gβγ 

signaling is required for MrgprA3 coupling to TRPA1.

Gβγ signaling has also been shown to open channels via PLC35, 36. Thus, we asked whether 

Gβγ signaling is also required for the PLC-dependent coupling between MrgprC11 and 

TRPA1. Pre-treatment of neurons with gallein had no significant effect on the amplitude of 

BAM-evoked Ca2+ signals (Fig. 5b), or the fraction of BAM-sensitive cells (Fig. 5c; vehicle 

(VEH): 7.06±1.94%; U73122 (U7): 0.98±0.95%; gallein (GAL): 6.54±3.46%). Similarly, 

overexpression of Pdc in TRPA1/Mrgprc11 NG108 cells fails to attenuate BAM-evoked 

responses (Fig. 5e; control=82.37±6.55; phosducin=81.95±6.11; p=0.887). These 

experiments provide evidence that PLC signaling through Gαq is required for MrgprC11 

evoked neuronal activation, and may explain why MrgprC11 can couple to both TRPA1 and 

TRPV1, similar to the bradykinin receptor19, 29.

TRPA1 is required for CQ- and BAM-evoked itch

Given the requirement for TRPA1 in the cellular actions of CQ and BAM, we asked whether 

TRPA1-deficient mice also exhibit behavioral deficits in CQ- and BAM-evoked itch. We 
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examined scratching following injection of these pruritogens into the nape of the neck. CQ 

and BAM evoked robust scratching behaviors in wild type mice (Fig. 6a). The time spent 

scratching was significantly attenuated in TRPA1-deficient littermates (Fig. 6a) to levels 

similar to vehicle injection (Fig. 6a). In contrast, no differences between wild type mice and 

TRPV1-deficient littermates were observed for either CQ or BAM injection (Fig. 6a). These 

results suggest that while TRPV1 partially contributes to the cellular responses to BAM in 

culture, the residual BAM-sensitivity in the TRPV1-deficient neurons drives BAM-evoked 

itch behaviors and requires functional TRPA1 channels.

To distinguish between CQ- and BAM-evoked itch and pain behavior, we used the “cheek” 

model of itch, where an irritant is injected into the cheek, rather than the neck37. Injection of 

CQ or BAM evokes robust scratching of the cheek with the hindlimb (Fig. 6b–c; 

Supplementary Movie 1). In contrast, injection of an irritant, such as mustard oil (1 mM), 

evokes wiping of the cheek with one of the forelimbs (Fig. 6b). Standard grooming 

behaviors always involve rubbing the head or face with both forelimbs (not shown). Wiping 

was never observed following injection of CQ or BAM. Thus we used this model to better 

examine the in vivo role of TRPA1 in CQ- and BAM-evoked itch. Using the cheek assay, 

CQ and BAM evoked prolonged periods of scratching in wild type mice. No significant 

differences were observed between Trpa1+/+ mice and Trpv1+/+ mice (BAM: A1-WT=49.2 

s; V1-WT=50.5 s; p=0.90; one-way ANOVA; CQ: A1-WT=111 s; V1-WT=104.8 s; p=0.94; 

one-way ANOVA), thus data from these animals were combined (Fig. 6c). Similarly, no 

significant differences in BAM- or CQ-evoked scratching were observed between wild type 

and TRPV1-deficient mice (Fig. 6c). In contrast, this scratching behavior was never 

observed in TRPA1-deficient mice (Fig. 6c). TRPA1-deficient mice were not generally 

incapable of scratching, or insensitive to all pruritogens, as cheek injection of alpha-methyl-

serotonin (2μM) evoked robust scratching (WT=48.3±10.8 s; Trpa1−/− =51.0±10.4 s; 

p=0.87; n=11/genotype). These experiments demonstrate that TRPA1 is required for both 

CQ and BAM-evoked itch.

DISCUSSION

Itch is mediated by both histamine-dependent and independent pathways. Chronic itch 

associated with skin and systemic diseases is insensitive to antihistamine treatment, and 

even allergic itch is only marginally inhibited by histamine receptor antagonists38. However, 

little is known about the mechanisms underlying histamine-independent itch. The GPCRs 

MrgprA3 and MrgprC11 are receptors for CQ and BAM8–22, respectively, two pruritogens 

that elicit robust antihistamine-insensitive itch16, 39. Our results clearly demonstrate that 

TRPA1 is activated downstream of both MrgprA3 and MrgprC11, and is the primary 

transduction channel mediating CQ- and BAM-evoked signaling and itch behaviors.

Most Mrgprs are orphan GPCRs and their underlying mechanisms of signal transduction are 

largely unknown. However, MrgprC11 has been shown to couple to the Gαq/11 pathway and 

activate PLC in heterologous cells23. Consistent with these findings, we show that 

MrgprC11-evoked excitation requires functional PLC signaling in neurons. Most TRP 

channels are activated or modulated by PLC, making them likely downstream targets of 

MrgprC11. Indeed, MrgprC11-positive BAM-sensitive neurons express both TRPA1 and 
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TRPV1. Thus, it is not surprising that BAM activates both TRPA1 and TRPV1 in 

heterologous cells or that both channels contribute to BAM-evoked calcium signals in 

neurons. It is surprising, however, that TRPA1, but not TRPV1, is required for BAM-

evoked itch behaviors. This finding is similar to bradykinin-evoked signaling whereby PLC 

activation robustly activates TRPA1, and weakly activates TPRV1 to promote calcium 

influx; because calcium also activates TRPA140, 41, calcium permeation through TRPV1 

opens additional TRPA1 channels, leading ultimately to mechanical and thermal 

hypersensitivity. Similar to BAM, loss of TRPV1 or TRPA1 leads to diminished bradykinin-

evoked calcium signaling in vitro, but only the loss of TRPA1 leads to attenuation of 

inflammatory behavioral responses. Thus TRPA1 plays a dominant role in both bradykinin 

and BAM signaling in vivo.

Unlike BAM, pharmacological inhibition of PLC does not alter CQ-evoked activation of 

TRPA1 in sensory neurons or transfected cell lines. These findings are consistent with a 

previous study showing that CQ-evoked itch is normal in mice lacking PLCβ15. In addition, 

CQ-evoked signaling does not require functional TRPV1 channels in neurons, and MrgprA3 

fails to couple to TRPV1 in heterologous cells. What signaling pathway mediates the 

functional coupling of MrgprA3 to TRPA1, but not TRPV1? In somatosensation, Gβγ is 

required for morphine-evoked analgesia and directly activates N- and P/Q-type calcium 

channels in cultured dorsal root ganglia neurons42, 43. Here we show that Gβγ may be yet 

another signaling molecule capable of modulating the activity of a TRP channel. Gallein, a 

small molecule inhibitor of Gβγ and the Gβγ chelating peptide of phosducin specifically 

attenuate CQ-evoked signaling, with no effects on histamine or BAM signaling. Taken 

together, these data indicate that Gβγ is a likely candidate for mediating the specific 

coupling of MrgprA3 and TRPA1. Gβγ modulates several ion channels via direct binding, 

including members of the G protein-coupled inwardly-rectifying potassium channel and 

voltage-gated calcium channel families33. Future studies will elucidate whether Gβγ opens 

TRPA1 channels directly, or via another signaling intermediate.

Our findings support the hypothesis that TRP channels are key mediators of both pain and 

itch. Previous studies have shown that TRPV1 is a primary transducer of histamine-evoked 

itch15, 28. However, only a subset of TRPV1-positive neurons expresses histamine receptors 

and transduce itch. Likewise, only a subset of TRPA1-positive neurons co-express MrgprA3 

and respond to CQ, and an even smaller subset of these cells also express MrgprC11 and 

respond to BAM. The molecularly distinct subsets of TRPA1-positive neurons that 

transduce BAM and CQ itch signals support the labeled line theory of itch, whereby distinct 

pruritogens use a dedicated pathway to transduce itch signals. In contrast, the identification 

of TRPA1 as a key transducer of itch and pain also supports the spatial contrast theory of 

itch, whereby itch is triggered by the activation of a small number of pain fibers within a 

receptive field, and pain is initiated when a larger cohort of cells are activated44. Like 

TRPA1 and TRPV1, MrgprC11 has been proposed to play a role not only in itch, but also in 

hyperlagesia45. In addition, several studies describe the inhibition of itch by painful 

chemical or mechanical stimuli1, 46, 47. Strong support of both itch theories has led to a 

modified “selectivity” theory of itch1, that incorporates aspects of both itch models. The 

recent discovery of itch specific spinal cord neurons suggests that central circuits may 
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generate the specificity observed in itch signaling47, 48. However, the relationship between 

itch and pain remains a pressing question in somatosensation. Understanding the molecular 

mechanisms underlying both itch and pain is a first step towards understanding this complex 

relationship.

Our results reveal a novel role for TRPA1 in CQ-evoked itch. A major side effect of the 

MrgprA3 agonist and anti-malarial drug, CQ, is intolerable itch. CQ is cheap, easy to 

administer, and highly effective in both treating and preventing malaria. Indeed, the demand 

for CQ is on the rise, as recent studies have shown a decrease in CQ-resistant Plasmodium 

falciparum49. However, CQ-evoked itch, which is especially prevalent among dark-skinned 

Africans (up to 70%), is a major cause of poor compliance or treatment defaulting2. 

Differences in pruritic response to CQ may result from polymorphic differences in the 

Mrgpr signaling pathway or in TRPA1, as in Familial Episodic Pain Syndrome, recently 

linked to gain of function mutations in TRPA150. In such cases, improved therapeutics 

employing inhibition of MrgprA3 or TRPA1 aimed at alleviating chloroquine-induced itch 

may enable CQ to remain a useful and relevant treatment in Africa.

Aside from CQ, chronic itch results from skin diseases and systemic conditions, such as 

eczema, cirrhosis and some cancers, diabetes, as well as neurological disorders including 

multiple sclerosis, post-herpetic neuralgia and perhaps the most prevalent, allergic 

inflammation. Mast cell-neuronal interactions are known to play key roles in all of these 

pruritic conditions. Mast cells are in close association to peripheral nerves and release a 

variety of pruritic factors that act on sensory neurons. MrgprA4 and MrgprC11 are both 

activated by neuropeptide FF, a pruritogen released from mast cells during allergy-induced 

mast cell degranulation16, 17. These findings show that endogenous pruritogens target 

members of the Mrgpr family and demonstrate an essential role for MrgprC11, and therefore 

TRPA1, in allergic mast cell-mediated inflammation.

Perhaps most importantly, our findings demonstrate that TRPA1 is a downstream 

transduction channel onto which multiple histamine-independent itch pathways converge. 

BAM and CQ lead to TRPA1 excitation via two distinct signaling pathways. Our behavioral 

studies show a dramatic loss of itch-evoked behaviors in TRPA1-deficient animals in 

response to both of these pruritogens. As such, TRPA1 antagonists may be useful for the 

selective attenuation of antihistamine-insensitive itch, a problem that is especially relevant 

to pathological itch conditions. Whether MrgprA3, MrgprC11, and TRPA1 signaling 

contribute to chronic forms of itch is unknown. Mrgpr and TRPA1-deficient mice now 

provide a genetic model with which to assess the mechanisms of intractable itch.

EXPERIMENTAL PROCEDURES

Neuronal cell culture

For all experiments shown, trigeminal or dorsal root ganglion neurons were isolated from 

P0–P14 mouse pups. However, all results were also confirmed using neuronal cultures from 

adult mice. Preparation of neurons and ratiometric calcium imaging were carried out as 

previously described 29. Briefly, neurons from sensory ganglia were dissected and incubated 

for 10 minutes in 1.4 mg/ml Collagenase P (Roche) in Hanks Calcium-Free Balanced Salt 
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Solution. Neurons were then incubated in 0.25% Standard Trypsin, Versene-EDTA solution 

(STV) for 3 minutes with gentle agitation. Cells were washed then triturated and plated in 

media (MEM Eagle’s with Earle’s BSS medium, supplemented with 10% horse serum, 

MEM vitamins, penicillin/streptomycin, and L-glutamine). Neurons were plated onto glass 

coverslips and used within 20 hours. All media and cell culture supplements were purchased 

from the UCSF Cell Culture Facility.

NG108 cell culture

NG108 cells were cultured on poly-D-lysine-coated chamberslides (Nalgene-Nunc). Cells 

were transfected with Lipofectamine 2000 (Invitrogen) using 150 ng human TRPA1, 150 ng 

human TRPV1, 500 ng human HRH1, 500 ng mouse Mrgprc11, and/or 500 ng mouse 

Mgrpra3 plasmids. 16 hours after transfection, cells were replated onto glass coverslides and 

used for calcium imaging.

Calcium Imaging

For calcium imaging experiments, cells were loaded for 1 hour with 10 μM Fura-2 AM 

(Invitrogen), supplemented with 0.01% Pluronic F-127 (Invitrogen), in a physiological 

Ringer solution containing (in mM) 140 NaCl, 5 KCl, 10 HEPES, 2 CaCl2, 2 MgCl2, 10 D-

(+)-glucose, pH 7.4. All chemicals were purchased from Sigma. Acquired images were 

displayed as the ratio of 340 nm to 380 nm and aligned using MetaMorph software. Cells 

were identified as neurons by eliciting depolarization with high potassium solution (75 mM) 

at the end of each experiment. Neurons were deemed to be sensitive to an agonist if the 

average ratio during the 10 s after agonist application was ≥15% above baseline. Image 

analysis and statistics were performed using custom routines in Matlab and Igor Pro 

(WaveMetrics). Statistical significance was assessed by one-way analysis of variance 

(ANOVA), followed by Tukey’s HSD. All graphs displaying Fura-2 ratios have been 

normalized to the baseline ratio: Ratio F340/F380= (Ratio)/(Ratiot=0).

Electrophysiology

Primary mouse DRG neurons were assessed for CQ- and BAM-sensitivity using calcium 

imaging as described above. Cells displaying a >15% change in Fura-2 ratio following a 15 

second application of CQ (1 mM) or BAM (100 μM) were chosen for whole-cell current-

clamp recordings. Current clamp recordings were performed as previously described (Fujita 

et al, 2008). Electrode resistance ranged between 2–6MΩ. Internal solution contained (in 

mM): 140 mM KCl, 5 mM EGTA, 10 mM HEPES (pH 7.4 with KOH). The pipette 

potential was canceled before seal formation. Liquid junction potentials were <5 mV and 

were not corrected. Experiments were carried out only on cells with a series resistance of 

under 30MΩ. Resting membrane potential averaged −55±8.2 mV with a firing threshold of 

−44.5±7.0 mV. Data were collected at 5 kHz and filtered at 2 kHz (Axopatch 200B, PClamp 

software).

Mice and Behavior

Mice (20–35 g) were housed with 12 hr light-dark cycle at 21°C. For assessing chloroquine-

evoked itch behaviors, mice received a subcutaneous injection into the cheek (10 μL) or 
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neck (50 μL), with one of three solutions: 1) Ca2+ and Mg2+-free Phosphate buffered saline 

(PBS); 2) 10 μg BAM dissolved in PBS; or 3) 200 μg chloroquine dissolved in PBS. Mice 

were videotaped for 25 minutes following injection. The amount of time each mouse spent 

scratching, and the number of scratch bouts, were quantified over a 20-minute period. One 

bout of scratching was defined as an episode in which a mouse lifted its paw and scratched 

continuously for any length of time, until the paw was returned to the floor. Behavioral 

scoring was performed while blind to genotype and to the solution injected. All experiments 

were performed under the policies and recommendations of the International Association for 

the Study of Pain and approved by the University of California, Berkeley Animal Care and 

Use Committee.

PCR

RNA was isolated from individual sensory neurons. Cells were first examined for 

chloroquine or BAM8–22 sensitivity by calcium imaging, 3–4 cells in each category were 

aspirated into a large–diameter glass electrode filled with lysis buffer (50 mM Tris-Cl, pH 

8.3, 75 mM KCl, 3 mM MgCl2, 5 U−1 RNasin (Promega) and were flash frozen. Reverse 

transcription was performed using murine Moloney leukemia virus and avian reverse 

transcriptases at 37 °C for 1 h. The product was diluted 1:10 and used as the template for 

PCR experiments. Primers for PCR were:

TRPA1

5–GATGCCTTCAGCACCCCATTGCTTTCCTTAATC–3

5–CTAAAAGTCCGGGTGGCTAATAGAACA–3

MrgC11

5–GCCTCTTGGGCTTTACTTGTT–3

5–GGGACCTATGCTTTCTATGCTG–3

MrgA3

5–CGACAATGACACCCACAACAA–3

5–GGAAGCCAAGGAGCCAGAAC–3

GAPDH

5–CCATGACAACTTTGGCATTG–3

5–CCTGCTTCACCACCTTCTTG–3.

Statistical analysis

Values are reported as the mean ± s.e.m. For comparison between two groups, a one–way 

ANOVA followed by a Turkey–Kramer post hoc test was used. To analyze a variable 

between two or moregroups over multiple measurements, a two–way ANOVA was used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Chloroquine and BAM8–22 activate a subset of TRPA1-positive sensory neurons
(a) BAM8–22- (BAM; 100 μM; yellow arrowheads) and chloroquine (CQ; 1 mM; white 

arrows)-evoked responses in cultured dorsal root ganglia neurons (representative Fura-2 

ratiometric images). Scale bar=10 μm. (b) Representative BAM- and CQ-responsive cell. 

Fura-2 ratio in response to BAM (100 μM), CQ (1 mM), allyl isothiocyanate (mustard oil: 

MO; 200 μM), and capsaicin (Cap; 1 μM). (c) Representative CQ-sensitive, BAM-

insensitive cell. Fura-2 ratio in response to BAM (100 μM), CQ (1 mM), MO (200 μM), and 

Cap (1 μM). (d) PCR analysis of MrgprA3, MrgprC11, and TRPA1 expression in CQ-

positive, BAM-positive and CQ/BAM/MO-negative large diameter sensory neurons. 

MrgprC11 and TRPA1 were amplified in BAM-sensitive (BAM+), but not BAM-negative 

(BAM−) or no-RT control (CON) cells (right). MrgprA3 and TRPA1 were amplified in 

chloroquine-positive cells (CQ+), but not chloroquine-negative (CQ−), or no-RT control 

(CON) cells (left). MrgprA3, MrgprC11 and TRPA1 were all amplified from DRG cDNA 

(DRG). Note the presence of control GAPDH product in all samples. (e) Representative 
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trace showing Ca2+ response to BAM (100 μM) in the absence (1mM EGTA), and presence 

(2 mM Ca2+) of extracellular calcium. (f) Representative response to CQ (1 mM) in the 

absence (1 mM EGTA), and presence (2 mM) of extracellular calcium.
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Figure 2. TRPV1 is not required for chloroquine or BAM8–22-evoked excitation of neurons
(a) Cultured sensory neurons isolated from wild type and TRPV1-deficient mice were 

exposed to BAM8–22 (BAM; 100 μM), followed by allyl isothiocyanate (mustard oil: MO; 

200 μM), and capsaicin (Cap; 1 μM) and analyzed by Fura-2 ratiometric calcium imaging 

(representative responses). (b) Cultured sensory neurons isolated from wild type and 

TRPV1-deficient mice were exposed to chloroquine (CQ; 1 μM), followed by allyl 

isothiocyanate (mustard oil: MO; 200 μM), and capsaicin (Cap; 1 μM) and analyzed by 

Fura-2 ratiometric calcium imaging (representative responses). (c) The prevalence of CQ-

sensitivity was similar in wild type (black), TRPV1-deficient (grey), and capsazepine treated 
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(CPZ; 20 μM; white) neurons (p>0.5; one-way ANOVA). In contrast, the prevalence of 

BAM-sensitivity was reduced in TRPV1-deficient (grey; p<0.01; one-way ANOVA) and 

CPZ treated neurons (white, p <0.05; one-way ANOVA) relative to wild type neurons 

(black). The prevalence of histamine (HIS)-sensitivity was also reduced in TRPV1-deficient 

(grey; p<0.05; one-way ANOVA) and CPZ treated neurons (white, p<0.05; one–way 

ANOVA; n=3 animals per genotype; n≥500 neurons per genotype) relative to wild type 

neurons (black). (d) TRPV1 is not required for CQ- or BAM-evoked action potential firing. 

Representative current-clamp recording shows that wild type and TRPV1-deficient neurons 

fire similar numbers of action potentials in response to BAM8–22 (BAM; 100 μM; p=0.728; 

one-way ANOVA) and chloroquine (CQ; 1 mM; p=0.739; one-way ANOVA). No responses 

to capsaicin (Cap; 1 μM) were observed in TRPV1-deficient neurons. Error bars represent 

s.e.m. n=5–13 cells/genotype. (*p<0.05, **p<0.01 ***p<0.001).

Wilson et al. Page 18

Nat Neurosci. Author manuscript; available in PMC 2011 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. TRPA1-deficient neurons display a loss of chloroquine and BAM8–22 sensitivity
(a) Cultured sensory neurons isolated from wild type and TRPA1-deficient mice were 

exposed to BAM8–22 (BAM; 100 μM), followed by allyl isothiocyanate (mustard oil: MO; 

200 μM), and capsaicin (Cap; 1 μM) and responses measured by Fura-2 ratiometric calcium 

imaging (representative response). (b) Cultured sensory neurons isolated from wild type and 

TRPA1-deficient mice were exposed to chloroquine (CQ; 1 μM), followed by allyl 

isothiocyanate (mustard oil: MO; 200 μM), and capsaicin (Cap; 1 μM) and responses 

measured by Fura-2 ratiometric calcium imaging (representative response). (c) The 

prevalence of CQ sensitivity was significantly reduced in TRPA1-deficient (grey; p>0.5; 

one-way ANOVA) and HC-03001 treated (HC; 100 μM; white) neurons (p>0.1; one-way 

ANOVA), relative to wild type neurons (black). Similarly, the prevalence of BAM 

sensitivity was reduced in TRPA1-deficient (grey; p<0.01; one-way ANOVA) and HC 

treated neurons (white, p<0.01; one-way ANOVA), relative to wild type (black). In contrast, 

the prevalence of histamine sensitivity was similar in wild type (black), TRPA1-deficient 

(grey; p=.73; one-way ANOVA), and HC treated neurons (white, p=0.61; one-way 

ANOVA, n=3 animals per genotype; n≥500 neurons per genotype. (d) TRPA1 is required 
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for CQ-evoked action potential firing. Representative current clamp recording shows that 

HC-03001 (HC; 100 μM) significantly blocks CQ-evoked action potential firing relative to 

vehicle (CQ: p<0.01; one-way ANOVA; n≥5 cells/compound). Error bars represent s.e.m. 

(*p<0.05, **p<0.01 ***p<0.001)
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Figure 4. MrgprA3 and MrgprC11 signal via TRPA1 in neuronal cell lines
(a) Chloroquine-evoked (CQ; 1 mM) calcium response in NG108 cells cotransfected with 

TRPA1 and Mrgpra3 (bottom), Mrgpra3 alone (top) and TRPA1 alone (middle). TRPA1 

expression was assessed by application of mustard oil (MO; 100 μM). Scale bar=10 μm. (b) 

Chloroquine-evoked Fura-2 ratiometric responses (average traces) in NG108 cells 

transfected with Mrgpra3 alone (left), with TRPV1 (middle) and with TRPA1 (right). 

Ionomycin (1 μM) was used to show that the Mrgpra3 transfected cells were healthy and 

loaded with Fura-2. Capsaicin (Cap; 1 μM) and mustard oil (MO; 200 μM) were used to 

activate TRPV1 and TRPA1 channels, respectively. MrgprA3 expression was assessed by 

GFP fluorescence (not shown). (c) BAM8–22-evoked Fura-2 ratiometric responses (average 

traces) in NG108 cells transfected with Mrgprc11 alone (1.58±0.16; left), with TRPV1 

(2.1±0.3; middle) and with TRPA1 (2.8±0.3; right). Values are shown as peak ± s.e.m. 

(Mrgprc11 alone versus Mrgprc11 + TRPV1: p=0.005; Mrgprc11 alone versus Mrgprc11 + 

TRPA1: p=0.0001; Mrgprc11 + TRPA1 versus Mrgprc11 + TRPV1: p=0.004). Capsaicin 

(Cap; 1 μM) and mustard oil (MO; 200 μM) were used to activate TRPV1 and TRPA1 
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channels, respectively. MrgprC11 expression was assessed by GFP fluorescence (not 

shown).
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Figure 5. MrgprA3 and MrgprC11 utilize distinct signaling pathways to activate TRPA1
(a) Chloroquine (CQ, 1mM)-evoked calcium signals (representative traces) in cultured 

sensory neurons following pre-treatment (5 min) with vehicle (VEH; left), the Gβγ inhibitor, 

gallein (middle; 100 μM), or the PLC inhibitor, U73211 (right; 1 μM) as measured by Fura-2 

ratiometric calcium imaging. (b) BAM8–22 (BAM, 100 μM)-evoked calcium signals 

(representative traces) in cultured sensory neurons following pre-treatment (5 min) with 

vehicle (VEH; left), the Gβγ inhibitor, gallein (middle; 100 μM), or the PLC inhibitor, 

U73211 (right; 1 μM) as measured by Fura-2 ratiometric calcium imaging. (c) 

Quantification of the percentage of CQ-, BAM-, and HIS-sensitive neurons following 

treatment with vehicle (VEH; black), gallein (GAL; white), or U73122 (U7; grey). (d) 

Gallein inhibits chloroquine-evoked action potential firing. Representative current clamp 

recording shows that gallein (100 μM) blocks CQ-evoked action potential firing. All error 

bars represent s.e.m. (*p<0.05, **p<0.01 ***p<0.001; one way ANOVA)
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Figure 6. TRPA1-deficient mice are insensitive to chloroquine and BAM8–22
(a) Itch-evoked scratching was measured in wild type (WT; black), TRPV1-deficient (V1−/−; 

grey) and TRPA1-deficient (A1−/−; red) mice following subcutaneous injection of 

chloroquine (CQ, 200 mg/50 μl, 8 mM) or BAM8–22 (60 μg/10 μl, 3.5 mM) into the nape of 

the neck. The total time spent scratching was quantified for 20 minutes after injection 

(p<0.01; one-way ANOVA). Injection of vehicle (PBS, 50 μL) elicited some scratching in 

wild type mice (VEH; white). (b) In the cheek model of itch, subcutaneous injection of a 

pruritogen into the cheek (chloroquine, 200 μg/10 μL, 40 mM) elicits scratching of the cheek 

with the hindpaw (left). In contrast, injection of an irritant, mustard oil (MO, 1 mM), evokes 

wiping with one of the forelimbs (right). (c) Itch-evoked scratching was measured in wild 

type (WT; black), Trpv1−/− (V1−/−; grey) and Trpa1−/− (A1−/−; red) mice following CQ 

(200 μg/10 μL, 40 mM) or BAM8–22 (60 μg/10 μl, 3.5 mM) injection in the cheek. The total 

time spent scratching was quantified for 20 minutes after injection. Injection of vehicle 

(PBS, 10μL) failed to elicit scratching or wiping (VEH; white; p<0.01; one-way ANOVA). 

All error bars represent s.e.m. n≥8 mice/genotype. (*p<0.05, **p<0.01 ***p<0.001)
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