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Metagenomics studies have shown that type 2 diabetes (T2D) is associated with an
altered gut microbiota. Whereas different microbiota patterns have been observed in
independent human cohorts, reduction of butyrate-producing bacteria has consistently
been found in individuals with T2D, as well as in those with prediabetes. Butyrate is
produced in the large intestine by microbial fermentations, particularly of dietary fiber, and
serves as primary fuel for colonocytes. It also acts as histone deacetylase inhibitor and
ligand to G-protein coupled receptors, affecting cellular signaling in target cells, such as
enteroendocrine cells. Therefore, butyrate has become an attractive drug target for T2D,
and treatment strategies have been devised to increase its intestinal levels, for example by
supplementation of butyrate-producing bacteria and dietary fiber, or through fecal
microbiota transplant (FMT). In this review, we provide an overview of current literature
indicating that these strategies have yielded encouraging results and short-term benefits
in humans, but long-term improvements of glycemic control have not been reported so
far. Further studies are required to find effective approaches to restore butyrate-producing
bacteria and butyrate levels in the human gut, and to investigate their impact on glucose
regulation in T2D.
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INTRODUCTION

Type 2 diabetes (T2D) is a global concern and is projected to affect 700 million people by 2045 (1).
Although lifestyle interventions (including diet, exercise and weight loss) are the first option for
managing T2D, patients are often prescribed medications. A variety of drugs are already available,
but side effects (such as pancreatitis and gastrointestinal complications) (2), and lifelong
dependency on drugs entail a significant burden on the patients and on the healthcare system
globally. Therefore, novel individualized therapies are being developed, focused on safety and
personalized management of T2D.

‘Gut microbiota’ is a term used to describe the trillions of microbes that live in the gastrointestinal
tract. The gut microbiota has been identified as a virtual organ interacting locally with the gut and
systemically with other organs in the host to facilitate multiple physiological processes (3). The interest
in understanding the composition and function of the gut microbiota has increased exponentially over
the last two decades. From the initial studies addressing the possibility to culture and profile gut
n.org October 2021 | Volume 12 | Article 7618341
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microbiota communities (4–7), the field has developed to describe
the core human gut microbiota (8–12), its tremendous genetic
potential (100 times larger than the human genome) (10, 13) and
variations according to geographical location (14, 15), ethnicity
(16, 17) and disease status (18), including T2D (19, 20). How an
altered gut microbiota can impact metabolic health is debated,
but metabolomics investigations have shown that the gut
microbiota contribute to the variation of blood metabolites in
humans (21), with important implications for metabolic
regulation (22). Trimethylamine oxide (23), imidazole
propionate (24) and indolepropionic acid (25) are examples
of microbial metabolites associated with development or
protection against metabolic diseases, and their specific roles in
metabolic diseases as well as signaling mechanisms are currently
under investigation.
Frontiers in Endocrinology | www.frontiersin.org 2
Butyrate is one of the short chain fatty acids (SCFAs) produced
as end-products of intestinal microbial fermentations (26, 27).
Butyrate is absorbed rapidly in the gut and acts as signaling
molecule in receptor-mediated signaling in numerous cell types
(28). Microbial butyrate production in the human gut has been
known for decades (29) before the large sequencing efforts of the
gut microbiota started, but it was only in the last decade that
metagenomics surveys consistently revealed in multiple
independent human cohorts a decrease of butyrate-producing
bacteria in individuals with T2D (19, 20). As restoration of
butyrate-producing bacteria and butyrate levels might provide
new treatment options for T2D, here we review recent literature
on the association of butyrate and butyrate-producing bacteria
with T2D, and discuss the therapeutic potential for management
and treatment of this disease (Figure 1).
FIGURE 1 | Several independent metagenomics studies have detected a decrease of butyrate producers in stools from individuals with prediabetes and type 2
diabetes (T2D) compared to individuals with normal glucose tolerance (NGT). While the loss of butyrate producers is robust and associated also with obesity and
other cardiometabolic comorbidities (18), consistent patterns for increased microbial features have not been found, possibly due to the redundancy of the gut
microbiota and stochasticity in gut microbiota alterations (30); only few gut microbiota species (mostly opportunistic pathogens) have been observed as increased in
a limited number of studies. Thus, butyrate and butyrate producers have been selected as potential targets for the development of novel therapeutic strategies for
T2D, such as direct butyrate administration, administration of butyrate producers and/or bacteria able to promote intestinal butyrate production [probiotics and next-
generation probiotics (NGPs)], interventions with dietary fibers and fecal microbiota transplant (FMT).
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TYPE 2 DIABETES AND BUTYRATE-
PRODUCING BACTERIA

T2D has been associated with compositional and functional
shifts in the gut microbiota. One of the striking features that
was consistently observed in multiple cohorts across diverse
geographical locations is the reduction of butyrate-producing
bacteria in individuals with T2D. The first observations came
from shotgun metagenomics studies of fecal communities in
Chinese (20) and Swedish (19) individuals, and showed
decreased abundance of several butyrate producers such as
Roseburia and Faecalibacterium prausnitzii; these findings were
later extended to individuals with T2D in Indian (31) and
African (32) populations. Lower abundance of F. prausnitizii
has also been found in the mesenchymal adipose tissue of
obese individuals with T2D compared to normoglycemic
controls matched for body mass index (33), reflecting
the lower intestinal abundance of this bacterium in T2D
independent of obesity, but linked to the metabolic status. The
positive association between microbial potential for butyrate
production and normoglycemia is supported by the results of a
Dutch study that combined fecal microbiota metagenomics and
human genome sequencing, and showed that higher potential
for butyrate production driven by host genetics was linked
to improved insulin response to an oral glucose load in
normoglycemic individuals (34). Furthermore, one recent
study has shown that also the diurnal oscillation of the gut
microbiota is altered in T2D, and in particular that the
abundance of several bacteria, among which Roseburia and
F. prausnitzii, lost rhythmicity, and that the arrhythmicity
might be important for risk classification and prediction of
T2D (35). However, it is important to mention that other gut
commensals (e.g. Akkermansia, Bifidobacterium and Bacteroides)
are also decreased in T2D and might play additional roles for the
modulation of gut barrier function, inflammation andmetabolism,
as reviewed elsewhere (36, 37).

The initial studies on the associations between gut microbiota
and T2D did not account for medications used for T2D
treatment; however, it is now established that numerous non-
antibiotic drugs can influence the gut microbiota (38).
Metformin is the first line of treatment in newly discovered
T2D patients and was first demonstrated to influence gut
microbiota composition in diet induced obese mouse models,
where it resulted in enrichment of Akkermansia muciniphila (39,
40), a gut commensal showing beneficial effects on metabolism
(41). Similar results were later observed also in large human
cohorts (including both treatment naïve and metformin-treated
T2D patients), in which shotgun sequencing of the fecal
microbiota showed enrichment of butyrate producers, and in
some cases also of A. muciniphila (42–45). By using germ-free
(GF) mice, it was also shown that part of the antidiabetic effects
of metformin can be explained by the microbiota shifts. GF mice
are devoid of any microbiota, and are an efficient model to
understand the functional significance of compositional changes
in the gut microbiota: fecal microbiota transplant from
metformin-treated individuals to GF mice were able to transfer
Frontiers in Endocrinology | www.frontiersin.org 3
the improved glucose tolerance phenotype to the recipients (45).
In addition, gut microbiota has also been shown to interact with
metformin and the diet to promote microbial synthesis of
agmatine, specifically in individuals with T2D, an effector
molecule able to regulate host lipid metabolism (46). Overall,
these results indicate a possible beneficial role of the microbial
shifts induced by metformin for the improvement of the
glycemic and metabolic status in T2D. However, these studies
also indicate that potential confounders [e.g., medications,
dietary supplements and obesity (47)] should be considered in
gut microbiota analyses for the identification of possible
microbial signatures of T2D.

T2D is a chronic metabolic disorder that can remain
undetected for a number of years. Prediabetes precedes T2D,
and often presents with intermediate hyperglycemia, such as
impaired fasting glucose (IFG), impaired glucose tolerance (IGT)
or combined glucose intolerance (CGI) (48). Microbiota
profiling in a Danish cohort diagnosed with prediabetes
revealed lower abundance of butyrate-producing bacteria
compared with age- and sex-matched individuals with normal
glucose regulation (49). In addition, a metagenomic study in a
T2D-treatment-naïve Swedish cohort has shown that microbiota
composition is altered in IGT and CGI, and is characterized by a
reduction in the abundance of butyrate-producing bacteria and
the terminal genes for butyrate synthesis (43). These studies
indicate that the butyrate-producing potential of the gut
microbiome is depleted already in the prediabetes state, and
suggest that replenishment of butyrate producers or butyrate
levels might be important to delay or prevent progression to
T2D. In contrast with the consistent finding of reduced
abundance of butyrate-producing bacteria in T2D, different
studies report extensive variation for the levels of butyrate in
feces and/or blood of individuals with T2D compared to
controls. In the large Dutch cohort, fecal butyrate levels did
not correlate with either butyrate production potential or the
selected anthropometric and glycemic traits, thus suggesting that
fecal butyrate levels might not be representative of butyrate
production and absorption (34). However, results from two
smaller cohorts have showed decreased levels of SCFAs
(including butyrate) in individuals with T2D as well as
significant correlation with metabolic parameters (50, 51).
Therefore, as butyrate is volatile and quickly absorbed and
consumed by the colonic epithelium, static measurements in
fecal and blood samples might not be sufficient to reveal an actual
reduction of butyrate levels in T2D. Radioactive tracers might
offer a better solution to trace the origin and absorption of
butyrate, but would not be applicable to large-scale human
cohort studies.
BUTYRATE – PRODUCTION,
ABSORPTION AND
PHYSIOLOGICAL ROLES

The SCFAs acetate, propionate and butyrate are produced by
microbial fermentations in the gut (52). Most of the butyrate
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producers are distributed within multiple clusters of Clostridia,
in the phylum Firmicutes (53). Butyrate is primarily a product of
carbohydrate fermentation produced by condensation of two
acetyl CoA molecules. However, lactate and by-products of
amino acids metabolism are also cross-fed to generate butyrate
(54). Two key enzymes have been identified for butyrate
production by the gut microbiota from carbohydrates: the
butyryl CoA:acetate CoA transferase (but) is the primary
enzyme, whereas the butyrate kinase (buk) is present in a few
strains (55). The terminal enzymes for butyrate production from
amino acids are also known [i.e., butyryl CoA:4-hydroxybutyrate
CoA transferase (4-hbt) and butyryl CoA:acetoacetate CoA
transferase (ato)] (56), but their abundance in the human gut
is lower compared to but and buk.

In humans, the major site of SCFAs and butyrate production
is the colon, from where total SCFAs are drained into the portal
blood with much higher concentration (375µmol/l) than in
peripheral blood (79µmol/l) (29). However, approximately 95%
of the butyrate produced in the gut lumen is rapidly absorbed
by colonocytes and fuels cellular metabolism through
mitochondrial b-oxidation (57). Colonic delivery of 13C
labelled acetate, propionate and butyrate in healthy subjects
revealed that only 36% of the acetate, 9% of the propionate
and 2% of the butyrate could be recovered in blood samples
collected over different time points during the day (58).
Interestingly, 24% of acetate was bio-converted to butyrate, but
the authors did not find significant correlation between the
percentage of interconversion and the gene copies of but or
buk in the fecal samples (58). These results confirm the
observations from the large Dutch cohort (34), and thus
indicate that the abundance of the genes does not fully reflect
the activity, as different intestinal variables (e.g., pH, redox
potential, lactate and acetate levels) can influence the rates of
butyrate production (52).

In the GF mouse model, colonocytes are in a state of nutrient
deficiency that causes cellular autophagy in the colonic
epithelium (59) and slower intestinal transit (60). Supplementation
of butyrate reverses these phenotypes (i.e. prevents autophagy and
decreases intestinal transit time), indicating that microbially-
produced butyrate is an important source of energy for colonic
epithelial cells and its deficiency results in reversible adaptive
mechanisms to cope with nutrient deficiency. In addition, mouse
studies have shown that butyrate contributes to maintain the colonic
environment anaerobic through the activation of the peroxisome
proliferator-activated receptor-gamma in colonocytes, which results
in the induction of b-oxidation (57). This process has been shown to
consume oxygen and prevent colonic invasion by pathogenic
Salmonella and Escherichia species (57). Because of its effects on
colonocytes, butyrate levels in the gut might be important not only
for signaling to the host (as described below) but also for the
composition of the gut microbiota. Therefore, butyrate might be a
particularly interesting therapeutic target.

Butyrate also serves as histone deacetylase (HDAC) inhibitor
to regulate the expression of genes by epigenetic mechanisms.
Supernatants from cultures of butyrate-producing bacteria from
the human gut microbiota express HDAC inhibitory activity to
Frontiers in Endocrinology | www.frontiersin.org 4
class I and II HDACs (61). T2D is associated with epigenetic
changes in multiple organs (62) and it seems plausible that
microbially-produced butyrate could be one of the contributing
factors. In a non-obese diabetic mouse model, it has been
observed that the reduction of intestinal butyrate associated
with T2D caused an increase in colonic HDAC activity
resulting in production of reactive oxygen species and
alteration of colonic permeability (63). Furthermore,
supplementation of sodium butyrate has been shown to
ameliorate palmitate-induced insulin resistance in muscle
cells by promoting hyperacetylation of insulin receptor
substrate-1 in an in vitro study (64). Consistent with this
study, supplementation of sodium butyrate to mice modulated
mitochondrial chromatin structure (65) and lowered HDAC
activity in skeletal muscle resulting in improved insulin
sensitivity (66). Finally, sodium butyrate treatment has been
shown to suppress HDAC activity also in mouse liver, leading to
reduced gluconeogenesis and improved glucose homeostasis
(67). These animal studies suggest that reduction of butyrate in
T2D may alter gene expression by epigenetic mechanisms
leading to insulin resistance, which can be reversed by butyrate
supplementation. However, this observation awaits validation in
human cohorts.

Butyrate (as well as the other SCFAs) also acts as a signaling
molecule and is identified as a ligand for G-protein coupled
receptors (GPCRs), such as FFAR3, FFAR2 and GPR109A.
Human orthologs of FFAR2 have similar affinity for acetate
and propionate followed by butyrate, while FFAR3 has higher
affinity for propionate and butyrate compared to acetate (68).
Niacin is identified as the most potent ligand of GPR109A,
though butyrate also shows weak binding (69). These receptors
are located in distal regions of the intestine and in adipocytes
(70). In the intestinal lumen, the concentrations of SCFAs are
supramaximal and therefore it is thought that these receptors are
localized on the basolateral side of the intestinal epithelium (70).
FFAR3 and FFAR2 are present on hormone-producing
enteroendocrine cells (EECs): exposure to SCFAs stimulates
EECs differentiation (71), and binding of SCFAs to FFAR3 and
FFAR2 results in altered gene expression and secretion of gut
hormones, such as peptide YY (PYY) and glucagon like peptide-1
(GLP-1) (72, 73). GLP-1 is one of the gut hormones that
profoundly affects glucose regulation by promoting post-
prandial insulin secretion, and GLP-1 based drugs are approved
for the treatment of T2D (74). Supplementation of butyrate along
with inulin have been shown to increase GLP-1 levels in
individuals with T2D with significant improvement in the
glycemic status (75). However, it is important to note that the
in vitro studies mentioned here report different effects after
stimulation with a mix of SCFAs or with individual SCFAs,
indicating that the effects on EECs are not exclusively mediated
by butyrate. Nevertheless, in human cell lines, butyrate selectively
stimulates PYY secretion through mechanisms largely driven by
HDAC inhibition (76).

In addition to signaling in the gut, activation of SCFAs-
binding receptors might be important also in the adipose tissue.
Selective chemical agonism of GPR109A in individuals with T2D
October 2021 | Volume 12 | Article 761834
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decreased fasting glucose, but not Hb1Ac, through inhibition of
lipolysis in adipocytes as demonstrated by the decreased
circulating levels of non-esterified fatty acids in the patients
(77, 78). Consistent with these results, overexpression of FFAR2
in adipose tissue protected mice from gut microbiota-dependent
diet-induced obesity (79). Additionally, a role for butyrate in the
stimulation of thermogenesis in brown and white adipose tissue
has been demonstrated in rodents (66), with potential relevance
for the regulation of glycaemia. However, oral supplementation
of butyrate in individuals with T2D did not alter brown adipose
tissue activity (80).

Finally, butyrate signaling might also be important for islets
function. In vitro experiments have showed that addition of
butyrate in culture media reduced streptozotocin-induced islet
cell death (81). Moreover, supplementing HFD with 5% butyrate
in a T2D mouse model prevented b-cell expansion and fat
accumulation in the pancreas (82). In contrast, an oral dose of
4g butyrate to individuals with type 1 diabetes for a month did
not improve b-cell function or islet autoimmunity (83).

Therefore, SCFAs (including butyrate) may play important
roles in metabolic control, particularly via regulation of EECs and
adipocyte lipolysis. However, specific targeting of the GPCRs in
humans might be difficult due to their complex chemistry and
diverse functions in different tissues (84). Additionally,
applications might be limited by the lack of concordance
between mouse and human studies that can possibly be
explained by differences in dose, route and duration of
administration, discrepancy between experimental models for
diabetes and human diabetes, and specific intestinal
environments in the different hosts. Nevertheless, the animal
studies suggest that butyrate influences the regulation of glucose
metabolism through multiple pathways that, if further
Frontiers in Endocrinology | www.frontiersin.org 5
characterized and validated in humans, can possibly be
harnessed for the development of therapeutic strategies (Figure 2).
RESTORATION OF BUTYRATE IN
TYPE 2 DIABETES

Restoration of the intestinal levels of butyrate might be a novel
strategy for the treatment of T2D, that could also be added to
conventional therapy with lifestyle management and glucose-
lowering drugs. In recent years, a number of studies have
attempted to replenish butyrate levels and butyrate-producers
in the gut using different approaches as discussed below: direct
supplementation of butyrate or butyrate-producing bacteria,
dietary supplementation of fibers to feed microbial butyrate
production, and fecal microbiota transplantation.

Supplementation of Butyrate
Butyrate can be supplemented as sodium conjugate or as
tributyrin (a triglyceride in which glycerol is esterified with three
butyrate molecules). In mice with diet-induced obesity, oral
supplementation of 400mg/kg of butyrate improved glucose
tolerance and increased the expression of phosphorylated
adenosine monophosphate kinase (AMPK) as well as glucose
transporter-4 in the adipose tissue, and reversed some of the gut
microbiota alterations caused by the high-fat diet (HFD) (85). In
another mouse study, addition of 5% butyrate to HFD increased
energy expenditure, improved insulin sensitivity, and induced
adaptive thermogenesis in BAT followed by increased AMPK
activity and mitochondrial biogenesis in muscle cells (66). As an
alternative, tributyrin supplementation in diet-induced obese mice
FIGURE 2 | Dietary fiber is fermented by the gut microbiota to produce short chain fatty acids, including butyrate. Butyrate is efficiently absorbed by colonocytes and
is utilized as energy source. Butyrate-mediated activation of the peroxisome proliferator-activated receptor-gamma (PPAR-g) induces b-oxidation and consumption of
oxygen, thus facilitating the establishment of anaerobic conditions that are required for the growth and function of several anaerobic gut commensals (57). In the
specialized enteroendocrine cell (EEC), butyrate binds free fatty acid receptors (FFAR) FFAR2 and FFAR3 and regulates gut hormone release (73). Butyrate also acts as
histone deacetylase (HDAC) inhibitor to regulate gene expression in EEC (76) and enterocytes (63). After absorption and utilization by colonocytes, the residual butyrate
is first drained into the portal circulation, and then into the peripheral systemic circulation (29). In the systemic circulation, butyrate may regulate thermogenesis in
brown adipose tissue (66) and b-cell function in pancreas (82).
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was also shown to improve glucose tolerance and inflammatory
status (86), indicating that direct supplementation of butyrate
might have beneficial effects on both metabolic and inflammatory
parameters relevant for the pathophysiology of T2D.

With convincing results in mouse studies, butyrate
supplementation was also tested in individuals with and without
metabolic syndrome who were given 4g sodium butyrate in
capsules for a period of 4 weeks (80). In this study, butyrate
supplementation did not increase butyrate levels either in feces or
plasma, but it improved both peripheral and hepatic insulin
sensitivity in individuals without metabolic syndrome. In
another study, oral butyrate supplementation at the same dose
improved the inflammatory status in individuals with metabolic
syndrome, but no effect on insulin sensitivity was measured in this
study (87). Additional studies might be required to determine
effective doses of butyrate in humans, or other methods of
administration and delivery of butyrate to the colonic
epithelium that mimics the production by the gut microbiota.

Butyrate-Producing Bacteria
Live bacteria that provide health benefits when consumed are
generally called probiotics, and traditional Lactobacillus
probiotics have demonstrated some efficacy for hyperglycemia
and insulin sensitivity in human cohorts (88–91). In two
independent studies, supplementation of Lactobacillus
paracasei or Bifidobacterium bifidum to healthy individuals
increased fecal butyrate levels (92, 93), indicating that
traditional probiotics may modulate the activity of butyrate
producers. However, the intestinal microbes that have been
found as decreased in T2D in metagenomics studies are not
traditional probiotics, and are being explored to produce next-
generation probiotics (NGPs) (94, 95). For the butyrate
producers, oral administration of Clostridium butyricum to
mice lacking the leptin receptor, or to mice on HFD injected
with streptozotocin to induce diabetes, was shown to improve
oral glucose tolerance and insulin levels, and to increase the
abundance of butyrate producers and fecal butyrate levels (96).
In another study, oral administration of Eubacterium hallii to
mice lacking the leptin receptor improved insulin sensitivity and
increased energy expenditure (97). However, administration of
E. hallii strain L2-7 (now reclassified as Anaerobutyricum
soehngenii) to individuals with insulin resistance improved
insulin sensitivity only in individuals with a specific gut
microbiota at baseline (98), reflecting both the resilience of the
human gut microbiota and the ecological interactions of
commensal microbes in the communities that might be
species-specific. To produce effective NGPs, advanced data-
driven metagenomics approaches (99) and specific isolation
efforts might be required to develop synthetic microbial
communities targeted to produce butyrate.

Dietary Fiber
Since butyrate-producing bacteria feed upon dietary fiber, dietary
supplementation with fiber may provide a feasible option to
increase the levels and the activity of the bacteria, and increase
Frontiers in Endocrinology | www.frontiersin.org 6
the intestinal levels of butyrate. In a randomized clinical study by
Zhao et al., supplementation of a mix of dietary fibers to individuals
with T2D improved glycemic parameters, accompanied by
increased abundance of acetate- and butyrate-producing bacteria
and increased fecal levels of acetate and butyrate (100). In
another study, combining a mix of butyrate-producing species
(E. hallii, Clostridium beijerinckii and C. butyricum), with other gut
bacteria (A. muciniphila and Bifidobacterium infantis) and inulin as
fermentable fiber modestly increased butyrate levels and improved
oral glucose tolerance and glycated hemoglobin levels in
individuals with T2D (101). Finally, dietary supplementation of
inulin along with sodium butyrate in capsules for 45 days improved
fasting glucose and waist-to-hip ratio in individuals with T2D (75).
These studies clearly indicate that dietary fiber itself or in
combination with NGPs or butyrate can improve glucose control
in T2D. However, strategies to maintain patient compliance and
investigations of long-term effects of these supplements are still
warranted. Additionally, as it is now evident that the baseline gut
microbiota is a strong predictor of success for dietary interventions
(102, 103), probiotic administrations (89) and microbiota
transplantations (104), stratification of individuals with T2D
based on their microbiota may help to achieve better
metabolic outcomes.

Microbiota Transplantation
Microbiota transplants from mouse models (105) and humans
(45, 106) into GF mice have successfully demonstrated the
transmissibility of donor’s phenotypes. Therefore, human-to-
human fecal microbiota transplants (FMT) [that have shown
unprecedented success for the treatment of Clostridium difficile
infections (107)] have recently been attempted for the treatment
of T2D. When insulin resistant individuals were administered
with duodenal infusion their own fecal microbiota (autologous)
or fecal microbiota from a healthy lean donor (allogenic), the
allogenic group displayed an improved insulin sensitivity (104,
108). The improved phenotype was observed 6 weeks after
transplant in both studies, but not 18 weeks post-FMT (104).
Change in butyrate producers (such as Roseburia, Eubacterium
and Butyrivibiro) in feces and in the small intestine was observed
in both studies, but increase in butyrate levels were observed only
in one (108). In another study, daily cellulose supplementation
after a single-dose oral FMT in individuals with metabolic
syndrome improved insulin sensitivity 6 weeks after treatment
compared to baseline. The authors found that this outcome was
linked to higher GLP-1 secretion and better engraftment of the
donor microbiota; however, they did not report significant
changes for either the proportions of butyrate producers or
fecal butyrate levels (109). Overall, the studies on FMT
indicate that, while this procedure may improve insulin
sensitivity in the short-term, the host gut microbiota is resilient
enough to drift away the foreign microbial community in the
long-term. In addition, while FMT is generally associated with
mild side-effects, major adverse events have also been reported
(110). These observations question the feasibility and
applicability of FMT as a way of treatment for T2D.
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BUTYRATE AS THERAPY – CONCLUSIONS

Butyrate has long been known as a microbial fermentation
product of dietary fibers in the gut, and references of butyrate-
producing bacteria isolated from dietary sources emerged already
in late 1940 (111). The recent association of T2D with reduction
of butyrate-producing bacteria has spurred interest to explore the
therapeutic potential of butyrate for the treatment of T2D but,
while the results of experimental studies overall look promising,
human interventions have only shown positive outcomes in the
short term, and might have important limitations. In particular,
current studies based on the metagenomic profiling of DNA are
not able to determine the activity of butyrate producers in the
human gut. Probiotics, NGPs and fiber supplementations might
be successful strategies to increase butyrate-producing bacteria
and improve hyperglycemia and insulin resistance, but their
effects might be dependent on the individualized gut microbiota
at baseline (responders vs. non-responders) and/or mediated by
multiple undefined mechanisms besides butyrate production.
FMT seems promising for the restoration of the gut microbiota
and to improve insulin sensitivity, but it is impractical to perform
such a highly invasive procedure in humans for short-term
benefits. Future studies are required to gain a better
understanding of the intestinal conditions that might influence
butyrate production in individuals with T2D, in relation both to
the diet and the individualized gut microbiota; for example,
ingestible electronic capsules able to monitor microbial
fermentations directly in the gut (112) could be used to
Frontiers in Endocrinology | www.frontiersin.org 7
characterize intestinal conditions, responses to fibers and
microbiota profiles linked to homeostatic butyrate production.
Furthermore, robust methods for the measurement of butyrate,
tracer studies and live-detection of butyrate-producing bacteria
[for example, by flow cytometry (113)] might help to strengthen
the association of butyrate with T2D and identify new potential
NGPs or synthetic microbial communities for butyrate-based
management of T2D.
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