
Electrocorticography and stereo EEG provide
distinct measures of brain connectivity:
implications for network models
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Brain network models derived from graph theory have the potential to guide functional neurosurgery, and to improve rates of

post-operative seizure freedom for patients with epilepsy. A barrier to applying these models clinically is that intracranial EEG elec-

trode implantation strategies vary by centre, region and country, from cortical grid & strip electrodes (Electrocorticography), to

purely stereotactic depth electrodes (Stereo EEG), to a mixture of both. To determine whether models derived from one type of

study are broadly applicable to others, we investigate the differences in brain networks mapped by electrocorticography and stereo

EEG in a cohort of patients who underwent surgery for temporal lobe epilepsy and achieved a favourable outcome. We show that

networks derived from electrocorticography and stereo EEG define distinct relationships between resected and spared tissue, which

may be driven by sampling bias of temporal depth electrodes in patients with predominantly cortical grids. We propose a method

of correcting for the effect of internodal distance that is specific to electrode type and explore how additional methods for spatially

correcting for sampling bias affect network models. Ultimately, we find that smaller surgical targets tend to have lower connectivity

with respect to the surrounding network, challenging notions that abnormal connectivity in the epileptogenic zone is typically high.

Our findings suggest that effectively applying computational models to localize epileptic networks requires accounting for the

effects of spatial sampling, particularly when analysing both electrocorticography and stereo EEG recordings in the same cohort,

and that future network studies of epilepsy surgery should also account for differences in focality between resection and ablation.

We propose that these findings are broadly relevant to intracranial EEG network modelling in epilepsy and an important step in

translating them clinically into patient care.
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Introduction
Intracranial electrode recordings from patients with med-

ically refractory epilepsy characterize the brain’s local

function, widespread network organization and guide sur-

gical therapy. From the earliest days of intracranial EEG

(iEEG), two major approaches have been used by clini-

cians for these purposes. In North America, Penfield’s use

of subdural grid and strip electrodes for electrocorticogra-

phy (ECoG) persists at many major centres now decades

after its initial use.1,2 Meanwhile, centres in France and

Italy still favour Talaraich and Bancaud’s approach of

using purely depth electrodes in stereo EEG (SEEG) pio-

neered at St. Anne’s Hospital in Paris.2,3 Recently, many

centres in the United States have begun to favour SEEG

due to its superior risk profile and tolerability, though

some centres continue to use ECoG for its superior cor-

tical spatial coverage.4 Unfortunately, many patients do

not become seizure free after epilepsy surgery, regardless

of implant technique. The reasons for poor outcomes are

unclear, but it is likely in part because the interpretation

of intracranial recordings is complex, subjective, and

plagued by sampling uncertainty.5 It is also difficult to

determine where and how much of the epileptic network

must be resected or ablated to fully prevent seizures, par-

ticularly in cases where there are no obvious lesions on

MRI.6 Validated, quantitative methods to guide epilepsy

surgery could lead to a greater rate of seizure freedom

and greater clinical benefit to patients.

Recent evidence supports the hypothesis that epilepsy

arises from disordered connectivity,7,8 and that mapping

brain networks may aid in both selecting candidates for

invasive treatment and identifying therapeutic targets for

surgical resection, ablation or device implants.9 In a brain

network model, discrete ‘nodes’ exist either at the sensor-

level for functional connectivity derived from iEEG sig-

nals, or at the atlas region of interest (ROI) level for

structural connectivity derived from imaging.10 Edges

quantify the statistical relationships between nodes in

functional connectivity approaches, or streamline count

derived from diffusion tensor imaging in structural con-

nectivity. A variety of network methods are being

explored to localize the epileptogenic zone from iEEG

data. Such approaches use interictal11–13 or ictal record-

ings14–17 and are derived from ECoG11,12,14 or SEEG18,19

to generate networks. These networks are analysed using

graph theory11,14,20 or neural mass models, which simu-

late seizure-like activity and probe the effects of different

surgical interventions.12,17 iEEG network models are also

used to study networks activated during normal brain

function, for example in recent studies probing cogni-

tion21 and attention.22 The majority of these studies use

patients implanted with ECoG, often supplemented with

depth electrodes placed in the hippocampus.

Unfortunately, because of the lack of standardization and

difficulties in sharing iEEG data across centres, few

studies test their methods in both ECoG and SEEG. In

order to validate and translate network methods into

clinical practice across centres, it is important to under-

stand how these variations in electrode implantation im-

pact estimate connectivity, subsequent network models

and their clinical utility.

While networks derived from functional MRI and diffusion

imaging easily generalize across patients and centres due to

congruence in their full-brain spatial sampling, iEEG func-

tional networks suffer from sparse sampling and implant het-

erogeneity. Still, the problem of spatial sampling bias which

affects iEEG networks23 may be offset by: (i) the superior

spatiotemporal resolution of iEEG in implanted regions, com-

pared to functional neuroimaging and (ii) clinical experience

that associates particular patterns in the EEG with typical

onset regions, though it can sometimes be difficult to tell if

these patterns are the result of seizure generation or spread.

To better translate network models into patient care, we

must better understand the extent of bias or sensitivity intro-

duced by electrode implantation strategy, in this case, ECoG

versus SEEG, and its effect on network models. We must

then either change implant strategy or develop computational

methods to correct for this effect. It is important to note that

tradition in specific centres is not the only thing that guides

the choice of electrode implantation strategy. Other issues,

such as the need for stimulation mapping, characteristics of a

lesion such as its type and location, ictal semiology and sus-

pected clinical syndrome, as well surgeon and epileptologist

experience and training may also factor into approach and

electrode choice.24

There are many differences in implantation strategy be-

tween ECoG and SEEG that arise from the electrode

hardware itself. Patients implanted with a large ECoG

grid will have regular spacing between contacts in the

same electrode (e.g. an 8�8 contact grid), supplemented

with a few additional strip and depth electrodes in other

regions, as needed. The implantation strategy is much

more heterogeneous in SEEG. This heterogeneity can

manifest itself in the following ways: (i) a wide range in

the number of depth electrodes & electrode contacts

from centre to centre; (ii) different spatial orientations

and density of depth electrode implantation; (iii) different

assortments of anatomical targets, electrode spacing; and

(iv) different levels of implant bilaterality.4 Thus, translat-

ing network models into clinical care faces the challenge

not only of resolving differences between ECoG and

SEEG approaches, but also a high variability in SEEG

approaches from centre to centre. It is unclear whether

these distinct properties of electrodes and implant strategy

preferentially degrade network representations derived

from one approach versus the other, and whether they

preclude using the same analysis for networks derived

from SEEG and ECoG.

In this study, we explore the effect of implant strategy

in a retrospective cohort of patients with drug-resistant

temporal lobe epilepsy who were evaluated with either
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ECoG or SEEG for invasive treatment. We hypothesize

the following: (i) ECoG and SEEG networks have distinct

properties due to different patterns of spatial sampling,

and (ii) differences in network properties between ECoG

and SEEG will impact the observed relationship between

resected and spared tissue. We aim for our findings to

help translate personalized network models of epilepsy

into clinical practice, and to inform other applications of

iEEG connectivity analysis.

Methods

Patient data acquisition

We retrospectively analysed a data set consisting of 33

patients who underwent intracranial recording during evalu-

ation for epilepsy surgery at the Hospital of the University of

Pennsylvania (HUP). Sixteen of these patients had implants

with grid, strip, and a small number of depth electrodes,

while the remaining patients had only stereotactically placed

depth electrodes. In this study, we refer to cortical-predomin-

ant patients as the ‘ECoG’ group while patients with only

depth electrodes constitute the ‘SEEG’ group. All patients

underwent either resection or laser ablation after electrode

explant, however, in subsequent sections we use the term

‘resected’ tissue to include ablation patients as well. We chose

only patients that achieved good outcome, assessed at

6months post-operatively, to maximize the likelihood that tis-

sue removed in surgery contained the epileptogenic zone.

Table 1 lists subject demographics and characteristics of ther-

apy and electrode implants, while Supplementary Table 1

contains the same information on a per-patient basis. All

subjects provided consent to have their full-length iEEG

recordings and anonymized imaging and metadata publicly

released on the ieeg.org portal, an open-source online reposi-

tory for electrophysiologic studies.25,26

Each patient underwent a standard epilepsy imaging proto-

col including pre-implant MRI, post-implant CT & MRI,

and post-resection MRI. We have previously described our

method for localizing electrode locations in detail,14,27 and

briefly summarize them in Fig. 1. Post-iEEG-implant MRI

(Fig. 1D) was registered to pre-implant MRI (Fig. 1C) using

ANTs28 and electrodes are segmented to derive their coordi-

nates using ITK-SNAP.29 Any electrode contacts with cent-

roids outside of the brain in the native MRI space were

eliminated. We then non-linearly registered the pre-implant

MRI into Montreal Neurological Institute (MNI) space for

use with neuroimaging atlases, and visually inspected results

for accuracy in each subject. We chose a 90 region AAL

atlas30 to assign each electrode contact location a brain ROI.

Any electrodes in white matter with centroids not overlap-

ping with any atlas region were eliminated. Finally, we used

a semi-automated algorithm previously described and vali-

dated14 to perform resection and ablation zone segmenta-

tions, which allow the electrode contacts targeted by surgery

to be determined.

Connectivity calculation

We calculated functional connectivity using a pipeline

that we have previously described and validated.11,14,16

We randomly selected an interictal segment 1 h in length

for each patient, occurring at least 1 h away from clinic-

ally annotated seizures. We divided the interictal epoch

into one-second intervals (Fig. 1A) and for each window

calculated connectivity using coherence in the beta

(15–25 Hz) and low-gamma (30–40 Hz) bands as well as

using broadband cross-correlation (after applying 5–

115 Hz bandpass and 60 Hz notch filters) as they previ-

ously have yielded significant results in interictal network

studies in ECoG subjects.11 We computed the median of

each edge over time to obtain a single adjacency matrix

for each patient (Fig. 1B). Together with the results of

our imaging pipeline, this process yielded networks in

which each node is either resected/ablated or spared in

both patients with ECoG (Fig. 1E) and SEEG (Fig. 1F).

Network methods

To probe how network structure differs between ECoG

and SEEG, we detected communities using modularity

maximization, which labels nodes so that each commu-

nity consists of nodes that are more connected to each

other and relatively less connected to all other nodes out-

side of their community.31 We used a Louvain-like

method32 to maximize modularity, which is represented

by Q ¼ 1
2m

P
ij Aij � kikj

2m

h i
d cicjð Þ, where Aij is link between

nodes i and j, k are edge weights, m is the sum of all

Table 1 Clinical and demographic information. We ana-

lysed a retrospective cohort of 33 patients with drug-

resistant epilepsy who underwent surgery of the tem-

poral lobe and achieved seizure freedom at 6 months

post-operatively

ECoG SEEG P-value

Total number of subjects 16 17

Number of female subjects 10 8 0.49a

MRI 0.75a

Lesional 8 9

Non-lesional 8 8

Type of surgery 0.0033a

Resection 14 7

Laser ablation 2 10

Node counts

Total GM contacts

Mean 6 std. dev. 92.1 6 21.2 88.6 6 34.7 0.72b

Depth GM contacts

Mean 6 std. dev. 10.9 6 9.3 88.6 6 35.4 1.5e-6b

Total GM resected/ablated

Mean 6 std. dev. 16.9 6 14.0 9.1 6 6.0 0.08b

Depth GM resected/ablated

Mean 6 std. dev. 4.1 6 4.8 9.1 6 6.0 0.01b

GM, grey matter.
aFisher’s exact test.
bWilcoxon rank-sum test.
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edge weights in the graph, and d is the Kronecker delta

function. To compare community structure across

patients, we computed the participation coefficient33

which measures the ratio of a node’s connectivity

strength external versus internal to its module. Averaging

participation coefficient across nodes within each patient

yielded an estimate of whether networks are (i) inte-

grated, with high connectivity between modules, or (ii)

segregated, with lower connectivity between modules.

To illustrate the importance of differences in the way

ECoG and SEEG represent epileptic networks in-vivo, we

compared the ability of connectivity derived from these

modalities to distinguish resected and spared tissue. We

chose the simple network metric of node strength, com-

puted as the sum of all edge weights connecting it to all

other nodes and is computed as si ¼
PN

j¼1 Aij in which si

is the strength of node i, Aij is the adjacency matrix

element containing the edge weight between node j and

node i, and N is the number of nodes. Our group and

others have previously demonstrated that high node

strength localizes the epileptogenic zone and predicts sur-

gical outcome in patients implanted with ECoG,11,20

however, its translatability to SEEG is not well-

established.

Statistical analysis

In our comparisons of network properties between ECoG

and SEEG groups, we primarily used nonparametric stat-

istical tests such as the Wilcoxon rank-sum test, as they

do not assume that data are normally distributed. To as-

sess the ability for node strength to detect epileptogenic

regions, we used a metric known as the distinguishability

statistic (Drs) which quantifies the area under the receiver

operating characteristic curve for classifying nodes as ei-

ther resected or non-resected.34 The quantity Drs has

been previously studied and validated for its ability to

quantify whether networks have sufficient information to

determine resected or non-resected regions.34,35 This value

is calculated as the normalized U-statistic, and ranges

from 0 to 1. In our study, a value of 1 implies that all

resected nodes are lower in strength than all non-resected

nodes; a value of 0 means that all resected nodes are

stronger than all non-resected nodes; and a value of 0.5

implies that node strength is unable to distinguish be-

tween resected and spared nodes.

Data availability

One of our primary goals is to aid in the translation of epi-

lepsy network models into clinical practice. To this end, we

shared all raw iEEG and imaging data for HUP patients at

iEEG.org, a free cloud sharing platform for electrophysio-

logical data. Each subject’s recordings are associated with the

ID listed in Supplementary Table 1 and can be accessed

through the web interface or the open-source iEEG.org

MATLAB & python toolboxes. The code for calculating ad-

jacency matrices is available at GitHub.com/Akhambhati/

echobase, processed adjacency matrices, and code for com-

paring networks between ECoG and SEEG is hosted at

GitHub.com/jbernabei/ecog_vs_seeg.

Results
Here, we compared networks mapped by ECoG and

SEEG in a cohort of temporal lobe epilepsy patients. We

aimed to describe how each implant approach is biased

Figure 1 Imaging and network methods. (A) We use artifact-free clips of interictal iEEG to calculate (B) mean adjacency matrices using

multitaper coherence. (C) Pre-operative and (D) post-operative T1-weighted MRI are used to segment the resection cavity which is used to

determine resected nodes. (E) Together, we construct networks with the resected nodes determined in ECoG. (F) SEEG implantations using

only depth electrodes appear distinct even for similar anatomic targets.
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towards distinct network properties. We then compared

how these distinct network properties affected how well

connectivity could distinguish epileptogenic and non-epi-

leptogenic regions with the ultimate goal of improved

surgical planning.

Anatomical sampling is similar
between modalities

We first asked what differences in the location and extent

of anatomic sampling exist between ECoG and SEEG.

After quantifying the top 15 anatomical targets implanted

by each approach (Supplementary Fig. 1A), we found a

similar distribution of electrode contacts with temporal

gyri, hippocampus, and inferior frontal gyri highly

sampled. While the total number of implanted nodes was

higher in SEEG compared to ECoG (120.6 6 41.5 vs.

94.5 6 22.3, rank-sum P< 0.05), many depth electrodes

localized to white matter and ultimately the number of

nodes in grey matter (GM) across ECoG and SEEG was

similar (92.1 6 21.2 vs. 88.6 6 34.7, rank-sum P¼ 0.7,

Table 1). Ensuring similar node count was critical for

comparing networks and thus for all subsequent analyses,

we considered only GM nodes. We observed a slight bias

of ECoG to favour ipsilateral sampling with more nodes

than SEEG implanted in the same hemisphere as the re-

section zone (Supplementary Fig. 1B, rank-sum test

P¼ 0.02). The median number of contralateral nodes was

higher in SEEG than ECoG (25 vs. 4), however, this did

not reach statistical significance (Supplementary Fig. 1C,

rank-sum P¼ 0.06). Despite the modest differences in

hemispheric differences in GM nodes, we observed similar

median internodal distances between ECoG and SEEG

(Supplementary Fig. 1D and E, rank-sum P¼ 0.2).

Overall, the targets sampled by ECoG and SEEG for

patients with temporal lobe epilepsy were similar, imply-

ing that differences in anatomy and internodal distance

alone would not primarily drive any subsequent differen-

ces in network models.

Differences in mapping resected
versus spared tissue

Although ECoG and SEEG sample from similar brain

regions, they may not represent the epileptogenic regions

similarly from a network perspective. We aimed to gauge

the ability of each implant strategy to distinguish resected

and spared tissue using the Drs. This value is high when

resected nodes are weaker than the spared network and

low when they are stronger (Fig. 2A). Across our cohort,

ECoG patients tended to have a low Drs value while

SEEG had higher and more variable values (rank-sum

test, P< 0.01), which was unexpected given that all

patients had temporal lobe epilepsy and achieved good

surgical outcome (Fig. 2B). We then sought to determine

whether the difference network relationship between

resected and spared tissue could result from the frequent

placement of depth temporal depth electrodes in ECoG

subjects (Fig. 2C). In these patients, we found that

resected nodes from surface electrodes had higher normal-

ized strength than non-resected surface electrodes (rank-

sum test, P< 0.01), however, resected depth electrodes

were not higher in strength than non-resected depth elec-

trodes (rank-sum test, P¼ 0.1). Furthermore, non-resected

depth electrodes were higher in strength than non-

resected surface electrodes (rank-sum test, P< 0.01), and

resected depth electrodes were higher in strength than

resected surface electrodes (rank-sum test, P< 0.01).

These findings, and the sizable proportion of resected

depth electrode contacts in ECoG could account for the

observed difference in Drs values between the two im-

plantation strategies.

Distinct network properties
between ECoG and SEEG

We sought next to determine whether we could adequate-

ly correct for our findings of Drs differences between

SEEG and ECoG by regressing for internodal distance in

an electrode-specific manner. We fit a nonlinear regres-

sion model to ECoG and SEEG separately (Fig. 3A) using

a rational polynomial (rat11 in MATLAB) which has

been previously validated in interictal network analysis

for epilepsy.35 Within ECoG we also used different mod-

els for depth–depth connections, surface–depth connec-

tions and surface–surface connections. Even after

correcting for internodal distance, network heterogeneity

was higher in SEEG (Fig. 3B), represented by a higher

standard deviation of edge weight residuals across the

network (rank-sum test, P< 0.01). Furthermore, we cal-

culated modularity in distance-corrected networks (Fig.

3C) and found a higher median participation coefficient

in SEEG representing higher network integration (rank-

sum test, P< 0.01). Analogous results for broadband

cross-correlation and low-gamma coherence are found in

Supplementary Fig. 3. These results indicate that despite

accounting for internodal distance and the effects of dis-

tinct electrode types on connectivity, differences in global

network properties remain.

Modifying ECoG and SEEG
networks to correct for sampling
bias

We finally asked how our internodal distance correction

would affect resection zone distinguishability in ECoG

and SEEG, and whether we could correct for any remain-

ing differences in network localization by simplifying ini-

tial networks to reduce sampling differences. Owing to

the different balance of ipsilateral and contralateral nodes

in ECoG and SEEG (Supplementary Fig. 1B and C) and

the distinct connectivity of intra- versus inter-hemispheric

edges, we hypothesized that eliminating nodes
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contralateral to the resection zone of distance-corrected

networks could improve localization. Based on the dis-

tinct modular structure of ECoG and SEEG, we addition-

ally hypothesized that averaging all edges between pairs

of brain regions and thus reducing nodes from represent-

ing electrode contacts to representing atlas-level ROIs

could correct for different balances of connectivity within

and between modules. We performed each of these steps

for all ECoG and SEEG patients (Fig. 4A).

We then calculated Drs for each of the three modifications:

(i) correction for internodal distance (DC); (ii) using only uni-

lateral nodes ipsilateral to the resection zone (UL); and (iii)

atlas-level ROI (AR) (Fig. 4B). For each condition, SEEG

networks had a higher Drs value than ECoG: GM ECoG

versus GM SEEG, as in Fig. 2B: rank-sum test P< 0.01, DC

ECoG versus DC SEEG: rank-sum test P< 0.01, UL ECoG

versus UL SEEG: rank-sum test P< 0.01, AR ECoG versus

AR SEEG: rank-sum test P¼ 0.02. Each condition in ECoG

and SEEG also had a higher Drs value than in uncorrected

networks (DC/UL/AR ECoG versus GM ECoG: sign-rank

test P< 0.01 for each, DC/UL/AR SEEG versus GM SEEG:

sign-rank test P< 0.001/0.001/0.01). Analogous results for

broadband cross-correlation and low-gamma coherence are

found in Supplementary Fig. 2. The atlas-ROI representation

had the highest median distinguishability in ECoG compared

to the base network, however, SEEG patients had higher Drs

Figure 2 Network localization. (A) Distinguishability statistic calculated for an ECoG patient (left) and a SEEG patient (right). In cases

where resected node strength is higher than the remaining network on average, Drs will have a low value, in cases where resected node

strength is lower than the remaining network Drs will be high. A Drs value of 0.5 means that node strength cannot distinguish resected and

spared tissue (B) In networks of grey matter nodes, Drs of resected and spared tissue is higher in SEEG compared to ECoG (rank-sum test,

P¼ 0.0026). (C) In patients with ECoG we found resected nodes from surface electrodes to be higher in strength than non-resected surface

electrodes (rank-sum test, P¼ 0.0065). Non-resected depth electrodes were higher in strength than non-resected surface electrodes (rank-

sum test, P¼ 0.0013). Resected depth electrodes were higher in strength than resected surface electrodes (rank-sum test, P¼ 0.0031).

Resected depth electrodes were not higher in strength than non-resected depth electrodes (rank-sum test, P¼ 0.14). ** ¼ P< 0.01.

Figure 3 Global network structure is impacted by sampling differences between ECoG and SEEG. (A) We fit a nonlinear

regression model to ECoG surface–surface (dotted blue line), surface–depth (dashed blue line), and depth–depth connections (solid blue

line), as well as SEEG depth—depth connections (solid red line). (B) After correcting for internodal distance, the standard deviation of edge

weights remained higher in SEEG versus ECoG (rank-sum test P¼ 0.0052). (C) After correcting for internodal distance, the median

participation coefficient remained higher in SEEG versus ECoG (rank-sum test P¼ 0.0018). D-D, depth–depth; S-S, surface–surface; S-D,

surface–depth; SD, standard deviation, **P< 0.01.
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values compared to ECoG even for this condition. As ECoG

and SEEG networks with distance-corrected, unilateral, ROI-

level nodes should be as similar as possible, we hypothesized

that remaining differences were a result of differences in the

extent of surgical intervention between groups (Table 1).

Indeed, across ECoG and SEEG, we found a strong, negative

correlation between Drs values and the number of atlas ROI

nodes resected (Pearson correlation rho ¼ �0.48, P< 0.005,

Fig. 4C). This finding suggests that the network relationship

between resected and spared tissue depends on the focality of

the surgical approach.

Discussion
Understanding the sampling differences of different im-

plant approaches is critically important when applying

network models to interpret iEEG data. Here, we showed

how the unique characteristics of ECoG and SEEG sam-

pling result in distinct properties of derived networks des-

pite similar clinical targets. Node strength, a frequently

studied network metric in epilepsy, had an unpredictable

relationship between resected and spared tissue, and

accounting for internodal distance & electrode type still

resulted in distinct network properties. We also establish

that these general patterns are present in different fre-

quency bands and in both coherence and correlation

measures of functional connectivity. Finally, we provided

several methods to partially mitigate the effects of sam-

pling bias introduced by implantation strategy on net-

work models, and showed that remaining differences are

associated with the focality of the subsequent resection or

ablation.

Our study adds to the growing body of literature on

methodological considerations for applying network mod-

els clinically.23,35 From these studies, we recognize that a

Figure 4 ECoG and SEEG have distinct representations of the epileptogenic zone. (A) We used three approaches to modifying

networks to probe sampling differences between ECoG and SEEG and their effect on distinguishing resected and spared tissue. We corrected

for the effects of internodal distance (DC). Then, we eliminated nodes contralateral to the resection zone (UL). Finally, we averaged edges

between pairs of brain regions to have a single node per atlas-level region of interest (AR). (B) We compared the effect of correcting for

internodal distance to unilateral to atlas ROI representations. For each condition, SEEG networks had a higher Drs value than ECoG. Each

condition in ECoG and SEEG also had a higher Drs value than not accounting for internodal distance. GM ECoG versus GM SEEG, as in Fig.

2B: (rank-sum test P¼ 0.0065), DC ECoG versus DC SEEG: (rank-sum test P¼ 0.0059), UL ECoG versus UL SEEG: (rank-sum test

P¼ 0.0047), MR ECoG versus MR SEEG: (rank-sum test P¼ 0.022). DC/UL/AR ECoG versus GM ECoG: (sign-rank test P¼ 0.0027/0.0061/

0.0011), DC/UL/AR SEEG versus GM SEEG: (sign-rank test P¼ 0.0006/0.0008/0.0031). (C) Drs values of min-ROI networks were negatively

correlated with the number of ROI that contained electrode contacts in the resection zone (Pearson correlation q¼�0.48, P< 0.005).
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major challenge in applying network models to the epi-

leptic brain is determining whether the observed patterns

in brain activity and therefore network structure truly

capture the phenomena of interest, and to what extent

they arise from sampling artefact. To this end, we must

acknowledge that the sampling bias in both ECoG and

SEEG is distinct, and that subtle differences in the ar-

rangement of electrodes can determine whether connectiv-

ity can accurately uncover true pathology. Thus,

sampling bias is more complex than just whether or not

a particular target was sampled, and we must take spe-

cial care to ensure that models are not biased by the

locations of electrodes selected by physicians to simply

confirm a priori suspicions present before implant.

While the finding that ECoG and SEEG have distinct

network connectivity patterns in resected versus spared

tissue is significant, it may in part reflect conceptual dif-

ferences underlying these implant strategies. ECoG

attempts to map the boundaries of epileptogenic cortical

regions by assessing seizures and interictal activity,3 while

SEEG focuses on ‘electro-anatomo-clinical’ correlations,3

in which broader network mapping and the relationship

of anatomical spread to seizure semiology is important.

For these reasons, as well as the typical use of a single

electrode type & geometry, that SEEG may be superior

from a network perspective as the inherent conceptualiza-

tion of the modality takes the network approach in

mind.36 In particular, reducing networks to atlas ROI

nodes as we present here may be an appealing approach

for this type of mapping in the future, since these regions

and their connections correspond to anatomically relevant

and interpretable structures. Such an approach could also

facilitate the integration of findings from iEEG networks

with studies of quantitative imaging such as functional

MRI and diffusion tensor imaging which typically use

atlas ROI nodes, or through the use of iEEG atlases for

the prediction of missing information.37,38

While others have reported differences in connectivity

values between depth electrodes and surface electrodes,39

the potential scientific and clinical relevance of network

differences that arise as a result of these are significant. It

is likely that this finding underlies the results of Fig. 2B,

that in uncorrected networks of ECoG which often in-

clude temporal depths, connectivity of resected tissue is

relatively strong whereas in SEEG it is variable. Indeed,

in cases of suspected temporal lobe epilepsy mapped by

ECoG, the chance that depth electrodes will capture the

seizure onset zone is high. Furthermore, the different

physical size and cylindrical shape of each electrode con-

tact in SEEG compared to ECoG records local fields

from different types of neural populations which could

have distinct coherence values. Overall, this observation

is likely fixed by performing separate internodal distance

corrections for depth and cortical electrodes, which adds

to the literature that regressing for internodal distance

improves outcome prediction.35

The results of our sampling correction process (Fig. 4) re-

veal interesting aspects of sampling differences between

ECoG and SEEG. The finding that eliminating nodes contra-

lateral to the resection zone doesn’t significantly change local-

ization from bilateral distance-corrected networks, implies

that this issue is not a major factor driving why certain mod-

els may succeed or fail in some patients. Indeed, most sub-

jects do not have symmetric implants but rather have a bias

towards the hemisphere with the most clinical correlates.

Contralateral electrodes are often placed to address clinical

hypotheses of lateralization, and due to their relative isolation

from the bulk of electrodes, it is possible that they are al-

ready outliers in the network and do not contribute highly

to the outcome of the Drs. On the other hand, if the true

epileptogenic zone is in the hemisphere with fewer electrodes,

network models may struggle with localizing it. Furthermore,

our finding that averaging edges between pairs of brain

regions to convert nodes to atlas ROIs maintains similar per-

formance implies that network models may not need dense

sampling within regions, but instead may benefit from sam-

pling inter-regional connections.

Another important consideration to the application of

network models is the issue of surgical focality which

may differ significantly between resection and ablation

patients. While many previous studies focus on resection

patients, which may extend to natural anatomic bounda-

ries therefore removing additional, non-epileptogenic tis-

sue, a large part of our cohort underwent ablation in

which lesions are relatively small and more specific to the

epileptogenic zone. Indeed, others have found that a large

number of nodes within and outside of the resection zone

is important for accurate outcome prediction from interic-

tal connectivity, which may be impossible for ablation

patients. In this context, our finding of a negative correl-

ation between Drs and number of regions targeted may

imply that the truest representation of the epileptogenic

zone is of low node strength relative to the rest of the

brain. This notion is supported by studies demonstrating

cellular loss in these regions, particularly the hippocam-

pus, in temporal lobe epilepsy.40,41 As minimally invasive

approaches, such as laser ablation, become more com-

mon, it is important that our notions of network abnor-

malities and methods of localizing the epileptogenic zone

and outcome prediction do not rely too heavily on find-

ings from resection patients alone.

Despite its encouraging results in illuminating the dif-

ferences between ECoG and SEEG networks, our study

has several key limitations. We focussed our analysis on

node strength, one of the simplest graph theory metrics

that has been studied frequently in epilepsy, so this meas-

ure may not fully represent the complexity of abnormal

networks in this disorder. However, given that node

strength is among the least sensitive network metrics to

sampling bias,23 we felt that it was a reasonable choice

to compare these approaches. Furthermore, it is well

known that node strength is correlated with other

ECoG, SEEG and networks in epilepsy BRAIN COMMUNICATIONS 2021: Page 9 of 11 | 9



network centrality metrics42 and even certain phenomeno-

logical network models which employ dynamical systems

linked by functional connectivity.12 Thus, many of the

principles we highlight here may be broadly generalizable

to other network studies in epilepsy, and future work

should account for sampling bias where possible. Another

limitation is our consideration of a single 1-h iEEG seg-

ment, which does not capture the variability in interictal

activity and thus connectivity which is known to follow

circadian39 and slower timescales.43 However, sleep–wake

cycles may be interrupted and difficult to estimate in the

epilepsy monitoring unit when sleep deprivation and

medication withdrawal are common, and hospital admis-

sions are too short to capture predominant multi-day

cycles which are close to a month long in many patients.

A final limitation is our analysis of only temporal lobe

epilepsy patients. We chose this cohort to minimize vari-

ability within and across groups and because they repre-

sent the largest number of patients at our centre. While

distinct patterns of sampling bias may exist in extratem-

poral epilepsies, eventually data-sharing efforts will pro-

vide enough subjects of each epilepsy and intervention

type to ensure generalizable results. Future work should

address whether the relationship of connectivity in other

anatomical locations of the epileptogenic has a similar

pattern to temporal lobe epilepsy, and whether these pat-

terns are also different in ECoG versus SEEG.

Ultimately, clinical judgement of risk and reward will drive

the choice between ECoG and SEEG for individual patients.

While the path of clinical translation for network models is

complicated by inherent sampling biases across techniques

and varying surgical practice among institutions, we believe it

is vital to compare and contrast studies of ECoG and SEEG

and recognizing that each provides a distinct view of the

brain’s underlying connectivity but that neither are ‘correct’.

Finally, we believe that carefully understanding the sampling

properties of networks mapped by iEEG can extend the use

of graph theory to broader problems in translational human

neuroscience.
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33. Guimerà R, Nunes Amaral LA. Cartography of complex networks:
Modules and universal roles. J Stat Mech Theory Exp. 2005;
2005(02):P02001–1.

34. Ramaraju S, Wang Y, Sinha N, et al. Removal of interictal MEG-
derived network hubs is associated with postoperative seizure free-
dom. Front Neurol. 2020;11:563847.

35. Wang Y, Sinha N, Schroeder GM, et al. Interictal intracranial elec-
troencephalography for predicting surgical success: The import-

ance of space and time. Epilepsia. 2020;61(7):1417–1426. doi:
10.1111/epi.16580

36. Bartolomei F, Lagarde S, Wendling F, et al. Defining epileptogenic

networks: Contribution of SEEG and signal analysis. Epilepsia.
2017;58(7):1131–1147.

37. Betzel RF, Medaglia JD, Kahn AE, et al. Structural, geometric and
genetic factors predict interregional brain connectivity patterns
probed by electrocorticography. Nat Biomed Eng. 2019;3(11):

902–916.
38. Frauscher B, von Ellenrieder N, Zelmann R, et al. Atlas of the

normal intracranial electroencephalogram: Neurophysiological
awake activity in different cortical areas. Brain. 2018;141(4):
1130–1144.

39. Sanz-Garcia A, Rings T, Lehnertz K. Impact of type of intracranial
EEG sensors on link strengths of evolving functional brain net-
works. Physiol Meas. 2018;39(7):074003.

40. Dam AM. Epilepsy and neuron loss in the hippocampus.
Epilepsia. 1980;21(6):617–629.

41. Lopim GM, Vannucci Campos D, Gomes da Silva S, et al.
Relationship between seizure frequency and number of neuronal
and non-neuronal cells in the hippocampus throughout the life of

rats with epilepsy. Brain Res. 2016;1634:179–186.
42. Oldham S, Fulcher B, Parkes L, et al. Consistency and differences

between centrality measures across distinct classes of networks.
PLoS One. 2019;14(7):e0220061.

43. Baud MO, Kleen JK, Mirro EA. Multi-day rhythms modulate seiz-

ure risk in epilepsy. Nat Commun. 2018;9(1):88.

ECoG, SEEG and networks in epilepsy BRAIN COMMUNICATIONS 2021: Page 11 of 11 | 11


	tblfn1
	tblfn2
	tblfn3



